
Framework to perform taint analysis and
security assessment of IoT devices in smart
cities
Akashdeep Bhardwaj1, Ankit Vishnoi2, Salil Bharany3, Abdelzahir
Abdelmaboud4, Ashraf Osman Ibrahim5, Mohamed Mamoun6 and
Wamda Nagmeldin7

1 School of Computer Science, University of Petroleum and Energy Studies, Dehradun, India
2 Computer Science and Engineering Department, Symbiosis Institute of Technology (SIT),
Symbiosis International (Deemed) University (SIU), Pune, India

3 Department of Computer Science and Engineering, Lovely Professional University, Phagwara,
Punjab, India

4 Department of Information Systems, King Khalid University, Muhayel Aseer, Saudi Arabia
5 Universiti Malaysia Sabah, Sabah, Malaysia
6 Alzaiem Alazhari University, Khartoum North, Sudan
7 Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

ABSTRACT
The Internet of Things has a bootloader and applications responsible for initializing
the device’s hardware and loading the operating system or firmware. Ensuring the
security of the bootloader is crucial to protect against malicious firmware or software
being loaded onto the device. One way to increase the security of the bootloader is to
use digital signature verification to ensure that only authorized firmware can be
loaded onto the device. Additionally, implementing secure boot processes, such as a
chain of trust, can prevent unauthorized access to the device’s firmware and protect
against tampering during the boot process. This research is based on the firmware
bootloader and application dataflow taint analysis and security assessment of IoT
devices as the most critical step in ensuring the security and integrity of these devices.
This process helps identify vulnerabilities and potential attack vectors that attackers
could exploit and provides a foundation for developing effective remediation
strategies.

Subjects Computer Networks and Communications, Cryptography, Security and Privacy, Internet
of Things
Keywords IoT, Firmware, Bootloader, Taint analysis, Application layer, Dataflow, Security
assessments

INTRODUCTION
The market for IoT devices has expanded rapidly in recent years. To be competitive, time-
to- market has become critical; the sooner a rival makes and combines his/her product, and
more inclined he/she is to lead the market. Due to a lack of validation or quick turnaround
time, this rivalry causes severe software flaws in the systems. Many expose flaws that could
be exploited by botnet or malware attacks. Furthermore, they are vulnerable to many zero-
day attacks that need immediate intervention to preserve the privacy of the system where
the IoT device is placed. The most effective way to fight these attacks is to quickly upgrade
the software of such devices via patches. A crucial component known as the bootloader

How to cite this article Bhardwaj A, Vishnoi A, Bharany S, Abdelmaboud A, Ibrahim AO, Mamoun M, Nagmeldin W. 2023. Framework
to perform taint analysis and security assessment of IoT devices in smart cities. PeerJ Comput. Sci. 9:e1771 DOI 10.7717/peerj-cs.1771

Submitted 16 August 2023
Accepted 1 December 2023
Published 21 December 2023

Corresponding authors
Salil Bharany,
salil.bharany@gmail.com
Ashraf Osman Ibrahim,
ashrafosman@ums.edu.my

Academic editor
Junaid Shuja

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1771

Copyright
2023 Bhardwaj et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1771
mailto:salil.�bharany@�gmail.�com
mailto:ashrafosman@�ums.�edu.�my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1771
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

must be installed throughout this procedure to run the embedded system’s setup, control,
and supervision. This code can control and perform the boot sequence as well as run the
firmware. However, in the absence of any guidelines or references, there is presently no
generic bootloader for all IoT devices, rather there are various bootloaders specialized to a
specific set of hardware or kernel.

IoT devices rely on firmware to function properly and securely. The firmware
bootloader, which is responsible for initializing and managing the device’s hardware and
firmware, plays a critical role in ensuring the security and integrity of IoT devices. The
unique firmware bootloader analysis and security assessment of IoT (Internet of Things)
devices is essential to identify vulnerabilities and potential attack vectors that could be
exploited by attackers. A bootloader (IoT ONE) is a program that runs on an IoT device
before the main operating system is loaded. It is responsible for initializing the hardware
and loading the operating system into memory. Bootloaders play a critical role in the
security and functionality of IoT devices (Gillis, 2022) as they ensure that only authorized
software is loaded and executed on the device. In embedded and IoT devices, a bootloader
is a small program that is stored in a non-volatile memory, such as random memory or
flash memory. Its main function is to initialize the device’s hardware and load the main
operating system or firmware into memory. The bootloader is executed immediately after
the device is powered on or reset, and it runs before the main operating system or
firmware.

The firmware is a low-level program that controls access to an IoT device’s hardware
and peripherals as well as offering a variety of services to higher-level apps. There are three
components to firmware:

� Bootloader (IoT ONE) is a low-level software that loads the primary operating system
and initializes the hardware. It is the first program run when a device is turned on or
after a reset. It runs in two stages, with the first loading basic code and the second
loading the IoT OS. By doing this, the second stage gets updated while the first stage is
kept unchanged.

� Operating system (Arm Ltd) offers an environment in which applications can run. The
bootloader loads and launches the OS kernel, which is the fundamental part of the
operating system. Operating systems might have security flaws much like the
bootloader, but locating these is likewise not simple.

� Device file system (Gillis, 2022) is where configuration settings, libraries, development
environments, and programs are kept which are pre-installed with web servers, enabling
web-based remote configuration of the device. Such applications are of particular
interest to hackers because it is not necessary to have specialized knowledge of
embedded systems to uncover flaws in them.

Research gaps in this area include the need for more secure and efficient bootloading
mechanisms for IoT devices, as well as the need for better tools and techniques for
analyzing and understanding the inner workings of proprietary bootloaders. Additionally,

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 2/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

there is a need for more research on the impact of different types of attacks on the
bootloading process, and the development of countermeasures to protect against these
attacks. Reviewing the gaps, the highlights of this research are to enhance the state of
firmware security by discovering new security vulnerabilities using unique tools and by
decreasing the threat surface area and presenting new tools to discover bugs in embedded
device bootloader, perform code de-bloating on firmware binaries and fuzz IoT devices.

This study tries to answer some questions helping in determining the design and
methods to guide the search phases in this study as:

� Current vulnerabilities and potential threats related to the current IoT device
bootloading, mainly in the context of firmware and application dataflow taint analysis.

� Limitations or potential exploitations of digital signature verification approaches, and
how effectively they can validate and integrity of installed firmware and software on IoT
devices.

� Difficulties and knowledge gaps exist regarding the proprietary bootloaders utilized in
Internet of Things devices and the impact of the process on overall security.

