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ABSTRACT
Arrhythmias are a leading cause of cardiovascular morbidity and mortality. Portable
electrocardiogram (ECG) monitors have been used for decades to monitor patients
with arrhythmias. These monitors provide real-time data on cardiac activity to identify
irregular heartbeats. However, rhythmmonitoring and wave detection, especially in the
12-lead ECG, make it difficult to interpret the ECG analysis by correlating it with the
condition of the patient. Moreover, even experienced practitioners find ECG analysis
challenging. All of this is due to the noise in ECG readings and the frequencies at which
the noise occurs. The primary objective of this research is to remove noise and extract
features from ECG signals using the proposed infinite impulse response (IIR) filter to
improve ECGquality, which can be better understood by non-experts. For this purpose,
this study used ECG signal data from the Massachusetts Institute of Technology Beth
Israel Hospital (MIT-BIH) database. This allows the acquired data to be easily evaluated
using machine learning (ML) and deep learning (DL) models and classified as rhythms.
To achieve accurate results, we applied hyperparameter (HP)-tuning for ML classifiers
and fine-tuning (FT) for DL models. This study also examined the categorization of
arrhythmias using different filters and the changes in accuracy. As a result, when all
models were evaluated, DenseNet-121 without FT achieved 99% accuracy, while FT
showed better results with 99.97% accuracy.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence,
Data Mining and Machine Learning
Keywords ECG, IIR, MITBIH, ML, DL, DenseNet, SVM, KNN, RF, DenseNet-121

INTRODUCTION
The heart is a critical organ. It controls the operation of the blood circulatory organs (Badr
et al., 2022). When these organs struggle to supply enough blood to the heart, heart disease
(HD) occurs.HDkills themajority of peopleworldwide.HD is the top cause of death among
American Indians, according to the American Heart Association (AHA) (Sharma et al.,
2023). It is the most common cardiovascular disease in women over 65 years of age (Tsao et
al., 2022; NHS, 2022). Cardiac arrhythmias are a common form of HD. Arrhythmia affects
the heartbeat. It indicates a fast, slow, or irregular heartbeat. Tachycardia is a fast heartbeat.
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Atrial fibrillation is the most common type of heart arrhythmia (NHLBI, 2022). ECGs are
one of the simplest methods to check heart rhythm and can easily and quickly identify
cardiac arrhythmias. A portable Holter monitor was used to record ECGs. It can record
ECG signals for 24 h (Hopkins Medicine, 2022). A huge number of people suffer from
irregular heartbeats regularly (Chowdhury, Poudel & Hu, 2020), which can be dangerous.
Thus, an accurate, low-cost arrhythmic heartbeat diagnosis is desirable. ECG signals,
which show heart electrical activity in P, QRS, and T waveforms, have been used by many
researchers to classify arrhythmia.

Time, size, and distance between waves and peaks determine heart arrhythmia. Feature
extraction and beat classification help diagnose arrhythmia. Depending on the severity
of the symptoms present upon diagnosis, cardiac arrhythmias are categorized as either
life-threatening or non-life-threatening. Potentially fatal arrhythmias like ventricular
fibrillation and tachycardia can cause cardiac arrest and rapid death. These patients
require immediate medical assistance. Although non-life-threatening arrhythmias do not
directly lead to heart failure, they require prompt treatment to prevent further damage.
Arrhythmias may affect a patient’s everyday life in various ways (Sannino & De Pietro,
2018). Furthermore, numerous modern medical applications have greatly elevated the
significance of ECG classification for arrhythmia diagnosis. In recent years, various
approaches have been developed for categorizing ECG data for arrhythmia detection. The
classification accuracy of electrocardiograms (ECGs) depends on the classifier capability
and ECG feature identification abilities (Alarsan & Younes, 2019).

An ECG has a variety of noise components, including device power interference, baseline
drift (low-frequency signal variance), skin-electrode contact noise, and motion artifacts
(a patient problem that happens when the patient performs an ECG either purposefully
or accidentally). Arrhythmia might be misconstrued as motion artifacts from the patient’s
muscular action, even if the movement is safe. The frequency of ECG impulses changes
with time. As a result, nonlinear noise and artifacts have an impact on ECG signals (Kumar
& Sharma, 2020). Ambulatory electrocardiograms (AECGs) have increased significantly
compared with Holter monitoring systems. AECGS ranges from 24 to 48 h in duration.
AECGs range from full-scale 12-lead ECGs to small patches with narrow vectors. AECGs
are used clinically for arrhythmia analysis. They are now used to classify and predict risk
and to study the ST level and QT interval shape (Xue & Yu, 2021).

After considering all of the above observations, it can be concluded that ECGs employed
for rhythm classification have built-in noises. Some of the more serious issues related to
these noises are discussed below.

• It is important to have a reliable way to mark heartbeats and measure their features.
Most likely, the signs of arrhythmia cannot be seen when the ECG signal is taken (Tang
et al., 2022).
• People’s ECG signals are different because their intrabeat and interbeat time amplitudes
are different, as is their way of life. It is difficult to find a general framework for classifying
heartbeats that can be used in a larger population (Tripathi et al., 2022).
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• In the temporal frequency domain, the manner in which arrhythmia manifests is
random. Therefore, the ECG signal study may have to be performed for a longer time.
Therefore, tachycardia is more likely to be incorrectly diagnosed (Ishaque, Khan &
Krishnan, 2022).
• Noise and other unwanted variables can mix and cover morphological patterns, making
it difficult to determine the type of heartbeat (Yeo et al., 2022).

This study is based on a technique for removing noise present in raw ECG signals using
a computer-aided diagnostic system. This can help cardiologists, especially non-experts,
diagnose arrhythmias using ECG in a smart, efficient, and cost-effectivemanner. To achieve
this, the proposed method can clearly identify five types of arrhythmias with the help of
pre-filtered ECG patterns using machine learning and deep learning techniques and is
based on the concept of a hybrid classification scheme.

This article is organized into sections. The first section discusses the introduction in
depth. The relevant study findings are presented in the Related Work section, where
they are used to predict the severity of arrhythmia, and the fundamentals of ML and
DL are addressed. The Materials and Methods section discusses basic ECG knowledge,
preprocessing, and the proposed IIR filter. Furthermore, information about the proposed
model can be found in the Proposed Methodology section. The results and analysis section
goes over the various ML and DL models. The performance discussion section compares
the performance of the IIR filter with that of other types of filters. The Conclusion section
explains the conclusions and any new features.

RELATED WORK
Arrhythmia is the most common type of heart disease. Classification of arrhythmia using
ECG signals is a common method. Using this method, many researchers have conducted
investigations using ML and DL methods to classify rhythms. Several approaches used in
the past to classify arrhythmias based on these are discussed in this section.

