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ABSTRACT
Deep learning has been increasingly and widely used to solve numerous problems in
various fields with state-of-the-art performance. It can also be applied in bioinformatics
to reduce the requirement for feature extraction and reach high performance. This
study attempts to use deep learning to predict SNARE proteins, which is one of the
most vital molecular functions in life science. A functional loss of SNARE proteins has
been implicated in a variety of human diseases (e.g., neurodegenerative, mental illness,
cancer, and so on). Therefore, creating a precise model to identify their functions is a
crucial problem for understanding these diseases, and designing the drug targets. Our
SNARE-CNN model which uses two-dimensional convolutional neural networks and
position-specific scoring matrix profiles could identify SNARE proteins with achieved
sensitivity of 76.6%, specificity of 93.5%, accuracy of 89.7%, and MCC of 0.7 in cross-
validation dataset. We also evaluate the performance of our model via an independent
dataset and the result shows that we are able to solve the overfitting problem. Compared
with other state-of-the-art methods, this approach achieved significant improvement
in all of the metrics. Throughout the proposed study, we provide an effective model
for identifying SNARE proteins and a basis for further research that can apply deep
learning in bioinformatics, especially in protein function prediction. SNARE-CNN are
freely available at https://github.com/khanhlee/snare-cnn.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Position specific scoring matrix, SNARE protein function, Deep learning, Membrane
fusion, Vesicular transport protein, Cancer, Human disease, Biological domain, Overfitting,
Protein family classification

INTRODUCTION
Deep learning is an advanced machine learning and artificial intelligent technique to
learn the representative data with multiple layers of neural networks (LeCun, Bengio
& Hinton, 2015). Numerous difficult problems have been solved with deep learning,
e.g., speech recognition, visual object recognition, object detection. The advantages of deep
learning are: (1) significantly outperforms other solutions in multiple domains, (2) reduces
the requirement for feature extraction and time consumption with the use of graphic
processing units (GPUs), and (3) easily adapts to a new problem. Deep neural network
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models often achieve better performance compared to shallow networks, especially in
most of problems with big data. Therefore, deep learning becomes popular and attracts
numerous huge companies establishing their directions in this field in recent years.
Nowadays, much progress towards deep learning has been made using different deep
neural network architectures. A number of studies showed that using deep learning can
enhance results in various fields, e.g., prediction of cervical cancer diagnosis (Fernandes
et al., 2018), piRNA (Wang, Hoeksema & Liang, 2018), and isolated guitar transcription
(Burlet & Hindle, 2017). Hence, deep learning is also a fascinating trend in bioinformatics
and computational biology research. This study attempts to present a framework to apply
deep learning in bioinformatics by using two-dimensional convolutional neural network
(2D CNN), which is one popular type of deep neural networks. We anticipate our method
will lead to a significant improvement when compared to traditional machine learning
techniques in the bioinformatics field.

In earlier years, researchers used shallow neural networks for solving a number of
problems in bioinformatics and computational biology. For example, Ou constructed
QuickRBF package (Oyang et al., 2005) for training radial basis function (RBF) networks
and applied them on several bioinformatics problems including classifying electron
transport proteins (Le, Nguyen & Ou, 2017), transporters (Le, Sandag & Ou, 2018), and
binding sites (Le & Ou, 2016a; Le & Ou, 2016b). Chang & Lin (2011) introduced LibSVM
to help biologists implement bioinformatics models by using support vector machines.
Recently, as deep learning has been successfully applied in various fields, researchers
started to use it in bioinformatics problems, e.g., prediction of piRNA (Wang, Hoeksema &
Liang, 2018) and ab initio protein secondary structure (Spencer, Eickholt & Cheng, 2015).
Although those studies achieved very good performances, we believe that we can obtain
superior results by using 2D CNN in some bioinformatics applications. In this study, we
applied our architecture in the prediction of SNARE proteins, which is one of the most
vital molecules in the life sciences.

SNARE is an evolutionary superfamily of small proteins that have a conservation
pattern of 60–70 amino acids (SNAPmotifs) in their cytoplasmic domain. SNARE proteins
catalyze cell membrane integration in eukaryotes and are essential for a wide range of
cellular processes, including cell growth, cytokinesis, and synaptic transmission (Jahn
& Scheller, 2006; Wickner & Schekman, 2008). Most SNAREs contain only one SNARE
motif adjacent to a single C-terminal membrane (e.g., synaptobrevin 2 and syntaxin
1). Some SNAREs contain two SNARE motifs that are connected by a long linkage and
non-transmembrane sequence (e.g., SNAP-25) but are attached to the membrane through
a post-translational modification such as palmitoylation. Various types of SNARE proteins
now identified and several studies demonstrated that a functional loss of SNARE proteins
has been implicated in numerous diseases (e.g., neurodegenerative (Hou et al., 2017),
mental illness (Honer et al., 2002), cancer (Meng & Wang, 2015; Sun et al., 2016), and so
on). Therefore, SNARE proteins play an important function in the cell and there is a need
to develop some bioinformatics techniques to identify them.

