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ABSTRACT
This article proposes an evolutionary algorithm integrating Erdős–Rényi complex
networks to regulate population crossovers, enhancing candidate solution refinement
across generations. In this context, the population is conceptualized as a set of
interrelated solutions, resembling a complex network. The algorithm enhances
solutions by introducing new connections between them, thereby influencing
population dynamics and optimizing the problem-solving process. The study
conducts experiments comparing four instances of the traditional optimization
problem known as the Traveling Salesman Problem (TSP). These experiments
employ the traditional evolutionary algorithm, alternative algorithms utilizing
different types of complex networks, and the proposed algorithm. The findings
suggest that the approach guided by an Erdős–Rényi dynamic network surpasses the
performance of the other algorithms. The proposed model exhibits improved
convergence rates and shorter execution times. Thus, strategies based on complex
networks reveal that network characteristics provide valuable information for solving
optimization problems. Therefore, complex networks can regulate the decision-
making process, similar to optimizing problems. This work emphasizes that the
network structure is crucial in adding value to decision-making.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Network Science and
Online Social Networks
Keywords Evolutionary algorithms, Complex networks, Optimization problems

INTRODUCTION
Evolutionary computation is a branch of artificial intelligence (Fogel, 1998) that aims to
enhance optimization algorithms, improving solution quality, convergence, and other
performance measures (Michalewicz, 1996). This article introduces an evolutionary
algorithm integrating Erdős–Rényi complex networks to guide population crossovers
dynamics of the population or solutions, enhancing candidate solution refinement across
generations. This article addresses the Traveling Salesman Problem (TSP), a well-known
optimization problem integrating an evolutionary algorithm to an Erdős–Rényi Complex
Network. The underlying hypothesis is that a strategy guided by a complex dynamic
network, specifically the Erdős–Rény complex networks, will yield better performance
compared to a traditional algorithm. Previous studies highlight the integration of
evolutionary algorithms with complex networks (Zelinka et al., 2010; Triana, Bucheli &
Solarte, 2022; Zelinka et al., 2011, 2010, 2014). Moreover, Llanos-Mosquera et al. (2022)
have suggested that a strategy employing the selection of individuals guided by Watts–
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Strogatz network models can outperform traditional evolutionary algorithms in solving
the TSP.

The empirical findings demonstrate that the proposed model exhibits robust
convergence capabilities and significantly reduces execution times when compared to
other models and the baseline traditional algorithm. The evaluation of the proposed
approach involved a selection of Traveling Salesman Problem (TSP) benchmark instances,
characterized by varying city quantities spanning from 5 to 1,000. In order to address
algorithmic variability, a series of experiments with diverse random seeds were
systematically conducted to account for stochastic effects. The reported results are derived
from aggregating outcomes across more than 100 independent runs, offering a
comprehensive assessment of performance. Evaluation criteria encompassed key metrics,
including average fitness values and convergence speed.

Results show the performance of the proposed Erdős–Rényi network approach
compared to the other algorithms. These findings consistently indicate the proposed
model’s effectiveness, even surpassing theWatts–Strogatz network approach. Additionally,
we assessed the computational cost of the proposed model compared to the traditional
strategy. The results indicate that as the size of the instance increases, the computational
cost of the proposed models remains acceptable, demonstrating a comparative advantage
over the other evaluated models.

The ‘Materials and Methods’ section provides an overview of the evolutionary
computation and complex networks model, offering a comprehensive review of previous
works. It also outlines the Traveling Salesman Problem (TSP) and introduces the proposed
model. ‘Experimental Settings’ presents the experimental results, while the ‘Discussion’
section discusses and concludes the research and suggests potential directions for future
work.

MATERIALS AND METHODS
Since its development in 1956 (Friedman, 1956; Bremermann, 1958), evolutionary
computation has become one of the most widely used techniques for solving optimization
problems. According toHolland (1992), evolutionary algorithms are a family of search and
optimization methods inspired by biological evolution. In 1976, the evolutionary
computation was understood as an evolution strategy, which is an optimization technique
based on ideas from natural evolution (Kellermayer, 1976). Evolution strategies use natural
representations that depend on the problem and primarily employ recombination,
mutation, and selection as search operators for optimization processes. Over the past few
decades, bio-inspired computation has garnered significant attention as a branch of
artificial intelligence. It has been extensively studied to achieve high performance across a
wide range of complex academic and real-world problems (Vikhar, 2016; Del Ser et al.,
2019).