Machine learning methodologies
Machine learning has become increasingly popular in recent years and it has been
employed to effectively address critical challenges acrossmultiple fields, includingmedicine,
security, and communications (Chen et al., 2021). Many studies have been based on the
incredible ability of machine learning to detect the existence of irregular heartbeats in
ECG readings (Luz et al., 2016; Irfan et al., 2022). Several traditional classification models
are being used to handle this issue. Random forest and support vector machine (RF
and SVM) (Bhattacharyya et al., 2021a), k-nearest neighbors (KNN) (Sinha, Tripathy &
Das, 2022), and artificial neural networks with logistic regression are the most common
methods (ANN with LR) (Sanamdikar, Hamde & Asutkar, 2020). Different methods, like
decision trees (Mohebbanaaz & Rajani Kumari, 2022), hidden Markov models (Sadoughi,
Shamsollahi & Fatemizadeh, 2022), and hyperbox classifiers (Hosseinzadeh et al., 2021), are
also used to classify arrhythmia. Classifiers such as linear discriminants (LD) (Krasteva et
al., 2015), decision trees (Sultan Qurraie & Ghorbani Afkhami, 2017), and as sophisticated
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as traditional neural networks (Inan, Giovangrandi & Kovacs, 2006; Javadi et al., 2011)
are some of the methods available. A lot of work has also gone into finding the optimal
combination of features and sometimes even making complicated signal processing
methods, as well as selecting themost efficient set (dimensionality reduction) for classifying
arrhythmias (Li et al., 2017).

Boser, Guyon, and Vapnik invented SVM in 1992 (Vikramaditya, 2006). Math-based
and human-guided, it is a popular machine-learning algorithm. It has been proposed
to solve many medical, engineering, text classification, image segmentation, and pattern
recognition issues. SVMs were first used for binary classification, where they find a decision
boundary (called a ‘‘hyperplane’’) that divides data into two classes. SVMs with different
kernels work well with large data sets like the ECG signal. Only a few kernel functions
can classify biomedical signals. Because it distinguishes ECG signals well, the radial basis
function (RBF) kernel SVM classifier has been widely used (Bhattacharyya et al., 2021b).

Supervised machine learning, especially for classification tasks, is popular with the
K-nearest neighbors (KNN) algorithm. However, it is a ‘‘non-parametric lazy algorithm’’,
unlike the other methods, which fit training data differently. KNN does not train. Math
groups things instead. The KNN sorts feature vectors by their closest training sample
labels in the feature space. Calculate the distance (Hamming, Euclidean, Minkowski, etc.)
between a feature vector or a new instance and all of the feature vectors in the training
set to find the k-nearest neighbor. The class with the most votes is used to predict the
unknown feature vector. Recent ECG classification studies have used the KNN (Mahanya
& Nithyaselvakumari, 2022).

The random forest (RF) approach is an ensemble learning strategy that generates a large
number of individual decision trees (DTs). A decision tree is a non-parametric supervised
learning system that employs a majority voting mechanism to integrate predictions for
classification and regression tasks. Because it only uses a portion of the features used to
create them, RF can avoid deep DT overfitting. When training an RF model, the number
of estimators (trees) is essential (Mazidi, Eshghi & Raoufy, 2022).

One of the most popular and useful teaching tools is the decision tree. Several
studies have successfully classified heartbeats using decision trees (Charfi & Kraiem,
2012). Using wavelet transformations (Zhang, Peng & Yu, 2010) retrieved features from
electrocardiograms, which they then used to cluster using a decision tree. An ensemble of
weak learners, or base prediction models, is used to generate a prediction model in the
machine learning technique known as ‘‘Gradient Boosting’’, which is applied to regression
and classification issues. One of the most popular machine learning tools in recent
years is eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016), an improved
optimization of the gradient boosting technique that incorporates various algorithmic and
system improvements (Li et al., 2019; Shi et al., 2019). Latent growth mixture modeling
(LGMM) is used byRountree-Harrison, Berkovsky & Kangas (2023) to look at biomarkers in
the heart and brain that show high-stress levels. In a recent study, Varalakshmi & Sankaran
(2022) used the Bagging classifier to categorize arrhythmias. It works as a meta-estimator
ensemble, with several copies of the core estimator. To change the training data set, a
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sampling strategy is utilized. The aggregate prediction is the result of a voting mechanism
that adds each estimator’s estimates together.

In this way, many studies have been conducted on arrhythmia classification using ML
methods and concepts.

Deep learning methodologies
Recently, researchers have been using deep learning more and more to pull out features.
Researchers have used DL models of CNN (Ahmad et al., 2021), CNN-LSTM (Essa & Xie,
2021), LSTM-AE (Hou et al., 2019), and BiLSTM (Li et al., 2022) models of neural network
convolution to classify irregular heartbeats.

In reality, researchers have to do a lot of work to get features, and sometimes the features
they make by hand can’t accurately describe an electrocardiogram. Deep learning is much
better than machine learning at dealing with big data (Farhan & Jasim, 2022), analyzing
time series data, classifying images, etc. Deep learning has made a lot of progress recently
that has helped make health care better. Deep learning does a great job with a lot of data, as
has been shown. Deep learning can save time when it comes to extracting features and does
not require a lot of related knowledge, which makes it very efficient. Researchers classify
ECG data and find out how well it can be transferred by looking at Alex Net, VGG-16,
ResNet-50, and the Inception CNN network typologies. In most cases, CNN’s network
topologies work better than those of other networks, but it takes other networks longer to
process the same data, which is not practical. Aside from that, though, the ECG data is not
well balanced because there aren’t many negative samples. So, data that is not balanced
could change the final classification (Ali, Kareem &Mohammed, 2022). Deep learning (DL)
uses ‘‘training data’’ to learn, predict, improve decisions, or find complex patterns. CNNs
are more practical than traditional learning methods because you can usually improve their
accuracy by increasing the network or training dataset. Decision trees and support vector
machines (SVMs) require a lot of data and human input to be generalizable, making them
unsuitable for many modern applications.

Currently, deep learning (DL) architectures like Alex Net, VGG16, and ResNet-50 have
been proposed to improve learning task accuracy (Ebrahimi et al., 2020). An eight-layer
convolutional neural network called AlexNet is a trained network stored in ImageNet. The
trained network can classify photos into 1,000 categories, including animals, keyboards,
mice, and pencils. Thus, the network can represent many images using many features.
Pictures sent to the network can only be 227 by 227. AlexNet’s best feature is image direct-
to-classification. Convolution layers automatically find image edges, and fully connected
layers can learn them. More convolutional layers may simplify visual patterns (Eltrass,
Tayel & Ammar, 2021).