� How IoT devices boot up is impacted by different attack kinds; learn which are the
strongest countermeasures against these potentially dangerous attacks.

To satisfy the research gaps, this research attempts to present an overview of the distinct
firmware bootloader taint analysis and security evaluation procedure for IoT devices. An
in-house Python taint analysis tool is used to thoroughly examine the bootloader code and
its interactions with the device’s firmware and hardware at the start of the procedure.
Analyzing the peripheral initialization routines, communication interfaces, and memory
management of the bootloader are all included in this. The goal of the analysis is to find
any potential weaknesses that an attacker could exploit, like memory leaks, buffer
overflows, or uninitialized variables. Furthermore, since the bootloader is a popular attack
vector for Internet of Things devices, its handling of firmware updates is also assessed. The
next stage is to evaluate the bootloader’s security, which entails assessing its resistance to
popular attack techniques such as denial-of-service attacks, code injection, and firmware
modification. Following the analysis and security assessment, remediation methods are
created to fix any vulnerabilities found and raise the device’s overall security.

RELATED WORK
A bijective time-stamped technique for identifying IoT device software was introduced by
Urien (2020), with a focus on memory space and constant computing time. The approach
uses a hash function and a normal distribution to compute a memory fingerprint. To meet
the demand for secure firmware upgrades in low-cost embedded solutions, Jaouhari &
Bouvet (2022) developed a generic bootloader for OTA updates in IoT devices based on
FreeRTOS. Attackers can take advantage of security flaws in IoT device firmware upgrades
and bootloaders, as presented by Morel & Couroussé (2019). Romana, Grandhi & Eswari
(2020) performed a security analysis on a particular router and provided a technique for
assessing the security aspects of SOHO routers. Anand & Premananda (2022) proposed a

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 3/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

Table 1 Summary of references.

Reference Pros Cons

Urien (2020) � Detects corrupted software in IoT devices to ensure
software integrity and security.

� The algorithm relies on two aspects–the memory space is
finite, and the computing time is stable, which could make
it more reliable than other methods.

� The algorithm computes a memory fingerprint with a hash
function, according to a pseudo-random order, fixed by a
permutation P, which could make it more difficult for
attackers to bypass.

� The source code is open and published, which could make it
easier for other researchers to build upon and improve.

� The implementation demonstrated on Arduino Nano 3.x
powered by the ATmega328 processor limits the
applicability to other IoT devices.

� The algorithm assumes that the decompression operations
imply delays, which may not always be the case.

� The algorithm's computing time follows a normal
distribution, which means that it may not be as effective at
detecting certain types of attacks that do not significantly
impact computing time.

� The algorithm's use of permutations may make it more
complex and difficult to implement than other methods.

Jaouhari & Bouvet
(2022)

� State of art and a comparison of some popular bootloaders
currently used in constrained IoT devices is presented here.

� Generic bootloading process for typical IoT devices is
discussed. Proof of Concept of the firmware over the air
process, which uses the generic bootloader on top of ones of
the most used OS (i.e., FreeRTOS).

� The discussion of a secure and generic bootloading process
that guarantees the integrity and the authenticity of the
received firmware image.

� This research mentions there are several drawbacks in the
current proposition that require deeper investigations to
provide a generic, portable, robust, and secure bootloader
for IoT and for the constrained ones.

� This research discussed only few drawbacks and, most of
them were the ones related to security and evaluations.

Morel & Couroussé
(2019)

� Proposed security mitigation for hardware attacks like
prevention of fault injection attacks using secure
bootloaders that verify the integrity of the firmware before
execution is presented here.

� Physical attacks such as side-channel attack
countermeasures were proposed such as masking, shuffling,
or randomizing the data.

� For mitigating software attacks, control-flow integrity,
control-flow attestation, stack canaries, and address-space
layout randomization were the proposed countermeasures
that can be used to prevent or mitigate attacks.

� Cryptographic primitives such as cipher keys and
authentication codes can be protected against timing
attacks by ensuring that the executed code is not dependent
on the data being processed.

� Physical attacks, such as fault injection attacks can easily
bypass security mechanisms and gain access to sensitive
data.

� Software attacks, such as buffer overflow attacks can be used
to execute malicious code and gain control of the device.

� This research does not discuss how attackers attempt and
intercept firmware updates in transit, modify the firmware,
and then install the modified firmware on the device.

Romana, Grandhi &
Eswari (2020)

� Safeguarding of SOHO devices by re-configuring them for
reasonable security is proposed in this research. This is
especially important because many users deploy these
devices with insecure default configurations, leaving them
vulnerable to attacks.

� Enabling advanced threat mitigation techniques for these
devices, which are otherwise available to personal
computers, is a challenge because of the limited processing,
memory, storage. Therefore, users should take the time to
learn about the security features of their SOHO routers and
configure them appropriately to ensure that they are
protected from potential threats.

� Devices can become easy targets for attackers due to their
easy exploitability, making them an attackers' paradise.

� There have been numerous reports of security issues in
SOHO routers because of known vulnerabilities, which can
lead to unauthorized access, data theft, and other malicious
activities.

� The vendors often overlook the security of these devices and
sell them with default insecure settings, which can leave
users vulnerable to attacks.

� Even if vendors release security patches, very few devices
end up getting installed with these patches, which can leave
users exposed to known vulnerabilities

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 4/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

Table 1 (continued)

Reference Pros Cons

Anand &
Premananda (2022)

� The advantage of establishing security between servers,
cloud applications, and users in today's world is well
reviewed in this research, as the number of devices
connecting to the internet is ever increasing.

� This means that there is a greater risk of cyberattacks and
data breaches, which can have serious consequences for
individuals and organizations.

� The article establishes critical security aspects to protect
sensitive information and ensure the safe and reliable
functioning of internet-connected devices and services.

� The proposed model uses external flash to boot user
applications which slows down the processing speed of the
execution of the application and boot loading time.

� This is because the external flash is used to boot the user
applications, which takes more time compared to booting
from RAM.

Zhu et al. (2020) � The research approach in this article uses to firmware code
analysis which differs from traditional methods by breaking
away from the traditional feature-centered approach and
focusing on code classification and the qualitative
description of code features to discuss the idea of code
similarity and homology analysis.

� The proposed approach is information-centric, focusing on
the informativeness (essentiality, stability, anti-variability,
and heritability) of the firmware code genes and the
quantitative analysis of firmware code similarity and
homology by discussing common methods and
mechanisms.