Complex networks in evolutionary computing
A comprehensive review of complex networks in evolutionary computation has been
conducted by Jiang, Liu & Wang (2016), while Pizzuti (2017) provides a systematic review
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of evolutionary algorithms that incorporate complex networks. These works offer an
overview of how complex networks can be integrated into evolutionary computation. In
the study conducted by Zelinka et al. (2010), differential evolution is employed along with
the SOMA algorithm to model complex networks, representing parent-child relationships
as networks. Other related works (Zelinka et al., 2010; Zelinka, 2011; Zelinka et al., 2014)
have also explored the integration of complex networks into evolutionary algorithms.
These works discuss various aspects, including the analysis of degree distribution to
investigate premature convergence, the average path length between nodes for identifying
complex networks, the clustering coefficient for monitoring individual progress in each
iteration, and centrality between nodes as an alternative method for identifying the best
individuals.

Furthermore, experimental results have shown the integration of complex networks
into evolutionary algorithms applied to different problems such as the Knapsack Problem
(Triana, Bucheli & Solarte, 2022) and optimization problems like the Ackley function,
Bealen function, Camel function, and Sphere function (Triana, Bucheli & Garcia, 2020).
Several studies have focused on exploring the properties of complex networks in relation to
solving optimization problems. Additionally, there have been investigations centered
around community detection (Liu, Liu & Jiang, 2014) and PageRank distance (Jiang, Liu &
Wang, 2016). Moreover, according to Llanos-Mosquera et al. (2022), properties of small-
world complex networks, such as the clustering coefficient and average path length, have
been evaluated.

The traveling salesman problem
The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization
problem in computer science (Applegate et al., 2006). It involves finding the shortest
possible route that a salesman can take to visit a set of cities and return to the starting city
while visiting each city exactly once. The significance of the TSP lies in its applications in
various domains, including transportation, logistics, network design, and operations
research, where finding efficient routes and minimizing travel costs are crucial for
improving resource allocation, minimizing expenses, and optimizing overall system
performance (Laporte, 1992).

The TSP is an NP-hard problem, meaning that there is no known algorithm that can
solve all instances of the problem in polynomial time. Therefore, various heuristic and
metaheuristic algorithms have been developed to approximate solutions for large-scale
instances of the problem. The importance of the TSP extends beyond its theoretical
complexity. It has practical applications in various domains, such as transportation
planning, logistics, circuit board manufacturing, and DNA sequencing. Finding efficient
solutions to the TSP has significant implications for optimizing resource allocation,
minimizing costs, and improving overall operational efficiency in real-world scenarios
(Kanna, Sivakumar & Lingaraj, 2021).

Formally, the TSP can be defined as follows: Given a complete undirected graph with n
vertices representing the cities, where each edge between two vertices represents the
distance or cost of traveling between the corresponding cities, the objective is to find a
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Hamiltonian cycle of the minimum total cost. A Hamiltonian cycle is a cycle that visits
each vertex exactly once and returns to the starting vertex (Ortiz-Astorquiza, Contreras &
Laporte, 2015).

The Traveling Salesman Problem (TSP) can be mathematically described as follows:
Let G = (V, E) be a complete undirected graph, where V is the set of cities and E is the set

of edges representing the connections between the cities. Each edge e = (u, v) has a non-
negative weight or cost w(e) associated with it, representing the distance or travel cost
between cities u and v (Applegate et al., 2006). We aim to find a Hamiltonian cycle C in G
that visits each vertex in V exactly once and returns to the starting vertex. A Hamiltonian
cycle is a closed path that passes through every vertex in a graph exactly once, except for
the starting and ending vertices which coincide.