The VGG-16 model is utilized for image classification. The system shows a high level
of accuracy, correctly categorizing 1,000 photographs into 1,000 distinct categories with
a success rate of 92.7 percent. This approach to categorizing images supports the process
of transfer learning. This model, which is a convolutional neural network consisting of 16
layers of fully connected layers, was trained on the MIT-BIH dataset to accurately classify
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electrocardiogram (ECG) rhythms. Convolutional, fully connected, and pooling layers are
commonly utilized in network models (Jun et al., 2018).

ResNet-50 has an advanced design that is very accurate and works well with other
networks. The framework adds a module for quick connections to learn the residue and
stay away from deep network problems. The direct sharing of data across the network
makes it easy to find high-level features that are conventional (Zhao et al., 2022).

The DenseNet-121 architecture has also been used to classify electrocardiogram (ECG)
signals (Cai et al., 2022). Each layer in a typical convolutional network is solely connected
to the one below it. DenseNets, on the other hand, has direct connections between
each layer and the layers that follow it. Each succeeding layer will now contain the
feature maps from the previous layers. To achieve the same level of performance, fewer
parameters are required than in traditional convolutional networks. DenseNets support in
the strengthening of convolutional networks. We have seen how advanced AlexNet (Eltrass,
Tayel & Ammar, 2021), which has eight layers, VGG (Jun et al., 2018), which has sixteen,
and ResNets (Zhao et al., 2022), which has more than 100 and even 1000 levels. DenseNets
make layer interconnections easier than in other systems. As a component of DenseNet,
the Dense Block serves an important role in improving information flow across layers.
Batch normalization (BN), rectified linear activation unit (ReLu), and convolution (conv)
are the key elements.

Similarly, several studies have been conducted on arrhythmia classification using DL
methods and concepts. What we finally noticed was that all these findings persisted as long
as heart disease existed. The Table 1 below provides a summary of the subjects covered so
far.

MATERIALS AND METHODS
This section discusses the database that was used, the preprocessing step, how the heat
beats were found, how the classes were matched and given names, how the classes were put
together, and the proposed filter design.

Arrhythmia database
Typically, electrocardiogram (ECG or EKG) data, which is a time series of the heart’s
electrical activity, is included in the MIT-BIH Arrhythmia Database. The data structure
consists of numerical values that represent the voltage as it changes over time, rather than
images. To train and test the model suggested by Ullah et al. (2022), they used a stratified
5-fold evaluation strategy on 97,720 and 141,404 transformation beat images taken from the
MITBIH and St. Petersburg Institute of Cardiological Technics (INCART) datasets, which
are both imbalanced class datasets. N (normal), V(ventricular ectopic), S (supraventricular
ectopic), and F (fusion) are the four classifications of the data according to the Association
for the Advancement of Medical Instrumentation® (AAMI).

The Mit-Bih database is used with numerical values of time series data in this article;
because convolutional neural networks (CNNs) are so useful for processing images,
extracting features, and classifying time series data, there is no need to convert the database

K and Syed (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1774 6/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1774


Table 1 The study that is related to the classification of ECG signals.

Researcher and year Data sources Method Extracted features Approaches to
classification

Accuracy

Keskes et al. (2022) PhysioNet CinC 2011 Multi-objective op-
timization (MOO)
method

Statistical Frequency
domain and Time do-
main features

KMeansSMOTE and
SMOTETomek

KMeansSMOTE:
0.918
SMOTETomek:
0.8936

Bhattacharyya et al.
(2021a)

MIT-BIH arrhythmia
dataset

Ensemble of RF and
SVM

Spectral Features, Sta-
tistical Features and
Temporal Features

Random Forest (RF)
SVM Ensemble RF+
SVM

98.21

Sinha, Tripathy & Das
(2022)

MIT-BIH arrhythmia
dataset

Empirical Mode De-
composition

Multilayer Similar-
ity Coefficients, Time
Frequency Variation
and Phase Synchrony
Features

DNN:Deep
Neural Network
LS-SVM:Linear
Square SVM

DNN:99.05
LS-SVM:98.82

Sanamdikar, Hamde
& Asutkar (2020)

MIT-BIH arrhythmia
dataset

General sparsed neu-
ral network (GSNN)

Time Domain
Features
Frequency
Domain Features
High Level Features

General sparsed neu-
ral network (GSNN)

0.98

Mohebbanaaz & Ra-
jani Kumari (2022)

MIT-BIH arrhythmia
database

Adaptive boosted op-
timized DT classifier

Temporal Features
Morphological Fea-
tures

Optimized DTAdap-
tive boosted opti-
mized DT

Optimized
DT:97.30
Adaptive
boosted
optimized
DT:98.77

Sadoughi, Shamsollahi
& Fatemizadeh (2022)

MIT-BIH arrhythmia
database

The Hidden Markov
Model (HMM)

Time Series Features Layered Hidden
Markov Model
(LHMM)

97.10

Hosseinzadeh et al.
(2021)

MIT-BIH, EDB,
AHA, CU, NSD,
University of Toronto
Dataset (UofTDB)

Multi-Class SVM Time Domain Fea-
tures, Frequency
Domain Features
Authentication Fea-
tures

SVM+ ANN 95

Ahmad et al. (2021) MIT-BIH
Arrhythmia database
PTB Diabostic
ECdataset

Multimodal Feature
Fusion (MFF)

Frequency Domain
Features

Multimodal Image
(MIF) and Feature
Fusion (MFF).

MIF: 98.4 MFF;
99.2

Essa & Xie (2021) MIT-BIH arrhythmia
database

An Ensemble of DL-
Based Model

RR frequencies,
higher-order statistics
(HOS)

CNN-LSTM and
RRHOS-LSTM net-
works

CNN
RRHOS:99.25
LSTM:95.81

Hou et al. (2019) MIT-BIH Arrhythmia
Database

LSTM-Based Auto-
Encoder

Beats-based Features
Record based Fea-
tures

SVM 99.45

Li et al. (2022) MIT-BIH arrhythmia
database

Bidirectional LSTM
(BiLSTM) network

End to end Bidirectional LSTM
(BiLSTM) optimized
Bayesian

99.00%

Ali, Kareem &Mo-
hammed (2022)

MIT-BIH and PTB
Diagnostic db

1D and 2D CNN
model

Greatest Features LSTM 99.21

(continued on next page)
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Table 1 (continued)

Researcher and year Data sources Method Extracted features Approaches to
classification

Accuracy

Jun et al. (2018) MIT-BIH and PTB
Diagnostic db

2D CNNmodel Time Domain Fea-
tures

2-Dimentional CNN
AlexNet
VGGNet

2D CNN:99.05
AlexNet: 98.5
VGGNet: 98.4

Cai et al. (2022) MIT-BIH and PTB
Diagnostic db

2D CNNmodel Mix Time Series Fea-
tures

ResNet50+ Dense
Net

93.7

Table 2 Beats and classes of the heart’s rate.