Because of the essential role in human diseases, SNARE proteins attracted various
researchers who conducted their research on them. For instance, Kloepper team attempted
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to build a database to store and classify SNARE proteins (Kienle, Kloepper & Fasshauer,
2009; Kloepper, Kienle & Fasshauer, 2007; Kloepper, Kienle & Fasshauer, 2008). Next,
Van Dijk et al. (2008) built a framework to predict functions of SNAREs in sub-Golgi
localization. Moreover, Weimbs et al. (1997) used bioinformatics techniques to analyze
conserved domains in SNARE. Yoshizawa et al. (2006) extracted sequence motifs and
the phylogenetic features of SNARE-dependent membrane trafficking. Shi et al. (2016)
directed targeting of membrane fusion by SNARE mimicry by convergent evolution of
Legionella effectors. Lu (2015) analyzed the destructive effect of botulinum neurotoxins
on the SNARE protein and proposed that the truncated SNAP-25 mutants will disrupt
the assembly of the SNARE core complex, and then inhibit the synaptic membrane fusion
accordingly.

Most published works on SNARE proteins achieved high performance, but to our
knowledge, no researcher conducted the prediction of SNARE proteins using machine
learning techniques. It is challenging and motivates us to create a precise model for this.
Besides that, we also applied deep learning in this problem, which is a modern technique
for classification and obtain high accuracies in various fields. Based on the advantages
of deep learning, this study consequently proposes the use of a 2D convolutional neural
network (CNN) constructed from position-specific scoring matrix (PSSM) profiles to
identify SNARE proteins. The basic principle has already been successfully applied to
identify electron transporting proteins (Le, Ho & Ou, 2017) and Rab GTPases (Le, Ho &
Ou, 2018). Thus, in this paper, we extend this approach to identify the molecular functions
of SNARE proteins. The main achievements, including contributions to the field, are
presented as follows: (i) development of a deep learning framework to identify SNARE
functions from protein sequences, in which our model exhibited a significant improvement
beyond traditional machine learning algorithms; (ii) first computational study to identify
SNARE proteins and provide useful information to biologists to discover the SNARE
molecular functions; (iii) valid benchmark dataset to train and test SNARE proteins with
high accuracy, which forms a basis for future research on SNARE proteins.

As shown in a series of recent publications (Chen et al., 2018; Cheng, Xiao & Chou,
2018a; Cheng, Xiao & Chou, 2018b; Chou, Cheng & Xiao, 2018; Feng et al., 2018; Jia et al.,
2019; Khan et al., 2018; Xiao et al., 2018b), to develop a really useful statistical predictor for
a biological system, one should observe the guidelines of Chou’s 5-step rule (Chou, 2011)
to make the following five steps very clear: (i) how to construct or select a valid benchmark
dataset to train and test the predictor; (ii) how to formulate the statistical samples with an
effective mathematical expression that can truly reflect their intrinsic correlation with the
target to be predicted; (iii) how to introduce or develop a powerful algorithm (or engine)
to operate the prediction; (iv) how to properly perform cross-validation tests to objectively
evaluate the anticipated accuracy of the predictor; (v) how to provide source code and
dataset that are accessible to the public. Below, we are to describe how to deal with these
steps one-by-one.
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Figure 1 Flowchart for identifying SNARE proteins using two-dimensional convolutional neural net-
works.

Full-size DOI: 10.7717/peerjcs.177/fig-1

MATERIALS & METHODS
We implemented an efficient framework for identifying SNARE proteins by using a 2D
CNN and PSSM profiles. The framework consists of four procedures: data collection,
feature extraction, CNN generation, and model evaluation. Figure 1 presents the flowchart
of our framework, and its details are described as follows.

Dataset
The dataset was retrieved from the UniProt database (by 22-10-2018) (UniProt Consortium,
2014), which is one of the comprehensive resources for the protein sequence. First of all, we
collected all SNAREs proteins from the UniProt annotation (by using keyword ‘‘SNARE’’).
Note that only reviewed proteins (records with information extracted from literature and
curator-evaluated computational analysis) were collected. Subsequently, BLAST (Altschul
et al., 1997) was applied to remove the redundant sequences with similarity more than 30%.
However, after this process, the rest of proteins only reached 245 SNAREs, and the number
of data points was insufficient for a precise deep learning model. Hence, we used a cut-off
level of 100% in the cross-validation dataset for more data to create a significant model.
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Table 1 Statistics of all retrieved SNARE and non-SNARE proteins.