The objective function of the TSP (F) is to minimize the total cost or length of the
Hamiltonian cycle C. This can be represented as the sum of the weights of the edges in C:

F ¼ minimize
X

wðeÞ; for all e 2 C (1)

Subject to:
- Each vertex v ∈ V must be visited exactly once.
- The cycle C must be closed, i.e., it starts and ends at the same vertex.
- The cycle C must not contain any subcycles, i.e., it must be simple.

A proposed model based on evolutionary model and Erdőős–Rényi
networks
Model Erdőős–Rényi network
According to Erdós & Rényi (1960) the creation of a network is a stochastic process for
generating random graphs, with two parameters:

� Network size (n) determines the size of the network under consideration, it is the
number of nodes (vertices) within the network, and it is denoted as ‘n’.

� Specify connection probability (p), this parameter governs the overall connectivity of the
resulting network, the probability ‘p’, which characterizes the likelihood of a connection
(edge) existing between any pair of nodes in the network.

The model systematically examines all possible pairs of nodes to determine potential
connections within the network. For each pair, a random number is generated from a
uniform distribution between 0 and 1. A connection between the nodes is formed if this
random number is less than or equal to ‘p’. Conversely, no connection is established if the
generated number exceeds ‘p’. This iterative process results in a random network adhering
to the Erdős-Rényi model.

Proposed algorithm
According to Osaba et al. (2018), the Traveling Salesman Problem (TSP) is commonly
addressed using heuristic algorithms. Previous research has proposed several complex
network properties in relation to the TSP, such as Community Detection (Liu, Liu & Jiang,
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2014) and PageRank distance (Jiang, Liu & Wang, 2016). Furthermore, evaluations have
been conducted on the properties of small-world complex networks, including the
clustering coefficient and average path length (Triana, Redondo & Bucheli, 2019).

An evolutionary algorithm can be described as follows: Firstly, a population of solutions
is created, followed by a crossover, selection, recombination, mutation, replacement, and
finalization phase (Yu & Gen, 2010). The key components of an evolutionary algorithm
include initialization, where a population of individuals is randomly generated as the initial
set of candidate solutions. Evaluation is performed for each individual in the population
using a fitness function that measures their quality or performance.

Selection involves choosing individuals with higher fitness values to become parents for
the next generation, often based on a probabilistic mechanism like roulette wheel selection
or tournament selection. The selected individuals are then combined to produce offspring
through recombination or crossover operators. The last critical process is recombination,
which simulates genetic recombination occurring during reproduction in biological
systems. Similar to genetic processes, offspring are subjected to random changes or
mutations, introducing new variations into the population. Finally, the new offspring
replace some individuals in the current population, ensuring a constant population size.
The algorithm terminates when a stopping criterion is met, such as reaching a maximum
number of generations or finding a satisfactory solution (see Fig. 1).

The proposed model incorporates the Erdős–Rényi network into the initialization,
selection, and recombination processes. In contrast, the traditional algorithm relies on
randomness for these three processes. In the proposed algorithm, the initialization process
entails defining all parameters, such as population size, mutation rate, and others, followed
by the random creation of the population of solutions.

Figure 2 illustrates the Erdős–Rényi process, where a Model Erdős–Rényi network is
simulated with a size ‘n’ equal to the previously defined population size and ‘p’ set to 0.5.
Additionally, each solution is randomly assigned to a node within the Erdős–Rényi
network, contributing to the novel configuration of the ensemble of solutions.

While in the traditional algorithm, these processes are driven by randomness, in the
proposed algorithm, they are influenced by the network’s structure. Consequently, the
selection and recombination of the population are guided by the Erdős–Rényi network. In

Figure 1 A genetic algorithm diagram. Full-size DOI: 10.7717/peerj-cs.1773/fig-1
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this approach, individuals from the population are chosen as parents for the next
generation based on the connections of one node in the network; it is named as (k) in the
algorithm (see Fig. 3). The selection probability of each individual is not proportional to its
fitness but rather linked to the node degrees within the Erdős–Rényi network.
Additionally, the recombination applies crossover operators to the selected parents,
combining the ordering of cities from two parents to generate new solutions. In summary,
while the traditional algorithm relies on random selection, the proposed algorithm
integrates the Erdős–Rényi network’s structure to guide these processes. Figure 2 shows
the proposed algorithm with the Erdős–Rényi network.