Heartbeat classes
at AAMI

The rhythm subjects
at MIT-BIH

Count of
available beats

Normal beats (N) N (Beats of normal) 74,776
L (Left bundle branch of block) 8,052
R (Right bundle branch of block) 7,239
j (beats at escape nodal (junction)) 229
e (beat of escape atrial escape ) 16

Beats of supraventricular (S) A (atrial premature beat) 2,528
S (premature supraventricular beat) 2
J (premature nodal (junctional) beat) 83

Beats ventricular (V) ! (ventricular flutter beat) 472
V (ventricular premature contraction) 7,115
E (beat of ventricular escape ) 106
[ (ventricular flutter fibrillation start) 6
] (ventricular fibrillation flutter end) 149

Beats (F) F (beats of ventricular fusion normal ) 106
Beats unknown (Q) f (Fusion beats of paced and normal ) 979

/ (beat Paced ) 7,001
Q (beats Unclassifiable ) 33

to 2D beat images. CNN’s excellent ability to recognize features automatically has made it
one of the most widely utilized AI techniques (Hassan et al., 2022).

This study made use of data from the MIT-BIH arrhythmia database, which is a public
standard dataset. It contains 48 separate 24-hour, two-channel ECG recordings, each lasting
30 min. Annotation of each file Heartbeat types are cataloged in the ATR file. According to
ANSI/AAMI EC57:1998/(R) 2008, 18 unique original beat types are categorized as normal
ectopic (N), unknown ectopic (Q), ventricular ectopic (V), and supraventricular ectopic
(S), coded by 0, 1, 2, 3, and 4, respectively. The sample sizes utilized in this study are shown
in Table 2 (Rexy, Velmani & Rajakumar, 2021).

There are 18 different kinds of beats, 14 of which have been categorized and 4 of which
have not. Annotations of beats occur for all types of QRS waves on an electrocardiogram.
As a result, many researchers and developers of QRS-detection tools utilize this database
for research and development. Databases are often used to evaluate the performance of new
software before it is implemented on devices used for various purposes. The analysis must
be accurate; otherwise, the device selection will be wrong. In biomedical applications, such
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Figure 1 Architecture of the imbalanced databaset (Guanglong, Xiangqing & Junsheng, 2019).
Full-size DOI: 10.7717/peerjcs.1774/fig-1

as QRS detection, which is crucial for many ECG monitoring devices, inaccurate results
might make it more difficult for clinicians to establish a diagnosis and provide treatment.
So, the doctor may make a more informed decision by searching the database for these
applications (Khalaf & Mohammed, 2021).

Balance of database with SMOTE
The MIT-BIH arrhythmia database contains several inconsistencies, with more ‘‘normal’’
classes than ‘‘abnormal’’ classes. When making predictions, classification algorithms may
favor the majority class (more observations) over the minority class (fewer observations).
In medical applications, misclassifying ‘‘abnormal’’ classes as ‘‘normal’’ can be fatal
(Guanglong, Xiangqing & Junsheng, 2019). MIT-BIH has the following observations before
balancing the arrhythmia database. This is depicted in Fig. 1.

SMOTE
We used the Synthetic Minority Over-sampling Technique (SMOTE) as a resampling
strategy to achieve balance in the MIT-BIH dataset. Oversampling the minority classes
(SVEB (S), VEB (V), F, and Q) by generating synthetic instances minimizes the dataset’s
imbalance produced by the majority class (N). For each sample in the minority class,
represented by a set of k= 5 synthetic instances, SMOTEassesses the differences between the
sample and its five nearest neighbors (Sarker, 2021). These differences are then multiplied
by a random number ranging from 0 to 1. The resampled MIT-BIH database reflects the
AAMI-recommended arrhythmia categories: N, V, S, F, and Q. The dataset initially had
imbalanced class distribution, with specific class counts of 72,471, 2,223, 5,788, 641, and
6,431. Through the application of SMOTE, we obtained a more balanced dataset with
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Table 3 Details of the MIT-BIH dataset before and after SMOTE.

Dataset Classes Classes before
SMOTE

Classes
after SMOTE

MIT-BIH DATASET N (0) 72,471 57,961
S (1) 2,223 57,961
V (2) 5,788 57,961
F (3) 641 57,961
Q (4) 6,431 57,961

Figure 2 Architecture of the balanced database (Sarker, 2021).
Full-size DOI: 10.7717/peerjcs.1774/fig-2

57,961 instances, as detailed in Table 3. Figure 2 visually depicts the even distribution
achieved through this resampling technique.

The balanced MIT-BIH dataset is now ready for additional preprocessing procedures to
improve its usability for ML and DL algorithms. The following operations may involve data
cleaning, addressing missing values, and splitting the dataset. These preprocessing steps
are designed to refine the dataset, making it more structured, informative, and conducive
to the best model performance.

Categories of ECG signals
The MIT-BIH dataset provides a wide range of ECG signals that have been classified into
separate classes, each indicating a particular cardiac state. The AAMI (Association for the
Advancement of Medical Instrumentation) recommends the following categories: normal
(N), supraventricular (S), ventricular ectopic (V), fusion beat (F), and unknown beat (Q).
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Figure 3 ECG signal samples of five classes (Song et al., 2020).
Full-size DOI: 10.7717/peerjcs.1774/fig-3

The categorization of ECG signals in the MIT-BIH dataset facilitates targeted analysis and
classification of various arrhythmias. The five types of ECG signals are depicted in Fig. 3.

ECG data pre-processing
Preprocessing is performed on all ECG data to remove artifacts such as baseline drift,
motion artifacts, muscle noise, and power line interference. Unstructured data is turned
into a more understandable format during the data preparation phase. Before using ML
and DL technologies, it is essential to ensure data integrity. To do this, we used an IIR filter
to remove noise from the raw ECG signals.

Importance of IIR Filter
Arrhythmias are categorized according to the time between R-peaks (RR intervals),
abnormal P waves, and other physical characteristics. The QRS complex, an important part
of the ECG signal that shows ventricular depolarization, was used in traditional arrhythmia
classification studies to find problems with the heartbeat. Manjula, Singh & Babu (2023)
proposed an optimized IIR filter for ECG signals categorized through QRS peak detection.
They used the Pan-Tompkins algorithm to detect QRS complexes and calculate the RR
intervals required for heart rate variability (HRV).

In addition to routine ECG readings, signals captured during physical activities may
introduce artifacts and noise caused by body movements, which may reduce the accuracy
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Figure 4 Architecture of proposed IIR Filter.
Full-size DOI: 10.7717/peerjcs.1774/fig-4

of QRS detection (Apandi et al., 2022). In that case, it is also possible to detect rhythm
disorders by first filtering the ECG data with an IIR filter and then locating the QRS peak
(Amhia & Wadhwani, 2021).