Cross-validation Independent

SNARE 644 38
Non-SNARE 2,234 349

We still used similarity of 30% in the independent dataset to evaluate the performance of
the model. This step is a very important step to check if the model was overfitting or not.

The proposed problem was the binary classification between SNARE proteins and
general proteins, thus we collected a set of general proteins as negative data. In order
to create a precise model, there is a need to collect negative dataset which has a similar
function and structure with the positive dataset. From that, it is challenging to build a
precise model but it increases our contribution to the predictor. It will also help us decrease
the number of negative data collected. After considering the structure and function, we
chose vesicular transport protein, which is a general protein including SNARE protein.
We counted it as negative data to perform the classification problem. We removed the
redundant data between two datasets as well as the sequences with similarity more than
30%. Finally, there were 682 SNARE proteins and 2583 non-SNARE proteins used. We
then divided data into cross-validation and independent dataset. The detail of the dataset
using in this study is listed in Table 1.

Encoding feature sets from the protein sequence information
In order to convert the protein sequence information into feature sets, we applied the
PSSM matrices for FASTA sequences. A PSSM profile is a matrix represented by all motifs
in biological sequences in general and in protein sequences in particular. It is created by
rendering two sequences having similar structures with different amino acid compositions.
Therefore, PSSM profiles have been adopted and used in a number of bioinformatics
problems, e.g., prediction of protein secondary structure (Jones, 1999), protein disorder
(Shimizu, Hirose & Noguchi, 2007), and transport protein (Ou, Chen & Gromiha, 2010)
with significant improvements.

Since the retrieved dataset is in FASTA format, it needs to be converted into PSSM
profiles. To perform this task, we used PSI-BLAST (Altschul et al., 1997) to search all the
sequence alignments of proteins in the non-redundant (NR) database with two iterations.
The query to produce the PSSM profile is as follows:

psiblast.exe -num_iterations 2 -db <nr>-in_msa <fasta_file>-out_ascii_<pssm_file>
The feature extraction part of Fig. 1 indicates the information of generating the 400 PSSM

capabilities from original PSSM profiles. Each amino acid in the sequence is represented by
a vector of 20 values (each row). First, we summed up all rows with the same amino acid to
transform the original PSSM profiles to PSSM profiles with 400 dimensions. The purpose
of this step is to force this data type into something easier for the neural network to deal
with. Each element of the 400D input vector was then divided by the sequence length and
then be scaled before inserting into neural networks.
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Input layers for 2D convolutional neural networks
The architecture of our CNN is described in the below part of Fig. 1. The CNN contains
three layers: an input layer, hidden layers (including convolutional, pooling and fully
connected layers), and an output layer. CNN had been applied in numerous applications
in various fields and convinced wonderful results (Amidi et al., 2018; Palatnik de Sousa,
2018). In our study, an input of the CNN is a PSSM corresponding to the protein sequences.
We then propose a method to predict SNARE proteins by using their PSSM profiles as the
input data. With this type of dataset, we assumed the PSSM profile with 20×20 matrix as
a grayscale image with 20×20 pixels, we can then train the model with two-dimensional
CNN. The input PSSM profile was then connected to our 2D CNN in which we set a variety
of parameters to improve the performance of the model. By using a 2D CNN rather than
other neural network structures, we aimed to capture as many hidden spatial features as
possible in the PSSM matrices. This approach guarantees the correctness of the generated
features and prevents the disorder problem inside the amino acid sequences. The more
hidden layers generated, the more hidden features generated in CNN to identify SNARE
proteins easily. In this work, we used four filter layers (with 32, 64, 128, and 256 filters)
and three different kernel sizes in each filter.

Multiple hidden layers for deep neural networks
Following the input layer, hidden layers aim to generate matrices to learn the features. We
established the hidden layers that contained various sub-layers with different parameters
and shapes. Those 2D sub-layers are zero padding, convolutional, max pooling and
fully-connected layers with different numbers of filters. All of the layers are combined
together to become the nodes in the deep neural networks. The quality of our model
was determined by the number of layers and parameters. The first layer of our 2D CNN
architecture is the zero padding 2D layer, which added zero values at the beginning and the
end of 20×20 matrices. The shape matrix changed to 22×22 dimensions when we added
the zero padding layer into our network. After we applied the filters into the input shape,
the output dimension was not different under the effect of the zero padding.