� Two major challenges associated with detecting security
risks in IoT firmware.

� First is heterogeneity and closed source, where the firmware
of an IoT terminal is deployed in various architectures, with
different instruction sets, registers, addressing modes, stack
management, calling conventions, storage management
models. Most firmware has closed-source code, is unable to
obtain the source code, and lacks symbol debugging
information. Thus, security detection objects of terminal
firmware are not unified, and detection is difficult.

� Second is limited resources, where most IoT terminals
belong to the category of embedded devices, with limited
storage and computing resources, and many terminals have
high requirements for power consumption and real-time
performance. Therefore, it is difficult for the terminal itself
to deploy antiviral, intrusion detection and other security
protection measures. Additionally, it is difficult to adopt
underlying monitoring, probing of early warnings and
other security monitoring means.

Zhu et al. (2019) � The unique approach presented in this article differs from
other firmware security detection technologies based on
similarity by attempting to address this issue theoretically.

� This new approach detected security risks in IoT terminal
firmware by mining firmware code genes, which can
essentially identify code and exhibit stability, anti-
variability, and heritability. This approach provides a
foundation for cross-platform firmware binary code
homology and similarity analysis.

� Use of COTS proposed in this research has high code reuse
rates. Such firmware is always heterogeneous and closed
source, this makes it difficult to detect and investigate the
security risks at the firmware level that their impacts are
faster and broader.

� High code reuse rates in IoT terminal firmware make it
difficult to detect and investigate security risks at the
firmware level, which can have significant impacts on the
security of connected devices and networks.

Choi & Lee (2020) � This blockchain-based distributed firmware update
architecture offers several advantages compared to the
traditional client-server model.

� Proposed architecture provides decentralization,
transparency, and irreversibility, which are characteristics
of blockchain technology.

� Firmware update of an IoT device is necessary for its
lifecycle, and secure firmware update of the IoT device is
being brought as the first step in IoT security.

� Firmware update failures can occur due to network issues or
cyber-attacks, support for integrity and authentication of
the firmware images are required.

(Continued)

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 5/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

Table 1 (continued)

Reference Pros Cons

� This blockchain-based distributed firmware update
architecture offers several advantages compared to the
traditional client-server model.

� Proposed architecture provides decentralization,
transparency, and irreversibility, which are characteristics
of blockchain technology.

� The distributed nature of the architecture ensures that every
node stores the same data based on an append-only
distributed ledger, which provides integrity,
decentralization, and irreversibility.

� This approach can prevent targeting issues and author-
disappearing issues, which are not addressed by the current
SUIT working group's traditional client-server model.

� The proposed architecture is also tolerant to a single point
of failure and enables irreversible downloads even in the
author-disappearing state.

� Firmware update of an IoT device is necessary for its
lifecycle, and secure firmware update of the IoT device is
being brought as the first step in IoT security.

� Firmware update failures can occur due to network issues or
cyber-attacks, support for integrity and authentication of
the firmware images are required.

� Firmware updates for IoT devices are vulnerable against an
author-disappearing issue that the IoT device
manufacturers or firmware vendors are unable to provide
firmware updates in time due to cyber-attacks or
disappearing due to their funding problems.

Zandberg et al. (2019) � The article presented several experimental results to
measure and compare the performance of various crypto
libraries that are relevant in the context of secure firmware
updates for constrained IoT devices.

� The performance of several deployment configurations
using their prototype and provide the first experimental
evaluation of the IETF SUIT specification is presented.

� The results displayed that the prototype could provide
secure firmware updates on a large variety of constrained
IoT devices, while entirely avoiding proprietary
mechanisms and code.

� IoT devices without a built-in firmware update mechanism
are vulnerable to security threats such as large-scale DDoS
attacks using compromised IoT devices,

� Software-based attacks such as buffer overflow attacks are
on the rise and work on memory isolation or
compartmentalization is pending.

� Firmware updates can themselves become attack vectors if
not designed correctly, as demonstrated by the Zigbee
Worm.

Wang et al. (2019) � The advantages of firmware vulnerability detection are
achieving large-scale firmware security inspection
accurately and efficiently.

� The proposed method detected vulnerabilities in firmware
images without access to the source code, and it can identify
vulnerabilities that are caused by code reuse.

� The method also detected vulnerabilities that are not
detected by traditional methods, such as signature-based
methods and anomaly-based methods.

� The endless emergence and ubiquitous deployment of IoT
devices have exposed a significant number of potential
targets to the outside world.

� IoT devices have become one of the most popular targets
for hackers and one of the easiest to attack, as proven by the
increasing attacking events targeting IoT devices in recent
years.

� IoT vendors tend to reuse easy-to-obtain yet unsafe
software modules in their device firmware, and
vulnerabilities in certain software modules may affect large
number of IoT devices.

Kim et al. (2021) � FIRM-COV was able to find the fastest and most 1-day
vulnerabilities with almost no false-positives.

� This research also found two 0-day vulnerabilities in real-
world IoT devices within 24 hours.

� FIRM-COV proposed an optimized emulation of IoT
firmware to detect vulnerabilities without requiring real-
world devices by applying two emulations.

� It generally executes the target program in user-mode
emulation for efficiency, however exceptions are caused in
the system if t switched to full-system emulation to handle
exceptions.

� Only after optimizing the existing emulation technique,
FIRM-COV could maintain a stable state and achieves high
accuracy when detecting vulnerabilities.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 6/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

solution to improve the bootloading time in IoT devices, enhancing their performance.
Zhu et al. (2020) introduced an information-centric approach for analyzing firmware code
similarities and homology. Zhu et al. (2019) explored firmware code genes for identifying
code and assessing their stability, anti-variability, and heredity. Choi & Lee (2020)
suggested a distributed patch management architecture using blockchain to enhance
firmware upgrade security. Zandberg et al. (2019) reviewed guidelines and libraries for
secure firmware upgrades in limited-power IoT devices. Wang et al. (2019) proposed a
staged firmware vulnerability detection method based on code similarity. Kim et al. (2021)
introduced a high-surveillance grey box fuzzer for IoT firmware to identify real-world
vulnerabilities. Gui et al. (2020) developed a fuzzer tailored for IoT firmware vulnerability
identification, addressing key challenges. Yu et al. (2020) presented a method for
determining IoT device software using website page data and weak passwords. Ebbers
(2022) analyzed firmware upgrades on IoT devices using data mining and mapping
techniques. Feng et al. (2023) examined challenges and solutions for firmware security
analysis in IoT devices. Hassija et al. (2019) discussed security challenges and emerging
technologies to enhance trust levels in IoT applications. Ammar, Russello & Crispo (2018)
surveyed the security aspects of prominent IoT frameworks, emphasizing architectural
designs and security features. Nebbione & Calzarossa (2020) examined security within
application layer protocols, addressing key challenges and best practices. Khan, Awang &

Table 1 (continued)

Reference Pros Cons

Gui et al. (2020) � FIRMCORN optimized the initial environment of virtual
execution by using the real IoT device dump context.