Application of the proposed algorithm to the Traveling Salesman Problem
In the context of solving the TSP using a traditional evolutionary algorithm, each
individual in the population represents a unique city visitation order. The process begins
with the initialization of individuals, where random permutations of cities are created.
Fitness evaluation involves calculating the inverse of the total distance traveled, with higher
fitness indicating shorter paths, where the fitness values are computed by de fitness

Figure 2 Proposed algorithm diagram. Full-size DOI: 10.7717/peerj-cs.1773/fig-2

Figure 3 The pseudocode for generation of individuals for TSP.
Full-size DOI: 10.7717/peerj-cs.1773/fig-3
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function (F), (see Eq. (1)). Selection probabilities are based on fitness, and recombination
combines city orderings from selected parents using methods like order-based crossover
for TSP. Mutation introduces random changes, maintaining diversity. The current
population is replaced by offspring, and the algorithm continues until a predefined
stopping criterion is met, with iterative execution of evaluation, selection, recombination,
mutation, and replacement steps. The traditional evolutionary algorithm approach to
solving the Traveling Salesman Problem (TSP) relies heavily on randomness throughout
its major processes. In contrast, alternative solutions employ network models like the
Watts and Strogatz model, the Barabási–Albert model, or employ the PageRank algorithm,
parallelization, or tailored modifications to enhance the TSP-solving process. These diverse
approaches collectively represent the current state of the art in addressing the TSP using
evolutionary algorithms.

This article concentrates on incorporating complex networks, specifically Erdős–Rényi
networks (Erdós & Rényi, 1960), into individuals’ crossover and selection process. The
Erdős guide the population of solutions to the optimization problem–Rény network
model. The research question investigates the performance of a traditional evolutionary
algorithm that utilizes Erdős–Rényi complex networks for solving the Traveling Salesman
Problem.

Moreover, the crossover process of the population is represented using complex
networks, where a graph captures the parent-child relationships and the groups of
solutions or clusters of solutions. The vertices (nodes) in the graph correspond to
individuals or the population of solutions, while the edges (links) represent the
connections between individuals. To enhance the quality of the solutions, links are
established between existing nodes in the population, following the structure of the Erdős–
Rény model. In this proposed approach, parents are selected according to the Erdős–Rény
network. Thus, Parents are selected based on the characteristics of the neighborhood
surrounding that individual in the network. Maintaining the better solutions and
increasing the crosses between better solutions by the parent-child relationships and the
groups of solutions or clusters of solutions. Consequently, parents are not chosen
randomly but rather based on the topology of the Erdős–Rény network. By incorporating
this modification into the traditional algorithm, which typically selects solutions randomly
for crossover, improved convergence and shorter execution times were observed.

The pseudocode for the evolutionary algorithm integrating Erdős–Rény networks is
presented in Fig. 3. The algorithm uses the best neighbor model, in which it consists in the
selection of the neighbor through the roulette method. The intention is to favor the
selection of the neighbor with better performance.

The TSP is acknowledged as NP-hard, yet its practical applications underscore the
significance of an effective solution. As a term within computational complexity theory,
TSP represents a nondeterministic polynomial-time (NP) problem, which can be
addressed by nondeterministic polynomial-time bounded Turing machines. Notably, the
Genetic Algorithm (GA) is widely recognized as a vital meta-heuristic technique for
resolving intricate large-scale optimization problems (Dao & Marian, 2013; Paul et al.,
2015; Shapiro & Delgado-Eckert, 2012). Despite advancements, solving extensive TSP
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instances remains a daunting and unresolved challenge, characteristic of other NP-hard
problems, due to its computational intractability. TSP solution strategies are broadly
divided into exact methods and meta-heuristic approaches. Although meta-heuristic
methods cannot ensure optimal TSP solutions, they demonstrate efficiency in producing
satisfactory solutions, particularly for large-scale TSP scenarios. Consequently, meta-
heuristic methods, including the extensively used GA, are often preferred for addressing
such complex optimization problems.