Proposed IIR filter
The proposed IIR filter structure is a two-stage design that includes both a
higher-pass filter and a stop-band filter, as illustrated in Fig. 4. This dual-
stage architecture is intentionally adopted to achieve certain filtering objec-
tives, ensuring effective noise reduction and feature extraction in the ECG
signals.

Let X(n) be the unfiltered ECG data input, and the IIR filter transfer function design
definition is mentioned in Eq. (2).

Y (n)=X(n)∗ t1∗ t2 (1)

where t1 and ,t2 are transfer functions. In Eq. (3), the transfer function is shown.

X(z)=
∞∑

n=−∞

i3 ∗X(n)Z−n. (2)

Noise removal and feature extraction using the proposed IIR filter
An infinite impulse response (IIR) filter design consists of a high-pass filter (HPF)
and a bandstop filter (BSF) that reduces noise and extracts specific features from
electrocardiogram (ECG) signals. The HPF effectively eliminates baseline drift and
low-frequency noise, both of which generate significant variations in ECG data. Its
adjustable cutoff frequency increases filtering flexibility. Simultaneously, the BSF, which
is defined by the quality factor (Q) and the center frequency, specifically targets specific
frequencies, significantly reducing powerline interference. The use of a Butterworth
filter for both the HPF and the BSF enables a consistent frequency response. The
introduction of normalized cutoff frequencies improves the filters’ adaptability across
multiple sampling rates. Specifically, setting the HPF cutoff frequency to 0.5 Hz proves
instrumental in effectively reducing noise in ECG data, further improving the overall
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Table 4 IIR filter parameters for extracting features from ECG signals.

Filter type Cutoff
frequency (Hz)

Order

High-pass filter 0.5 4
Bandstop filter 49.0–51.0 4

Figure 5 Architecture of proposed IIR Filter.
Full-size DOI: 10.7717/peerjcs.1774/fig-5

signal quality. Additionally, adding certain parameters to the Butterworth filter in the
suggested IIR configuration improves feature extraction. Table 4 shows the values of these
parameters.

After applying the given parameters, the filtered ECG signal with detected peaks and
irregular intervals is shown in Fig. 5. A 103.39 beats perminute (BPM) pulse rate emphasizes
the irregular intervals.

Thus, to improve the arrhythmia classification and make it easy to understand for both
experts and non-experts, the ECG data is filtered using the proposed IIR filter. The filtered
signals are input into the ML and DL models.

Algorithm for IIR filter design
The proposed IIR filter algorithm is represented as follows:
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Algorithm 1 IIR Filter with High-pass and Band-stop Filters
Require: Raw ECG signal (ecg_data), Sampling frequency (fs), High-pass cut-off

frequency for Baseline Drift and Muscle Artifacts (highpass_cutoff ), Filter order
for high-pass filter (highpass_order), Band-stop frequency range for Power Line
Interference and Artifact from Electronic Devices (bandstop_range), Filter order for
band-stop filter (bandstop_order)

Ensure: Filtered ECG signal (filtered_ecg_data)
1: Calculate normalized high-pass cut-off frequency: normalized_cutoff ←

highpass_cutoff /(0.5× fs)
2: Design high-pass IIR filter using Butterworth filter design:
3: Determine filter coefficients using the butter function with ’highpass’ type:

filter_coefficients← butter(highpass_order,normalized_cutoff ,’highpass’)
4: Apply high-pass IIR filter to the raw ECG signal:
5: Initialize filtered_ecg_data as an empty array.
6: Initialize filter state.
7: for each data point in ecg_data: do
8: Apply high-pass IIR filter using filter_coefficients.
9: Update filter state.
10: Append the filtered data point to filtered_ecg_data.
11: end for
12: Calculate normalized band-stop frequencies:
13: normalized_bandstop_low← bandstop_range[0]/(0.5× fs)
14: normalized_bandstop_high← bandstop_range[1]/(0.5× fs)
15: Design band-stop IIR filter using Butterworth filter design:
16: Determine filter coefficients using the butter func-

tion with ’bandstop’ type: bandstop_coefficients ←

butter(bandstop_order,[normalized_bandstop_low,normalized_bandstop_high],’bandstop’)
17: Apply band-stop IIR filter to the high-pass filtered ECG signal:
18: Initialize filtered_ecg_data as an empty array.
19: Initialize band-stop filter state.
20: for each data point in filtered_ecg_data: do
21: Apply band-stop IIR filter using bandstop_coefficients.
22: Update band-stop filter state.
23: Append the filtered data point to filtered_ecg_data.
24: end for
25: Output filtered_ecg_data as the result of the combined high-pass and band-stop IIR

filters applied to the raw ECG signal.
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The term ‘‘baseline drift’’ refers to the low-frequency fluctuations observed in the
electrocardiogram (ECG) signal that are unrelated to the heart’s electrical activity. The
potential cause of the issue may be identified as the positioning of the electrodes or other
related conditions. It is greatly slowed down or stopped when an IIR high-pass filter is
applied to a signal. It provides better signal quality and improves the clarity of the ECG
signal. This makes identifying and analyzing the actual electrical activity of the heart
easier, as it is free of interference from unrelated changes. Powerline interference is when
random electrical signals get into ECG records through the power supply lines. This is
called ‘‘interference from power lines’’. These unwanted signals, which usually come from
electrical devices that use the same power grid, make noise in the ECG data, which could
make the recorded heart signals less accurate and clear. To solve this problem, a stopband
filter can be used to remove only the frequencies that are caused by powerline interference.
This clears the ECG signal of this unwanted noise. Figure 6 shows five groups of filtered
ECG signals, such as normal, supraventricular, ventricular, fusion, and unknown signals.
All are filtered with a 150-Hz proposed IIR filter. It is very important for people who are
not experts to understand what happens during the filtering process when they suggest an
IIR filter for processing ECG signals, especially when it comes to classifying beats.

Normal beat
By using an Infinite Impulse Response (IIR) high-pass filter first and then a low-pass filter,
it is thought that the normal beat signal will effectively capture the ECG waveform that is
usually associated with a healthy and normal heart rhythm. In a typical electrocardiogram
(ECG) pattern, people can observe different waveforms known as P waves, QRS complexes,
and T waves.

Supraventricular beat
Electrical activity in the heart that occurs above the ventricles is what causes supraventricular
beats, also known as supraventricular premature beats. This category includes a variety of
abnormal heart contractions, including atrial premature contractions (APCs) and atrial
fibrillation. By examining filtered supraventricular beats, it becomes clear that there are
changes or problems with the electrocardiogram (ECG) waveform.