� This used heuristic algorithms to search the three types of
functions to optimize the virtual execution process, thereby
achieving faster, more accurate, and more stable virtual
execution.

� FIRMCORN focused only on three IoT firmware fuzzing
issues namely high throughput required by fuzzing,
inaccuracy of emulation compared with real devices, and
instability of emulation due to lack of hardware.

� This research had a limited scope.

Yu et al. (2020) � The proposed approach to firmware identification works by
adopting the widespread weak password technology
available for online IoT devices to grab web content, which
does not interfere with the normal operation of the IoT
device.

� The method consisted of three steps: coarse-grained
identification to identify the brand of the device, identifying
the location of the navigation bar of the firmware version to
accurately obtain the firmware version, and dividing the
webpage into blocks, filtering out redundant pages,
obtaining the main page where the firmware version is
located, and extracting the device model and firmware
version through regular expressions.

� The experimental results show that the method achieves
95.97% accuracy in device firmware identification, superior
to other methods.

� This research only discussed risk of information security
due to growth of Internet-connected IoT devices.

� The authors only provided examples of large-scale network
disconnection caused by the Mirai infection in 2016, the
iot_reaper attack in 2017, and the VPNFilter malware in
2018 but not the actual methodology or ways to replicated.

� The vulnerabilities exploited by attackers are closely related
to the device firmware version. This research did not
identify devices firmware version as an essential
prerequisite for maintaining device security.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 7/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

Karim (2022) conducted a comprehensive review of IoT security, focusing on wireless
communication methods and technologies. Roopak, Yun Tian & Chambers (2019)
introduced deep learning models for IoT cybersecurity, outperforming traditional machine
learning algorithms. Sicari et al. (2022) explored the Function as a Service paradigm for
creating scientific workflows. Celesti et al. (2020) proposed a telemedical laboratory service
using IoT devices and Cloud computing for healthcare collaboration among professionals.

The research on IoT security encompasses vulnerabilities, mitigation strategies, and
innovations, primarily in bootloader security, firmware updates, and network
complexities. Challenges include resource limitations, closed-source firmware, and
balancing security with device performance. Emerging trends emphasize machine learning
and firmware security analysis for more robust security measures.

Table 1 summarizes the pros and cons of the top 12 research manuscripts relevant to
this research.

MATERIALS AND METHODOLOGY
Tools for IoT bootloader analysis are frequently used to examine IoT device bootloaders.
These tools are used to look through the device’s firmware and see if there are any security
flaws or vulnerabilities that need to be fixed. They can also be used to retrieve device-
specific data, like hardware specs, manufacturer, and version. Firmware analysis tools like
Firmadyne, firmware reverse engineering tools like IDA Pro, and firmware security
assessment tools like Binwalk are a few examples of IoT Bootloader Analyzer tools. To
guarantee the security and integrity of IoT devices, security researchers, IoT device
manufacturers, and other experts employ these techniques. Tools for “taint analysis” are
used to examine the security of bootloaders on Internet of Things devices. They can be
used to extract and examine firmware images, find security flaws, and check if standard
security features like firmware signing and secure boot are present. The security of IoT
device bootloaders is examined by this utility. Firmware images may be extracted and
analyzed, vulnerabilities can be found, and standard security features like secure boot and
firmware signing can be tested for. With the aid of these instruments, firmware reverse
engineering and firmware image modification with the addition of unique payloads or
patches are possible.

Depending on the firmware image being examined, different undiscovered
vulnerabilities may be found, however in general, a variety of problems might be found,
such as:

� Buffer overflow vulnerabilities: These arise when an application attempts to store more
data in a buffer than its capacity permits, resulting in the data spilling over into
neighboring memory regions.

� Hardcoded credentials refer to passwords or keys that are inherently incorporated in
firmware, making them easily retrievable by an adversary.

� Insecure communication: This can involve using keys or passwords that are simple to
figure out or unencrypted communication protocols.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 8/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

� Inadequately secured storage: This can involve keeping private information in plaintext
files or other easily accessible, unencrypted places.

� Insecure updates: Using unencrypted or unauthenticated update protocols puts the
device at risk of malware being installed by an attacker.

� Privilege escalation is the process by which an attacker uses a firmware flaw to obtain
access to higher-level privileges than they should.

� Unauthorized access: This can include the use of easily guessable default credentials or
the lack of proper access controls in the firmware.

� Weak encryption: This can include the use of easily crackable encryption algorithms or
the use of easily guessable encryption keys.

These are just some examples of the types of vulnerabilities that the tool may detect, and
the actual vulnerabilities that are found will depend on the specific firmware image being
analyzed. Overall, such tools are hugely valuable for security researchers and IoT device
manufacturers looking to secure the boot process of their devices with the proposed
algorithm including the below-mentioned steps:

i) Extracting the firmware image from the IoT device.

ii) Identifying the type of processor and operating system used in the device.

iii) Analyzing the firmware for known vulnerabilities and common security features
such as secure boot and firmware signing.

iv) Decompiling the firmware to extract the underlying source code.

v) Performing firmware reverse engineering to identify additional vulnerabilities.

vi) Adding patches or unique payloads to the firmware.

vii) Checking for security flaws in the bootloader and firmware.

viii) Writing a report outlining the analysis’s conclusions and emphasizing any security
concerns or vulnerabilities found.

The setup consists of layers involving embedded sensors and actuator devices
connecting to the physical world providing the status of the physical state changes. These
devices are locally connected through a gateway that in turn connects to the Internet or the
IoT Cloud platform. The cloud platform runs applications that remotely want to supervise
and manage the physical IoT devices. Figure 1 illustrates this setup further.

This setup translates the data into different layers, the physical IoT device runs the
embedded software along with edge software on the local gateway as illustrated in Fig. 2.
The IoT backend communicates with the cloud storage services and databases that in turn
access the Internet via web apps instead of web services for other purposes like Java Servlet,
JSP Pages, or Android apps. In IoT, different nodes of the scheme have different software
even as very few layers inside IoT devices communicate with the external world in terms of
physical access.