zp=
k−1
2

(1)

where k is the filter size. Next, the 2D convolution layer was used with a kernel size of
3×3, meaning that the features will be learned with the 3×3 matrices and sliced to the
end. After each step, the next layer will take the weights and biases from its previous layer
and train again. Normally, a 2Dmax-pooling layer follows the 2D convolution layer. There
are several parameters for a max-pooling layer, i.e., loop size and stride. In our study, we
performed max pooling by a stride of 2 through the selection of the maximum value over a
window of 22. By using this process, we can reduce the processing time in the next layers.
The output size of a convolutional layer is computed as follow.

os=
w−k+2p

s
+1 (2)

where w is the input size, k is the filter size, p is the padding and s is the stride size.
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Output layers
The first layer in the output layer is a flatten layer. A flatten layer is always included before
fully connected layers to convert the input matrix into a vector. We applied two fully
connected layers in which each node is fully-connected to all the nodes of the previous
layer. Fully connected layers are typically used in the last stages of CNNs. All the nodes of
the first layer are connected to the flatten layer to allow the model to gain more knowledge
and perform better. The second layer connects the first fully-connected layer to the output
layer. Moreover, we inserted the next layer, dropout, to enhance the performance results
of the model and it also helps our model prevent overfitting (Srivastava et al., 2014).
In the dropout layer, the model will randomly deactivate a number of neurons with a
certain probability p. By tuning the dropout value (from 0 to 1), we will save a lot of
computing time for the next layers, and the training time will be faster. Furthermore, an
additional non-linear operation called ReLU (Rectified Linear Unit) was performed after
each convolution operation. To define the ReLU output, we used this formula:

f (x)=max(0,x) (3)

where x is the number of inputs into a neural network. The output of the model was
computed through a softmax function by which the probability for each possible output
was determined. The softmax function is a logistic function which is defined by the
following formula:

σ(z)i=
ezi∑K
k=1ezk

(4)

where z is the input vector with K-dimensional vector, K-dimensional vector σ (z) is real
values in the range (0, 1) and jth class is the predicted probability from sample vector x . In
summary, we set a total of 233,314 trainable parameters in the model (Table 2).

Performance evaluation
The most important purpose of the present study was to predict whether or not a sequence
is SNARE protein; therefore, we used ‘‘Positive’’ to define the SNARE protein, and
‘‘Negative’’ to define the non-SNARE protein. For each dataset, we first trained the model
by applying 5-fold cross-validation technique on the training dataset. Based on the 5-fold
cross-validation results, hyper-parameter optimization process was employed to find
the best model for each dataset. Finally, the independent dataset was used to assess the
predictive ability of the current model.

Based on the Chou’s symbols introduced for studying protein signal peptides (Chou,
2001), a set of four intuitive metrics were derived, as given in Eq. 14 of Chen et al. (2013)
or in Eq. 19 of Xu et al. (2013). For evaluating the performance of the methods, we also
adopted Chou’s criterion used in many bioinformatics studies (Chen et al., 2007; Feng
et al., 2013; Taju et al., 2018). Either the set of traditional metrics copied from math books
or the intuitive metrics derived from the Chou’s symbols (Eqs. (5)–(8)) are valid only for
the single-label systems (where each sample only belongs to one class). For the multi-label
systems (where a sample may simultaneously belong to several classes), whose existence
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Table 2 All layers and trainable parameters of the two-dimensional convolutional neural networks in
this study.

Layer (type) Output shape Parameters #

Zeropadding2d_1 (None, 3, 22, 20) 0
Conv2d_1 (None, 1, 20, 32) 5,792
Max_pooling2d_1 (None, 1, 10, 16) 0
Zeropadding2d_2 (None, 3, 12, 16) 0
Conv2d_2 (None, 1, 10, 64) 9,280
Max_pooling2d_2 (None, 1, 5, 32) 0
Zeropadding2d_3 (None, 3, 7, 32) 0
Conv2d_3 (None, 1, 5, 128) 36,992
Max_pooling2d_3 (None, 1, 2, 64) 0
Zeropadding2d_4 (None, 3, 4, 64) 0
Conv2d_4 (None, 1, 2, 256) 147,712
Max_pooling2d_4 (None, 1, 1, 128) 0
Flatten_1 (None, 128) 0
Dense_1 (None, 256) 33,024
Dropout_1 (None, 256) 0
Dense_2 (None, 2) 514
Activation_1 (None, 2) 0

has become more frequent in system biology (Cheng, Xiao & Chou, 2017a; Cheng, Xiao &
Chou, 2017b; Cheng et al., 2017a; Xiao et al., 2018a), system medicine (Cheng et al., 2017b)
and biomedicine (Qiu et al., 2016), a completely different set of metrics as defined in
(Chou, 2013) is absolutely needed. Some standard metrics were used, such as sensitivity,
specificity, accuracy, and Matthews correlation coefficient (MCC) using below given
formulae (TP, FP, TN, FN are true positive, false positive, true negative, and false negative
values, respectively):