Ventricular beat
The ventricles are the lower chambers of the heart that supply blood to the lungs and the rest
of the body. Premature ventricular contractions (PVCs) are one of themost common types.
In comparison to typical beats, the QRS complex in ventricular beats appears broad and
irregular. Sometimes there is no P wave preceding myocardial depolarization. Ventricular
beats can interrupt the regular rhythm of the heart, reducing cardiac output. The use of a
filtered ventricular beat signal makes it easier to identify abnormalities in the QRS complex.

Fusion beat
Fusion beats arise when both normal and abnormal electrical paths are active at the same
time in the atria and ventricles. The filtered fusion beat signal may have a unique rhythm
after the IIR high-pass and low-pass filters are applied to the ECG signal. This pattern
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Figure 6 Filtered ECG Signals with IIR filter.
Full-size DOI: 10.7717/peerjcs.1774/fig-6

clearly indicates a mix of activities that occur between normal beats and abnormal beats
(supraventricular or ventricular).

Unknown beat
‘‘Unknown beats’’ are typically ECG beats that cannot be accurately characterized as
‘‘normal’’, ‘‘superior ventricular’’, ‘‘ventricular’’, or ‘‘fusion’’. It is likely that these beats
contain characteristics that make it difficult for computers or even skilled people to classify
them. After applying the IIR filter to the filtered signal for unknown beats, changes that
do not fit the standard patterns for recognized beat types may appear. It’s possible that the
pattern in the filtered unknown beat signal changes in some way from other beat kinds.

The IIR filtering approach makes it easier for non-experts to understand confusing
ECG readings by removing redundant components. In practice, the elimination of baseline
wandering is essential for accurate ECG interpretation. This promises that the observed
differences are due to real heart activity and not to external factors.
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Figure 7 Architecture of the proposed model.
Full-size DOI: 10.7717/peerjcs.1774/fig-7

PROPOSED METHODOLOGY
In this proposed model, we have first taken the data containing raw ECG signals from the
MIT-BIH database. Then we filtered the signals with an IIR filter. The best of the filtered
signals were preprocessed. In this preprocessing, we check whether there are any missing
data or NAN values and add them to the data balance. Data balancing is a very important
process because feeding the correct data to the ML or DL models will result in accurate
results. For this, we used the Smote Technique. Thus, from the data balance, the balanced
data is given to the data split to split it into training and testing. Later, we gave the split bata
to the ML and DL models for arrhythmia classification. However, this study not only used
pre-existing models but also enhanced their functionalities using new methodologies. The
ML classifiers used the hyperparameter tuning technique to achieve this, whereas the DL
models used the fine-tuning technique. Then a performance analysis was done to examine
the results from all ML and DL models. Densenet-121 has given good results in this area.
We have included the proposed model that includes this entire process in Fig. 7.

Hyperparameter tuning for ML classifiers
Hyperparameter-tuning significantly improved the performance of the ML models used
to classify ECG signals in this study. A full grid search was performed, looking at a range of
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Figure 8 HP architecture for ML classifiers.
Full-size DOI: 10.7717/peerjcs.1774/fig-8

hyperparameter values denoted by the letters h1 through hn and examining five different
types of ECG signals. There are also pre- and post-RR forms, with peaks and intervals at
P, Q, R, S, and T. Eight machine learning models are depicted in Fig. 8 depicts eight ML
classifiers, including decision line support vector machines (LSVM), logistic regression
(LR), random forest (RF), K-nearest neighbor (KNN), naive bayes (NB), XGBoost (XGB),
light gradient boost machines (LGBM), and bagging (BAGG). All of these models need
tweaks to their hyperparameters.

Fine tuning for DL models
Fine-tuning significantly improved the performance of the DL models used to categorize
Arrhythmias. The pre-trained models AlexNet, VGG-16, ResNet-50, and DenseNet-121
are fine-tuned with parameters such as ADAM optimizer, maximum pooling, minimum
batch size of 128, the learning rate of 0.01, and drop factor of 0.05 for the best accuracy.
Fig. 9 depicts the various model training elements that are used to fine-tune a model so
that it performs optimally. It was observed how the speed changes when the batch size
changes. It takes less time to train with a large batch size, but it is easy to overfit. It takes
longer to train with a small batch size, but the results are better.
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Figure 9 FT architecture for MLmodels.
Full-size DOI: 10.7717/peerjcs.1774/fig-9

IMPLIMENTED DIFFERENT MODELS RESULTS AND
ANALYSIS
This section starts with metrics for performance evaluation. This section follows the
machine learning results with the deep learning outcomes. Finally, the suggested technique’s
efficiency findings are shown, along with comparisons to other network results.

Performance evaluation metrices
Evaluating an arrhythmia classification model involves key metrics like sensitivity,
specificity, accuracy, precision, and F1 score. Sensitivity focuses on minimizing false
negatives (FN), specificity reduces false positives (FP), accuracy considers overall
correctness, precision minimizes false positives, and the F1 score provides a balanced
view. Regular monitoring of these metrics is crucial for the model’s reliability in clinical
applications. The formulas for calculating sensitivity, specificity, accuracy, precision, and
F1 score are in Eqs. (4), (5), (6) and (7).
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Sensitivity(SE)=
Tp ∗100
Tp+Fn

(3)

Specificity (SP)=
TN ∗100
TN +FP

(4)

Acuuracy =
(TN +TP)∗100

TN +FP+TP+FN
(5)

Precision =
TP ∗100
TP+FP

(6)

F1Score = 2∗
(P ∗SE)
P+SE

. (7)

The final results of both ML and DL
After filtering regular ECG signals through the proposed IIR filter, this work utilizes ML
and DL models to perform distinct evaluations on the filtered signals. Consequently,
the findings derived from the ML and DL methodologies have been included in this
sub-section.

The IIR filter has the purpose of passing or reducing certain frequency components of
the ECG signal. This is important in ECG analysis because it helps users concentrate on
particular areas of the signal associated with heart activity while filtering out unnecessary
noise or interference. The IIR filter can efficiently lower high-frequency noise generated
through muscle action or external interference. This contributes to a more accurate and
trustworthy description of the underlying heart activity. The IIR filter may change the
amplitude and phase of the ECG signal. This may help to improve particular qualities of
interest or align the signal for better analysis. The IIR filter can produce smoothing or
sharpening effects on the signal, depending on its design. Smoothing reduces the effect of
little variations while sharpening focuses on sudden fluctuations in the signal. IIR filters
may cause phase distortions, which might be essential in situations where signal timing
is vital. Understanding and regulating phase response is critical for retaining the ECG
waveform’s temporal features.