The research methodology followed for analyzing taint analysis and IoT firmware
typically involves several stages:

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 9/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

i) Taint analysis discovers some anomaly from a source flow to a sink. IoT systems have
at least two different types of sources and sinks.

a) The first is the external components interacting with the physical real world where
sensors as the source and actuators are the sink or the Android apps for geolocation
as the source and set the label as the sink.

b) The second uses a database containing the outcome as well as communication routes
as the sink or the Internet with the request and receive as the source. obtain as the
answer and source. as the sink.

ii) Firmware extraction involves removing firmware images from a variety of IoT devices,
including those with embedded Linux, RTOS, and microcontroller systems. After
extracting the firmware image, analysis and examination are performed to find
security flaws and vulnerabilities. This includes the device's operating system and
processor type as well as any open network ports, hard-coded emails/passwords, and
other security issues.

iii) Firmware reverse engineering extracts the underlying source code and decompiles the
firmware, undertaking firmware reverse engineering. This makes it possible for
security experts to do a more in-depth analysis of the firmware and find any potential
flaws.

iv) Modification can be done by adding patches or unique payloads to firmware images.
This can be used to add unique features to the device or test the security of the device.

Figure 1 IoT, cloud, and application connectivity. Full-size DOI: 10.7717/peerj-cs.1771/fig-1

Figure 2 IoT physical to logical dataflow. Full-size DOI: 10.7717/peerj-cs.1771/fig-2

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 10/20

http://dx.doi.org/10.7717/peerj-cs.1771/fig-1
http://dx.doi.org/10.7717/peerj-cs.1771/fig-2
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

v) By conducting attacks on the firmware and bootloader, test and evaluate the security
of these systems.

vi) Provide reports detailing the firmware’s testing and analysis, emphasizing any security
concerns or vulnerabilities that were found.

The steps for the Taint Analysis algorithm proposed in this research for analyzing IoT
firmware are explained in the pseudocode below:

i) The firmware image is extracted from the IoT device using the function ‘extract-
firmware’ in the first line of the pseudocode.

ii) The firmware image is examined using the ‘analyze-firmware’ function in the
following line. The CPU and operating system type of the device would probably be
determined by this function, which would also look for known vulnerabilities and
standard security measures like firmware signing and secure boot.

iii) Firmware reverse engineering is performed on the firmware image using a function
named ‘reverse-engineer-firmware’. To retrieve the firmware’s underlying source
code and find more vulnerabilities, this function decompiles the firmware.

iv) Next a function called ‘patch-firmware modifies the firmware image to include custom
payloads or patches and the ‘test-firmware’ function tests the firmware and bootloader
for security vulnerabilities.

v) Finally, the function ‘generate-report is called for generating a report on the findings
of the analysis, highlighting any vulnerabilities or security risks that were identified.

The implementation of the algorithm is complex since the lines of code, functions, and
parameters depend upon the actual implementation, which the authors have witnessed to
vary depending on the specific implementation of the proposed bootloader analysis tool
and the type of IoT device being analyzed. The specific vulnerabilities that this tool can
detect will depend on the firmware image being analyzed, but this detects the following IoT
vulnerabilities such as:

� Memory corruption vulnerabilities: These include buffer overflow, stack overflow, and
heap overflow vulnerabilities.

� Authentication and authorization vulnerabilities include hardcoded credentials, weak or
easily guessable passwords, and lack of proper access controls.

� Insecure communication: This includes the use of unencrypted communication
protocols or easily guessable encryption keys.

� Insecure data storage: This includes storing sensitive data in unencrypted or easily
accessible locations.

� Insecure update mechanisms: This includes unauthenticated or unencrypted update
mechanisms that can allow an attacker to install malicious firmware on the device.

� Insecure configuration includes insecure default configurations, such as open network
ports or easily guessable default credentials.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 11/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

� Insecure cryptographic storage: this includes weak encryption algorithms or weak keys.

� Insecure randomness: this includes the use of weak random number generators, which
can make encryption keys or session tokens predictable.

The exact steps and the order of the steps depend on the specific implementation of the
proposed bootloader analysis tool and the type of IoT device being analyzed. High-level
examples and the actual implementation of the algorithm would be more complex, with
many more lines of code, more functions, and more parameters. Pseudo Code 1 presents
the pseudocode, the actual implementation for the bootloader analysis, and the various
types of IoT devices that are analyzed in this research.

Pseudo code 1: analyze IoT firmware
Firmware update pseudo-code in a bootloader for an IoT device is presented in Pseudo

Code 2. This pseudo-code is an example of how the firmware update process might work
in a bootloader. The bootloader is in an infinite loop waiting for a firmware update
command to be received. Once the command is received, it erases the old firmware from
memory, receives the new firmware over UART, and verifies it. If the firmware is verified,
the bootloader jumps to the new firmware. If the firmware is not verified, an error message
is sent over UART, and the bootloader stays in the bootloader waiting for another
firmware update command. It’s important to note that this is a simplified example, the
process will be more complex, and the bootloader will check for any other errors that
might happen during the update process and handle them accordingly. Also, this example
uses UART for firmware updates, but it can be done over other communication interfaces
like TCP/IP, BLE, Zigbee, etc.

Pseudo Code 2: Firmware update
Security assessment code for the bootloader for an IoT device is presented in pseudo-

code below in Pseudo Code 3. This pseudo-code is a basic example of how the security
assessment process might work in a bootloader. The bootloader performs a series of tests to
check the memory overflow, firmware integrity, firmware update authenticity, secure boot,
and code signing. If any of these tests fail, the bootloader sends an error message over
UART and handles the error. It is important to note that this is a simplified example, the
process will be more complex, and the bootloader will check for any other security issues
that might happen during the assessment process and handle them accordingly.

Pseudo Code 3: Security assessment
The hardware initialization code in a bootloader for an IoT device is presented as

Pseudo Code 4. This code initializes the device’s memory, communication interfaces, and
peripherals, then performs basic tests to ensure the hardware functions properly. If all tests
pass, it will jump to the main firmware.