The computational complexity of Genetic Algorithms (GAs) in an academic context
depends on various factors, including the genetic operators, their implementation (which
can significantly impact overall complexity), the representation of individuals, the
population size, and the fitness function. In typical scenarios using point mutation, one-
point crossover, and roulette wheel selection, the complexity of GAs is based on the
number of generations, the population size, and the size of individuals (Nopiah et al.,
2010). It’s important to highlight that this analysis excludes the complexity associated with
the fitness function, which varies based on the specific application.

In the context of solving complex optimization problems, GAs are compared to other
solution methods, such as Brute Force, Dynamic Programming, and Branch and Bound.
These methods have their own complexities, with Brute Force being O(n!), Dynamic
Programming O(n2 � 2n), and Branch and Bound also O(n!). In contrast, Genetic
Algorithms are classified as heuristic methods, and their complexity depends on the
specific parameters chosen.

EXPERIMENTAL SETTINGS
In the domain of evolutionary computation, the research outlined by Wei et al. (2019)
underscores the crucial significance of appropriately configuring algorithmic parameters to
tackle NP-hard optimization problems. Concentrating specifically on the Traveling
Salesman Problem (TSP), the investigation underscores the significance of carefully
selecting suitable parameter values and thoroughly assessing the impact of diverse TSP
instances. A fixed population size of 100 and 20,000 generations is maintained, coupled
with a crossover rate of 0.08 and a mutation rate of 0.01, as detailed in the study.
Additionally, Triana, Bucheli & Garcia (2020) aligns its parameter choices with previous
research, adhering to a consistent population size of 100 and a mutation rate of 0.01. The
rationale behind these parameter selections is deeply rooted in an extensive exploration of
evolutionary computation approaches for TSP problem-solving, as elucidated byWei et al.
(2019). Consequently, in this current study, the parameter setup mirrors a similar strategy
while also evaluating different city sizes to further broaden the analysis.

In the experimental setup, we established several parameters to ensure rigorous testing
of our proposed approach (see Table 1). To determine the appropriate population size and
mutation rate, we drew insights from prior research in the field of evolutionary
computation focused on addressing the TSP, these parameters were set as follows: a
population size of 100, a mutation rate of 0.1, and a stop criterion of 100 iterations (Wei
et al., 2019). These values were aligned with the configuration of the traditional genetic
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algorithm, serving as our baseline. In addition, the Watts–Strogatz evolutive model was
tested (Watts & Strogatz, 1998).

To comprehensively assess the performance of our proposed approach, we selected a
diverse set of benchmark instances from the TSP, which covered a wide range of cities,
varying from 5 to 1,000. These instances covered a range of city quantities. 5, 25, 100, 500
and 1,000. This broad selection allowed us to evaluate the scalability and effectiveness of
our method across different problem sizes. Our experimental design emphasized
robustness by repeating experiments multiple times with distinct random seeds,
accounting for the inherent stochasticity of evolutionary algorithms. The reported results
represent the average outcomes of more than 100 independent runs, focusing on key
metrics such as average fitness value and convergence speed.

The experiments were executed on a dedicated computer system with specific hardware
and software configurations. The hardware setup comprised a 2-core Xeon 2.2 GHz
processor, 13 GB of memory, and a 33 GB hard disk. For software tools, we employed
Python 3.7, implemented the TSP algorithm, and utilized Spyder 3.3.3 and the Networkx
2.4 library to model complex networks. The entire implementation and testing process,
including the source code, can be accessed in our repository hosted at GitHub. The
implementation and testing of the model can be found in the following repository: github.
com/jodatm/complex_networks_in_EA.

RESULTS
The results represent the averages of 100 experiments conducted and each experiment ran
100 iterations. Figure 4 illustrates the performance comparison of traditional evolutionary
algorithms (blue), Watts–Strogatz evolutive model (yellow), and Erdős–Rény evolutive
model (red). In Fig. 2A experiments were conducted with 25 cities, and the results
demonstrate that the Erdős–Rény model outperforms the other models. Figures 2B–2D
represent experiments conducted with 100, 500, and 1,000 cities, respectively, showing
consistent performance where the proposed model yields superior results. These findings
indicate that the proposed model exhibits better performance than the traditional
evolutionary algorithm in the fitness value.