Quantitative evaluation of eight machine learning classifications
analysis
Precision evaluates the accuracy of positive predictions, which is an important metric.
It is the proportion of actual positives to true positives plus false positives. In medical
diagnostics, for instance, greater precision suggests a lower probability of misclassifying
a healthy person as having a problem. Recall is a measure of an arrhythmia classification
model’s capacity to identify all actual classes of arrhythmias. It is the ratio of true positives
to the sum of true positives and false negatives, which is essential to avoiding overlooking
possible cases. High recall ensures complete identification of arrhythmias, reducing the
number of missing significant instances. The F1 score finely balances accuracy and recall,
allowing for a thorough model evaluation. This is especially beneficial when dealing with
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Table 5 LSVMwithout HP.

Class Precision Recall f 1-score

0 0.95 0.88 0.92
1 0.92 0.97 0.95
2 0.97 0.96 0.95
3 0.98 1.00 0.99
4 0.97 0.98 0.98

Table 6 LR without HP.

Class Precision Recall f 1-score

0 0.89 0.90 0.92
1 0.92 0.97 0.95
2 0.91 0.90 0.91
3 0.91 0.99 0.97
4 0.98 0.99 0.99

Table 7 RF without HP.

Class Precision Recall f 1-score

0 0.95 0.88 0.92
1 0.93 0.97 0.95
2 0.96 0.95 0.96
3 0.96 1.00 0.98
4 0.99 0.99 0.99

uneven class distributions of false positives and false negatives. In arrhythmia cases, a higher
F1 score indicates a well-balanced precision–recall trade-off, indicating model strength.

The performance analysis in terms of precision, recall, and F1 score of each and individual
classifiers related to machine learning such as LSVM, LR, RF, KNN, NB, XGB, LGBM and
BAGG s without HP is shown from Tables 5, 6, 7, 8, 9, 10, 11 and 12.

The performance analysis in terms of precision, recall, and F1 score of each and individual
classifiers related to machine learning such as LSVM, LR, RF, KNN, NB, XGB, LGBM and
BAGG s with HP is shown in Tables 13, 14, 15, 16, 17, 18, 19 and 20.

Analysis of the quantitative evaluation of four deep learning models
The accuracy curve in the training shows how model accuracy changes over epochs or
iterations. The loss curve illustrates the error or loss function of the model throughout
training epochs. Confusion matrix tables are summarized for the performance of
categorization models. It displays true positives and negatives, as well as false positives
and negatives.

The deep learning-related model’s accuracy and loss without the fine-tuning of four
different methods such as AlexNet, VGG-16, ResNet-50, and DenseNet-121 is displayed
from Figs. 10, 11, 12 and 13 and with fine-tuning from Figs. 14, 15, 16 and 17. As displayed
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Table 8 KNNwithout HP.

Class Precision Recall f 1-score

0 0.58 0.64 0.61
1 0.83 0.69 0.75
2 0.75 0.79 0.77
3 0.85 0.89 0.87
4 0.94 0.90 0.92

Table 9 NB without HP.

Class Precision Recall f 1-score

0 0.45 0.12 0.18
1 0.90 0.13 0.23
2 0.58 0.21 0.31
3 0.81 0.76 0.78
4 0.29 0.99 0.45

Table 10 XGB without HP.

Class Precision Recall f 1-score

0 0.98 0.95 0.97
1 0.98 0.99 0.99
2 0.98 0.99 0.99
3 0.99 1.00 0.99
4 1.00 0.99 1.00

in Figs. 10, 11, 12 and 13, among the four different models the DenseNet-121 has achieved
the highest accuracy at 99% when compared to the performance of the remaining three
models. As displayed in Figs. 14, 15, 16 and 17, among the four different models once again
DenseNet-121 achieved the highest accuracy at 99.97% compared to the performance of
the remaining three models and proved to be a better model.

Comparison of ML classification techniques
We analyze the performance of numerous machine learning classifiers available for this
study, as well as their performance with hyperparameter tuning when applied to filtered
ECG data using the FIR filter. The outcomes are summarised in the Table 21 below. Fig. 18
illustrates the variations in HP (hyperparameter tuning) values across all classifiers.

Comparison of DL models
As mentioned above, the accuracy results obtained from deep learning models through the
FT (fine tuning) technique are included in the following Table 22. Figure 19 shows how
the FT values differentiate between the various DL models.
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Table 11 LGBMwithout HP.

Class Precision Recall f 1-score

0 0.97 0.94 0.95
1 0.97 0.99 0.98
2 0.98 0.98 0.98
3 0.99 1.00 0.99
4 1.00 0.99 1.00

Table 12 BAGGwithout HP.

Class Precision Recall f 1-score

0 0.97 0.95 0.96
1 0.98 1.00 0.99
2 0.98 0.98 0.98
3 0.99 1.00 0.99
4 1.00 0.99 0.99

Table 13 LSVMwith HP.

Class Precision Recall f 1-score

0 0.96 0.89 0.92
1 0.95 0.99 0.97
2 0.95 0.97 0.96
3 0.98 1.00 0.99
4 0.98 0.99 0.99

THE PERFORMANCE DISCUSSION OF THE IIR FILTER IN
COMPARISON TO FILTERS OF OTHER TYPES
In this study, we propose that applying a filter may provide completely distinct and more
accurate results when classifying arrhythmias than would be possible without a filter. In
this method, we used the IIR filter. The reason for the advantage of IIR filters over ordinary
filters is that IIR filters generally require fewer coefficients to perform similar filtering
operations, run faster, and require less memory space.

Let us examine those researchers who have used other filters, apart from the Infinite
Impulse Response (IIR) filter, for the purpose of rhythmic categorization. A technique
for the automated categorization of electrocardiograms (ECG) using a combination of
several support vector machines (SVMs) was suggested by Mondéjar-Guerra et al. (2019).
The accuracy rate was 94.5% with high-frequency noise filtering. Mathews, Kambhamettu
& Barner (2018) showed how the Restricted Boltzmann Machine (RBM) and deep belief
networks (DBN) can be used in the real world to classify electrocardiograms (ECGs). They
used a bandpass filter and achieved an accuracy of 75.5% in their classification work.

Raj & Ray (2018) introduced a novel approach for feature extraction by using the sparse
representation methodology. This method effectively represents various electrocardiogram
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Table 14 LR with HP.

Class Precision Recall f 1-score

0 0.97 0.98 0.97
1 0.99 0.99 0.99
2 0.99 0.99 0.99
3 0.99 1.00 1.00
4 1.00 0.99 1.00

Table 15 RF with HP.

Class Precision Recall f 1-score

0 0.95 0.88 0.92
1 0.93 0.97 0.95
2 0.96 0.95 0.96
3 0.96 1.00 0.98
4 0.99 0.98 0.99

Table 16 KNNwith HP.