Pseudo Code 4: Hardware initialization code in a bootloader
The firmware file’s taint is determined by calculating the taint analysis using the

frequency of each byte value in the file. Higher taint levels indicate more random data. This
value is a measure of the randomness of the data in the file. Our suggested method
computes these to show the firmware image’s taint in each area. A bar for each byte value
in the Taint represents it in a histogram. The taint value is derived from the distribution of

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 12/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

these frequencies, where the height of each bar indicates the frequency of that byte value in
the segment. This program detects the regions of the firmware that might contain
compressed or encrypted data by examining the taint of the firmware image. It also can
detect any hidden data or malware that might be present in the firmware. The firmware
file’s taint is determined by adding up the negative odds of every distinct byte value within
the file. The number of times a given value occurs divided by the total number of bytes in
the file yields the probability of that value.

The taint value is then calculated as presented in Eq. (1):

H ¼
X

p i x log p ið Þð Þ (1)

where the probability of the ith byte value is denoted by p_i. All things considered, the
authors offer a potent methodology for examining the security of IoT firmware and
locating holes in IoT devices’ boot processes utilizing a variety of techniques, including
Taint analysis, which is covered in the following section.

RESULTS
The authors performed security assessments which are presented in this section. The
hardware setup involved Quad-Core Intel with 64 GB RAM, and 500 GB SD disk running
Linux OS for determining taint. The first step involved discovering potentially vulnerable
paths in the firmware code which may lead to memory corruption issues. The authors
executed assessment scans on different IoT firmware binaries, the initial focus is to
determine security vulnerabilities and their sub-classes such as non-volatile memory under
the control of the threat vector. The taint calculation is performed on each section of the
firmware image, and the taint is displayed as a histogram. The x-axis of the histogram
represents the byte values, and the y-axis represents the frequency of each byte value in the
section. The taint value is calculated from the distribution of the byte values and is
displayed as a single value for each section of the firmware image. By analyzing the taint of
the firmware image, the tool identified areas of the firmware that may contain encrypted or
compressed data, as well as potentially identifying any hidden data or malware that may be
present in the firmware. This is because encrypted or compressed data will have a higher
tint value, due to the randomness of the data. On the other hand, data that is not encrypted
or compressed will have a lower taint value and may indicate the presence of structured
data, such as executable code or file systems.

The second step is based on a test-execution environment for detecting unique
vulnerabilities using taint analysis. This can be executed using an HTTP response
containing variables. The analysis’s entry points, or sources, are places in the program
where unreliable, user-controlled data can enter the code being examined, such as when
reading from the standard input or environmental variables. The analysis’s conclusion
points are referred to as sinks, and they represent security-sensitive actions that could be
used by attackers to launch attacks, such as jump instructions for obstructing intended
control flow. Data that is unreliable is flagged during analysis by becoming tainted, and the
taint is subsequently spread across the code by a taint propagation policy. If a sink runs
operations on contaminated data, vulnerabilities are found, and app integrity is

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 13/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

compromised before being discovered. The response template is generated using a fuzzer
using probabilistic-context-free grammar as a tuple denoted in Eq. (2) as

A ¼ Nt; St; Pt; Stð Þ (2)

where Nt = Set of non-terminal symbols
St = Set of terminal symbols
Pt = Production rules
St = Starting symbol
The taint propagation is illustrated in symbolic form in Fig. 3 below.
After applying this approach to five different IoT devices running at least two different

applications, the authors selected the below applications to check for communication
challenges. Three of these are Firebase and one each with NFC, Bluetooth, and Internet. In
four out of five cases, the authors discovered potentially dangerous flaws. For example, the
doorbell camera presents the dataflow of the picture of a person at the door to the owner’s
camera or mobile over the Internet. Table 2 presents the different vendor firmware that are
assessed in this research.

Similar flows were discovered in other cases having potentially dangerous flows, yet
those were needed to implement the main functionality of the device application. Only the
Auto Assistant was secure, made multiple checks of the values, and sanitized all elements
involved in the dataflow as presented in Table 3.

Vulnerability warnings are illustrated in Fig. 4 issued warnings about potential
malicious injections, these correspond to threat and privacy issues, the first warning relates
to sensitive data with the injection method ‘execute’ creating an HTTP request. The taint
analysis detects the next warnings leading to geolocation triangulation and finally
concatenates and points to a web service as URL, this points to the app programs and
bandwidth and location of the IoT device. This is potentially a huge privacy breach.

Table 4 presents a summary of multiple malwares captures and malicious scenarios
obtained after executing Zeek-based network analysis on the IoT ecosystem comprising of
the smart doorbell, electric monitor, color thing, BLE energy, and auto-assistant devices.

In our research, we utilized Zeek, known as Bro, an open-source network security
monitoring tool, to conduct a comprehensive analysis of network traffic generated by
various Internet of Things (IoT) devices. The focus of our study involved understanding
the dynamics and interactions within an IoT ecosystem through the lens of network traffic
analysis. The IoT environment consisted of diverse device categories, each contributing
unique functionalities to the network. The ecosystem encompassed several types of IoT

Figure 3 Taint propagation. Full-size DOI: 10.7717/peerj-cs.1771/fig-3

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 14/20

http://dx.doi.org/10.7717/peerj-cs.1771/fig-3
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

devices, ranging from smart doorbells to electric monitors, color-changing devices
(referred to as ‘color things’), Bluetooth Low Energy (BLE) devices for energy monitoring,
and voice-activated assistants. Smart doorbells, equipped with cameras and internet
connectivity, enable remote door monitoring and interaction. Electric monitors are
systems that observe and transmit electricity consumption data for analysis and
management. Throughout our network analysis using Zeek, we encountered instances of
malware captures, signifying the presence or attempted infiltration of malicious software
within the network. These captures denote records or logs of suspicious or potentially
harmful network activities observed during the analysis. Additionally, our research

Table 2 Vendor device information.

Type Firmware version Product Last modified

Wifi doorbell 1.07 Qubo smart Wifi 21 April 2018

Electric monitor v101-r018 Amici sense 21 Dec 2020

Color thing FW1.07B09 NFC 10 Sept 2021

BLE energy AR401X_REV6 Bluetooth 22 Dec 2017

Auto assistant BACnet_4.2 Bluetooth 15 July 2020

Table 3 Device dataflow information.

Device app Channel Edge Mobile Dataflow

Smart doorbell Firebase 13.67” 55.34” Surveillance cam to user mobile app

Electric monitor Firebase 115.23” 54.67” From timestamp to user’s mobile app

Color thing NFC 13.19” 78.67” From input by user to LEDs

BLE energy Bluetooth 15.13” 87.45” From shared preference to user mobile

Auto assistant Internet 45.57” 51.23” No issue found

Figure 4 Taint vulnerability warning. Full-size DOI: 10.7717/peerj-cs.1771/fig-4

Table 4 Summary of the benign scenarios.