The experimental tests conducted on the proposed algorithms indicate that
incorporating neighbor selection based on better fitness values could be the optimal
alternative. As suggested by Triana, Bucheli & Solarte (2022), the best fitness was obtained
using the best neighbor model, which involves selecting the neighbor through the roulette

Table 1 The parameters of experimental settings.

Parameter Value

Numbers of cities [5, 25, 100, 500, 1,000]

Population size 100

Mutation rate 0.1

Stop criterion 100
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method. The intention is to favor the selection of the neighbor with better performance
(fitness). In Fig. 4A, which presents the same number of cities as in the study conducted by
Triana, Bucheli & Garcia (2020). The result demonstrates that the Erdős–Rény
evolutionary model converges earlier and accelerates faster than the other models.
Convergence of the proposed Watts–Strogatz evolutionary model and traditional
algorithms is expected to occur after a certain number of iterations.

As shown in Fig. 4, the proposed approach converges to minimize the Fitness value as
the iterations progress. This convergence shows an improvement in the algorithm’s
efficiency for facing the TSP problem. Moreover, when we evaluated the performance of 25
cities, the convergence rate was similar for all the tested approaches. However, as the
number of cities grows, the approach proposed in this article outperforms the traditional
evolutionary algorithms andWatts–Strogatz approaches (see Figs. 4C and 4D). The results
indicate that our proposal converges in all experiments from 25 to 1,000 cities and is
feasible for dealing with the TSP problem.

We analyzed the impact of the computational cost of the proposed model compared to
the original strategy. Figure 5 showcases the traditional evolutionary strategy applied to the
TSP problem with a range of 5 to 1,000 cities, where each point represents a specific
instance. The figure illustrates the traditional evolutionary algorithms (blue), the Watts–
Strogatz evolutionary model (yellow), and the Erdős–Rényi evolutionary model (red). It is
evident that the computational cost of the proposed models, measured in seconds of
execution time, follows a logarithmic scale as the instance size increases. Moreover, we
examined how the behavior changes as the order of magnitude increases and observed it
over iterations. The model consistently demonstrates an advantage in terms of fitness and
exhibits a logistic relationship with CPU times. The results demonstrated that the
performance of the proposed model, particularly employing the Erdős–Rényi network

Figure 4 (A–D) Average performance in TSP problem. Full-size DOI: 10.7717/peerj-cs.1773/fig-4
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approach, outperformed the traditional algorithm in achieving satisfactory fitness within a
reasonable timeframe.

In regard to the Erdős–Rény evolutionary model, the computational complexity is not
directly derivable from the provided data. However, by observing the increase in execution
time as the input size (number of cities) grows, it is evident that the algorithm exhibits a
significant increase in runtime with larger instances. This suggests that the complexity of
the proposal likely grows with the input size and that it may require further analysis to
determine its theoretical computational complexity, potentially involving regression or
more extensive testing with various input sizes.

The effectiveness of a genetic algorithm in tackling the TSP is intricately linked to the
careful selection of its parameters. Among these parameters, the population size, mutation
rate, crossover rate, and the number of generations play pivotal roles in shaping the
algorithm's behavior and overall performance. To illustrate, a larger population size fosters
exploration but concurrently results in increased computational time, while a higher
mutation rate assists in evading local minima but may potentially lead to divergence if set
excessively. Understanding and optimizing these parameters represent crucial steps
towards enhancing the efficiency and efficacy of the genetic algorithm for solving the TSP.
Regarding the aspects described below and the theoretical computational complexity O,
further analysis and research is necessary to precisely determine its evaluation, leaving it as
a potential avenue for future investigation and study.