Class Precision Recall f 1-score

0 0.62 0.70 0.66
1 0.89 0.71 0.79
2 0.76 0.82 0.79
3 0.85 0.89 0.87
4 0.95 0.91 0.93

(ECG) signals using a band-pass filter, achieving an accuracy of 90.3%. Wang et al. (2020)
presented a dual, fully connected neural network model for accurate classification of
heartbeats using a notch filter with an impressive accuracy rate of 93.4%. Dias et al. (2021)
suggested that single-lead ECG data could be used to classify arrhythmias with an accuracy
of 88.6% by using the inter-patient paradigm and a band-pass filter. Using a band-stop
filter and a deep neural network, Wu et al. (2022) suggested a classifier with an accuracy
of 91.9% for automatically identifying arrhythmias. The Table 23 below contains every
relevant piece of information related to these challenges.

In this research article, we have implemented both the techniques of ML and DL
together. Further with these two, we have performed the implementation on a total of 12
models. such as in ML and DL . Among these 12 proposed models, the best efficiency and
performance is achieved by DenseNet-121 compared to the remaining models as displayed
in Table 24. Based on these results, it appears that the DenseNEt-121 method is reliable
for automatically categorizing cardiac arrhythmia. Using established CNN architectures
instead of building a deep CNN from scratch provides a reliable detection method.
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Table 17 NB with HP.

Class Precision Recall f 1-score

0 0.60 0.51 0.55
1 0.66 0.60 0.63
2 0.70 0.61 0.65
3 0.68 0.91 0.78
4 0.87 0.89 0.88

Table 18 XGB with HP.

Class Precision Recall f 1-score

0 0.99 0.96 0.98
1 0.98 0.99 0.99
2 0.99 0.99 0.99
3 0.99 1.00 1.00
4 0.99 1.00 1.00

Table 19 LGBMwith HP.

Class Precision Recall f 1-score

0 0.98 0.95 0.97
1 0.97 0.99 0.98
2 0.99 0.99 0.99
3 0.99 1.00 1.00
4 0.99 1.00 0.99

CONCLUSION
In this detailed article, we examined arrhythmia classification for non-experts, with a focus
on using the IIR filter in machine learning and deep learning models. We investigated data
from eight machine learning classifiers and four deep learning models to correctly detect
arrhythmias from ECGs. According to our findings, DenseNet-121 was evidently the best
of the classifiers and models we tested, with an incredible 99% accuracy without FT and
99.97% accuracy with FT. This important study is notable since it simplifies arrhythmia
classification for individuals who aren’t experts in the field. The amazing performance of
DenseNet-121 can be related to the time-consuming process of hyperparameter adjusting
and fine-tuning. We discovered the model’s perfect area by carefully examining and
modifying its hyperparameters and minute details. This includes adjusting network
variables such as learning rate, batch size, number of layers, and depth.

The outstanding performance can be attributed to a mix of rigorous hyperparameter
tuning, early pausing, and data augmentation. These optimization efforts considerably
improved the model’s predictive capacity by increasing its accuracy and recall. These
findings have far-reaching implications for the advancement of healthcare information
technology as a whole. The consequences of proper arrhythmia classification, especially
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Table 20 BAGGwith HP.

Class Precision Recall f 1-score

0 0.98 0.95 0.96
1 0.98 0.99 0.99
2 0.98 0.99 0.98
3 0.99 1.00 1.00
4 0.99 0.99 0.99

Figure 10 AlexNet without FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-10

Figure 11 VGG-16 without FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-11

when conducted by non-specialists, are significant. This not only improves access to
healthcare in general, but it also ensures the early detection of cardiac illnesses that may
otherwise be deadly. DenseNet-121 has shown promising outcomes, so there is optimism
that it will be extensively employed in healthcare. This research also provides a potential
route for further exploration. DenseNet-121 is at the vanguard of this study’s celebration of
deep learning models’ capabilities. Additional studies might focus on polishing the model
even further, making it more robust, and taking into consideration real-world healthcare
applications. This last paragraph fully discusses the role of hyperparameter adjusting in
increasing model performance.
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Figure 12 ResNet-50 without FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-12

Figure 13 DenseNet-121 without FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-13

Figure 14 AlexNet with FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-14
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Figure 15 VGG-16 with FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-15

Figure 16 ResNet-50 with FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-16

Figure 17 DenseNet-121 with FineTune.
Full-size DOI: 10.7717/peerjcs.1774/fig-17

Feature scope
We plan to deepen the network and see if the model can pick up features that are applicable
to any ECG dataset, to see how far we can push this effort.
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Table 21 ML classifiers accuracy comparison without HP and with HP.

S.no ML classifier Accuracy
without HP

Accuracy
with HP

1 Linear SVM (LSVM) 96% 98%
2 Logistic Regression (LR) 90% 97%
3 Random Forest (RF) 96% 97%
4 K-Nearest Neighbor (KNN) 78% 85%
5 Naive Bayes (NB) 44% 70%
6 XGBoost (XGB) 95% 97%
7 Light GBM (LGBM) 96% 98%
8 Bagging (BAGG) 96% 98%

Figure 18 Accuracy comparison with different ML classifiers.
Full-size DOI: 10.7717/peerjcs.1774/fig-18
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Table 22 DLmodels accuracy comparison without and with FT.

S. no DL
classifier

Accuracy
without FT

Accuracy
with FT

1 AlexNet 96.37% 98.23%
2 VGG-16 94% 97.04%
3 ResNet-50 87.2% 92.1%
4 DenseNet-121 99% 99.97%

Figure 19 Accuracy comparison with different DLmodels.
Full-size DOI: 10.7717/peerjcs.1774/fig-19

Table 23 Comparison of the performance with the existing filter methods.

Ref Type of filter Accuracy

Mondéjar-Guerra et al. (2019) SVM with FIR Filter 94.5%
Mathews, Kambhamettu & Barner (2018) DBN with Band-Pass Filter 75.5%
Raj & Ray (2018) CNN with Band-Pass filter 90.3%
Wang et al. (2020) CNN with Notch filter 93.4%
Dias et al. (2021) DNN with Band-Pass Filter 88.6%
Wu et al. (2022) DNN with Band-Stop Filter 91.9%
Model name DenseNet-121 with IIR filter 99.97%
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Table 24 Accuracy comparison of 12 proposed models.

S. no ML and DLModels Accuracy

1 Linear SVM (LSVM) 98%
2 Logistic Regression (LR) 97%
3 Random Forest (RF) 97%
4 K-Nearest Neighbor (KNN) 85%
5 Naive Bayes (NB) 70%
6 XGBoost (XGB) 97%
7 Light GBM (LGBM) 98%
8 Bagging (BAGG) 98%
9 AlexNet 98.23%
10 VGG-16 97.04%
11 ResNet-50 92.1%
12 DenseNet-121 (Without FT) 99%
13 DenseNet-121(with FT) 99.97%
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