Dataset Attack duration
(in hours)

Packets
(in thousand)

Zeek flows PACP size
(in MB)

Device

IoT_Cap-1 12.7 9.276 138 2.965 Smart doorbell

IoT_Cap-2 15.8 14.298 245 4.761 Electric monitor

IoT_Cap-3 20.1 11.567 589 8.242 Color thing

IoT_Cap-4 19.5 20.452 421 3.789 BLE energy

IoT_Cap-5 22.5 8.451 789 5.783 Auto assistant

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 15/20

http://dx.doi.org/10.7717/peerj-cs.1771/fig-4
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

highlighted specific malicious scenarios where vulnerabilities within the IoT ecosystem
were exposed or when instances of malware attempted to compromise the devices in our
study. These scenarios were documented to showcase potential risks and vulnerabilities
prevalent in the IoT landscape, elucidating the need for robust security measures within
these networks.

The malware attacks were executed over a long period, rotated every 24 h, and the
network traffic was captured in the form of a PCAP file. However, in a few cases, the
captured traffic PCAP grew very fast, and the captures were stopped before 24 h, so some
of the PCAPs differ in the capture durations as presented in Fig. 5.

For advanced-level analysis, the authors scanned and enumerated each infected device
at application layer prediction by filtering and summarizing the Zeek information. In this,
the number of dataflows as per the protocols (such as HTTP, DNS, DHCP, Telnet, SSL,
and IRC were filtered) and some were not recognized where the flow was not quantifiable,
as presented in Fig. 6.

From these taking and malware attack scenarios, the benign IoT network datasets were
obtained, including information regarding the duration of the attack, packets involved,
Zeek flow, PCAP file, and device, as presented in Table 5 below.

The compromised datasets using the attack methodology were validated for taint
analysis. This research taint analysis of IoT devices uncovered several vulnerabilities as
presented in Table 6.

These are just a few samples from the research performed for the results that are
obtained from taint analysis of IoT device firmware using datasets from Stratosphere IPS.

Figure 5 Application layer protocol breakdown summary.
Full-size DOI: 10.7717/peerj-cs.1771/fig-5

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 16/20

http://dx.doi.org/10.7717/peerj-cs.1771/fig-5
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

CONCLUSIONS
One essential component of IoT security is IoT device taint analysis, which helps to detect
security flaws in IoT devices and thwart malicious attacks. To conduct taint analysis,
researchers can find a variety of vulnerabilities in IoT devices, such as insecure input
validation, buffer overflows, data leakage, unauthorized access, and information disclosure
by utilizing datasets. The design and execution of bootloaders present major hurdles,
despite their crucial role in the security and functionality of Internet of Things devices.

Table 5 Application layer protocol breakdown for benign scenarios.

Dataset HTTP Telnet FTP DNS DHCP SSL SSH IRC Unrecognized by Zeek

IoT_Cap-1 – – – 35 12 18 – – 56

IoT_Cap-2 65 – – 54 17 23 – – 45

IoT_Cap-3 45 – – 22 8 9 – – 79

IoT_Cap-4 – – – 78 21 14 – – 38

IoT_Cap-5 157 – – 69 29 23 – – 45

Table 6 Datasets validated for taint analysis.

Dataset AD BO IV DL ID UA Device

IoT_Cap-1 12.7 C N C C C Smart doorbell

IoT_Cap-2 15.8 C C N N C Electric monitor

IoT_Cap-3 20.1 C C C N C Color thing

IoT_Cap-4 19.5 N C C C C BLE energy

IoT_Cap-5 22.5 C C N C C Auto assistant

Note:
AD, Attack duration in hours; BO, buffer overflow; IV, input validation; DL, data leakage; ID, information disclosure;
C, compromised; N, not compromised.

Figure 6 Application layer breakdown for benign attacks.
Full-size DOI: 10.7717/peerj-cs.1771/fig-6

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 17/20

http://dx.doi.org/10.7717/peerj-cs.1771/fig-6
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

Additional investigation is required to tackle these issues and create more effective and
safer bootloading systems for smart IoT devices. All things considered, bootloaders are
essential to the operation and security of embedded and Internet of Things devices. They
oversee setting up security mechanisms to prevent unwanted access or manipulation,
initializing the device’s hardware, and loading the primary operating system or firmware.

DISCUSSION AND FUTURE SCOPE
The continued growth and complexity of IoT devices will require ongoing research and
development of taint analysis techniques to stay ahead of potential threats. IoT device taint
analysis is a vital tool for ensuring the security and reliability of IoT devices and will
continue to play a critical role in protecting against malicious attacks in the future.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Deanship of Scientific Research at King Khalid University
through the large Groups Research Project under grant number (RGP.2/175/44). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Khalid University: RGP.2/175/44.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Akashdeep Bhardwaj conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Ankit Vishnoi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Salil Bharany conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Abdelzahir Abdelmaboud performed the computation work, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

� Ashraf Osman Ibrahim performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Mohamed Mamoun analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 18/20

http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

� Wamda Nagmeldin analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1771#supplemental-information.

REFERENCES
Ammar M, Russello G, Crispo B. 2018. Internet of things: a survey on the security of IoT

frameworks. Journal of Information Security and Applications 38(9):pp 8–pp 827
DOI 10.1016/j.jisa.2017.11.002.

Anand P, Premananda BS. 2022. Secure bootloader for connectivity MCU. In: 2022 IEEE 2nd
Mysore Sub Section International Conference (MysuruCon). Mysuru, India, 1–7
DOI 10.1109/MysuruCon55714.2022.9972554.

Arm Ltd. What is an operating system, arm | the architecture for the digital world. Available at
https://www.arm.com/glossary/iot-operating-system (accessed 22 September 2023).

Celesti A, Ruggeri A, Fazio M, Galletta A, Villari M, Romano A. 2020. Blockchain-based
healthcare workflow for tele-medical laboratory in federated hospital IoT clouds. Sensors
20(9):2590 DOI 10.3390/s20092590.

Choi S, Lee J-H. 2020. Blockchain-based distributed firmware update architecture for IoT devices.
IEEE Access 8:37518–37525 DOI 10.1109/ACCESS.2020.2975920.

Ebbers F. 2022. A large-scale analysis of iot firmware version distribution in the wild. IEEE
Transactions on Software Engineering 49(2):816–830 DOI 10.1109/TSE.2022.3163969.