DISCUSSION
The TSP has been commonly addressed using heuristic algorithms. Previous research has
applied several complex network properties to the TSP, such as Community Detection
(Liu, Liu & Jiang, 2014) and PageRank Distance (Jiang, Liu &Wang, 2016; Triana, Bucheli
& Garcia, 2020). In this article, we proposed an evolutionary algorithm guided by Erdős–
Rényi complex networks to regulate population crossovers, enhancing candidate solution
refinement across generations. In all the conducted experiments, selecting the neighbors
with the highest fitness values consistently resulted in the best outcomes. This selection

Figure 5 Performance in TSP problem vs CPU times. Full-size DOI: 10.7717/peerj-cs.1773/fig-5
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approach promotes competition among individuals in the population as they strive to
improve their fitness, which likely explains the observed behavior. Experimental results
show that the Erdős–Rény evolutionary model is a feasible strategy to address the TSP
problem.

The main contribution of this proposal is the enhancement of the crossover and
selection process in the genetic algorithm by incorporating the Erdős–Rény complex
network. Thus, parents are selected based on the characteristics of the neighborhood
surrounding that individual in the network. Maintaining better solutions and increasing
the crosses between better solutions by the parent-child relationships and the groups of
solutions or clusters. To our knowledge, this is the first proposal that uses Erdős–Rény
networks for addressing the TSP problem.

Integrating an Erdős–Rény network allows us to investigate the computational aspects
of constructing the network model. Compared to a traditional algorithm and Watts–
Strogatz network model, the Erdős–Rényi random graph has traditionally represented
complex network topologies. Notably, the Erdős–Rényi random graph possesses the
distinctive characteristic that many of its intriguing properties can be analytically
expressed. This distinguishes it from other complex network graph models, which often
present challenges or limitations in computational analysis. Furthermore, it opens new
research frontiers, the analytical study of evolutionary network models (Jamakovic & Van
Mieghem, 2008).

The Watts-Strogatz network model (Watts & Strogatz, 1998), which involves rewiring
edges, is extensively utilized in the field of network research. It is commonly used to
evaluate the impact of the small-world effect on dynamic processes occurring within the
network. The Watts-Strogatz model effectively captures both regular and random features
observed in real-world networks. However, the Erdős-Rényi model exhibits notable
distinctions in degree distribution, path length, clustering coefficient, and the presence of
giant components. The characteristics of the topology of the Erdős-Rényi graph are
transferred to the grouping of solutions. Then, while the number of iterations grew, the
number of communities of better solutions grew, too. Therefore, the time expected to solve
the TSP problem is reduced by crossing the neighborhood of better solutions between
them. Finally, the mutation process generates diversity in the communities, which is used
to obtain better solutions.

The experimental results showed that the Erdős-Rényi models performed better than a
traditional evolutionary algorithm and Watts-Strogatz network model. The experiments
highlight the consistency of the results obtained by the proposed model. In addition, this
model scales logarithmically the CPU times over the growth of cities, where the size of a set
of cities is evaluated from five, 25, 100, 500, and 1,000 cities. Comparing the same instances
of the optimization problem to other studies (Triana, Redondo & Bucheli, 2019; Jiang, Liu
& Wang, 2016), the proposed algorithm obtains better performance than those studies.
Furthermore, the fitness value and the time spent (CPU times) is minimized in a better way
by the Erdős-Rényi model.

Future research will thoroughly examine each Erdős-Rényi model’s characteristics to
understand better how they contribute to enhanced performance. Therefore, complex
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networks can effectively regulate the decision-making process, similar to optimization
problems. This study highlights the critical role of the network structure, the Erdős-Rényi
model vs the Watts-Strogatz model, in adding value to the decision-making process.

CONCLUSIONS
The Erdős-Rényi evolutive model consistently outperforms the baseline model and Watts-
Strogatz network mode, which aligns with previous research findings, where the complex
network to guide an evolutionary computation algorithm proves to be reasonable based on
the obtained better results.

The relation between time and fitness performance shows the scalability of the TSP. The
results are promising and highlight the model’s impact on larger-size problems. Moreover,
the potential additional cost of incorporating complex network dynamics into the
evolutionary algorithm is insignificant, as the results indicate. This fact is mainly attributed
to the computational advantage of local computations attributable to the selection process,
father-son relationships, and communities of solutions. The computational advantages are
due to the Erdős-Rényi networks and their topology characteristics: Poissonian degree
distribution, short path length, small clustering coefficient, and the presence of giant
components.
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