Feng X, Zhu X, Han QL, Zhou W, Wen S, Xiang Y. 2023. Detecting vulnerability on IoT device
firmware: a survey. IEEE/CAA Journal of Automatica Sinica 10(1):25–41
DOI 10.1109/JAS.2022.105860.

Gillis A. 2022. What is IoT (internet of things) and how does it work? IoT Agenda. Available at
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT (accessed 22 September
2023).

Gui Z, Shu H, Kang F, Xiong X. 2020. FIRMCORN: vulnerability-oriented fuzzing of IoT
firmware via optimized virtual execution. IEEE Access 8:29826–29841
DOI 10.1109/ACCESS.2020.2973043.

Hassija V, Chamola V, Saxena V, Jain D, Goyal P, Sikdar B. 2019. A survey on IoT security:
application areas, security threats, and solution architectures. IEEE Access 7:82721–82743
DOI 10.1109/ACCESS.2019.2924045.

IoT ONE. Boot loader definition | IoT ONE digital transformation advisors. Available at https://
www.iotone.com/term/boot-loader/t92 (accessed 22 September 2023).

Jaouhari SE, Bouvet E. 2022. Toward a generic and secure bootloader for IoT device firmware
OTA update. In: 2022 International Conference on Information Networking (ICOIN). Jeju-si,
Korea, Republic of, 90–95 DOI 10.1109/ICOIN53446.2022.9687242.

Khan NA, Awang A, Karim SAA. 2022. Security in internet of things: a review. IEEE Access
10:104649–104670 DOI 10.1109/ACCESS.2022.3209355.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 19/20

http://dx.doi.org/10.7717/peerj-cs.1771#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1771#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1771#supplemental-information
http://dx.doi.org/10.1016/j.jisa.2017.11.002
http://dx.doi.org/10.1109/MysuruCon55714.2022.9972554
https://www.arm.com/glossary/iot-operating-system
http://dx.doi.org/10.3390/s20092590
http://dx.doi.org/10.1109/ACCESS.2020.2975920
http://dx.doi.org/10.1109/TSE.2022.3163969
http://dx.doi.org/10.1109/JAS.2022.105860
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
http://dx.doi.org/10.1109/ACCESS.2020.2973043
http://dx.doi.org/10.1109/ACCESS.2019.2924045
https://www.iotone.com/term/boot-loader/t92
https://www.iotone.com/term/boot-loader/t92
http://dx.doi.org/10.1109/ICOIN53446.2022.9687242
http://dx.doi.org/10.1109/ACCESS.2022.3209355
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

Kim J, Yu J, Kim H, Rustamov F, Yun J. 2021. FIRM-COV: high-coverage greybox fuzzing for
IoT firmware via optimized process emulation. IEEE Access 9:101627–101642
DOI 10.1109/ACCESS.2021.3097807.

Morel L, Couroussé D. 2019. Idols with Feet of clay: on the security of bootloaders and firmware
updaters for the IoT. In: 17th IEEE International New Circuits and Systems Conference
(NEWCAS). Munich, Germany, 1–4 DOI 10.1109/NEWCAS44328.2019.8961216.

Nebbione G, Calzarossa M. 2020. Security of IoT application layer protocols: challenges and
findings. Future Internet 12(3):55 DOI 10.3390/fi12030055.

Romana S, Grandhi J, Eswari PRL. 2020. Security analysis of SOHO Wi-Fi routers. In: 2020
International Conference on Software Security and Assurance (ICSSA). Altoona, PA, USA, 72–77
DOI 10.1109/ICSSA51305.2020.00020.

Roopak M, Yun Tian G, Chambers J. 2019. Deep learning models for cyber security in IoT
networks. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC). Las Vegas, NV, USA, 452–457 DOI 10.1109/CCWC.2019.8666588.

Sicari C, Carnevale L, Galletta A, Villari M. 2022. OpenWolf: a serverless workflow engine for
native cloud-edge continuum. In: 2022 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/
CyberSciTech). Falerna, Italy, 1–8
DOI 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927926.

Urien P. 2020. Proving IoT devices firmware integrity with bijective MAC time stamped. In: 2020
IEEE 6th World Forum on Internet of Things (WF-IoT). New Orleans, LA, USA, 1–2
DOI 10.1109/WF-IoT48130.2020.9221395.

Wang Y, Shen J, Lin J, Lou R. 2019. Staged method of code similarity analysis for firmware
vulnerability detection. IEEE Access 7:14171–14185 DOI 10.1109/ACCESS.2019.2893733.

Yu D, Zhang L, Chen Y, Ma Y, Chen J. 2020. Large-scale IoT devices firmware identification based
on weak password. IEEE Access 8:7981–7992 DOI 10.1109/ACCESS.2020.2964646.

Zandberg K, Schleiser K, Acosta F, Tschofenig H, Baccelli E. 2019. Secure firmware updates for
constrained IoT devices using open standards: a reality check. IEEE Access 7:71907–71920
DOI 10.1109/ACCESS.2019.2919760.

Zhu X, Li Q, Chen Z, Zhang G, Shan P. 2020. Research on security detection technology for
internet of things terminal based on firmware code genes. IEEE Access 8:150226–150241
DOI 10.1109/ACCESS.2020.3017088.

Zhu X, Li Q, Zhang P, Chen Z. 2019. A Firmware code gene extraction technology for IoT
terminal. IEEE Access 7:179591–179604 DOI 10.1109/ACCESS.2019.2959089.

Bhardwaj et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1771 20/20

http://dx.doi.org/10.1109/ACCESS.2021.3097807
http://dx.doi.org/10.1109/NEWCAS44328.2019.8961216
http://dx.doi.org/10.3390/fi12030055
http://dx.doi.org/10.1109/ICSSA51305.2020.00020
http://dx.doi.org/10.1109/CCWC.2019.8666588
http://dx.doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927926
http://dx.doi.org/10.1109/WF-IoT48130.2020.9221395
http://dx.doi.org/10.1109/ACCESS.2019.2893733
http://dx.doi.org/10.1109/ACCESS.2020.2964646
http://dx.doi.org/10.1109/ACCESS.2019.2919760
http://dx.doi.org/10.1109/ACCESS.2020.3017088
http://dx.doi.org/10.1109/ACCESS.2019.2959089
http://dx.doi.org/10.7717/peerj-cs.1771
https://peerj.com/computer-science/

	Framework to perform taint analysis and security assessment of IoT devices in smart cities
	Introduction
	Related work
	Materials and methodology
	Results
	Conclusions
	Discussion and future scope
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