Sensitivity = 1−
N+−
N+

,0≤ Sen≤ 1 (5)

Specificity = 1−
N−+
N−

,0≤ Spec ≤ 1 (6)

Accuracy = 1−
N+− +N

−

+

N++N−
,0≤Acc ≤ 1 (7)

MCC =
1−

(
N+−
N+ +

N−+
N−

)
√(

1+ N−+−N
+

−

N+

)(
1+ N+−−N

−

+

N−

) ,−1≤MCC ≤ 1 (8)

The relations between these symbols and the symbols in Eqs. (5)–(8) are given by:
N−
+
= FP

N+
−
= FN

N+=TP+N+
−

N−=TN +N−
+

(9)

Le and Nguyen (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.177 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.177


Figure 2 Amino acid composition in SNARE and non-SNARE proteins.
Full-size DOI: 10.7717/peerjcs.177/fig-2

RESULTS AND DISCUSSIONS
The quality and reliability of the modeling techniques of research is an important factor
in the study. Initially, we designed an experiment by analyzing data, perform calculations
and take various comparisons in the results and discussions section.

Composition of amino acid in SNARE and non-SNARE proteins
We analyzed the composition of amino acid and the variance of amino acid composition in
SNARE sequences and non-SNARE sequences by computing the frequency between them.
Figure 2 illustrates the amino acids which contributed the significantly highest frequency
in two different datasets. We realized that the amino acid E, and K, and L occur at the
highest frequencies surrounding the SNARE proteins. On the other hand, amino acids G
and P occur at the highest frequencies surrounding the non-SNARE proteins. Therefore,
these amino acids certainly had an essential role in identifying SNARE proteins. Thus, our
model might predict SNARE proteins accurately via the special features from those amino
acids contributions.

Performance for identifying SNARE proteins with 2D CNN
We implemented our 2D CNN architecture by using Keras package with Tensorflow
backend. First, we tried to find the optimal setup for the hidden layers by doing experiments
using four different filter sizes: 32, 64, 128, and 256. Table 3 demonstrates the performance
results from various filter layers in the cross-validation dataset. We easily observe that
during the 5-fold cross-validation to identify SNAREs, the model with 256 filters was
prominent identifying these sequences with an average 5-fold cross-validation accuracy of
88.2%. The performance results are higher than the performances from the other results
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Table 3 Performance results of identifying SNAREs with different filter layers.

Filters Sens Spec Acc MCC

32 68.3 91.9 86.6 0.61
32–64 69.9 93.2 88 0.65
32–64–128 73.3 91.5 87.5 0.64
32–64–128–256 70.5 93.3 88.2 0.65

Figure 3 The validation accuracy on identifying SNARE proteins using different optimizers.
Full-size DOI: 10.7717/peerjcs.177/fig-3

with other filters. The sensitivity, specificity, and MCC for cross-validation data achieved
70.5%, 93.3%, and 0.65, respectively. Therefore, we used 256 filters for the hidden layer to
develop our model. We then optimized the neural networks using a variety of optimizers:
rmsprop, adam, nadam, sgd, and adadelta. The model was reinitialized, i.e., a new network
is built, after each round of optimization so as to provide a fair comparison between the
different optimizers. Overall, the performance results are shown in Fig. 3 and we decided
to choose nadam, an optimizer with consistent performance to create our final model.

Improving the performance results and preventing overfitting
problem with dropout
It can be seen that there was a fair difference in performance between using the cross-
validation dataset and the independent dataset. It is due to the non-removing similarity in
cross-validation, and nowwe address this issue. To solve this issue, we applied an important
technique called dropout (Srivastava et al., 2014). Table 4 presents the performances of the
model when we varied the dropout value from 0 to 1. It can be seen that the performance
from the dropout value of 0.1 was higher than others, with the sensitivity, specificity,
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Table 4 Performance results of identifying SNAREs with different dropout levels.

Cross-validation Independent

Dropout Sens Spec Acc MCC Sens Spec Acc MCC

0 70.5 93.3 88.2 0.65 57.9 85.7 82.9 0.33
0.1 72.4 94.4 89.5 0.69 44.7 95.4 90.4 0.43
0.2 69.3 93.9 88.4 0.65 50 87.4 83.7 0.3
0.3 69.6 94.2 88.7 0.66 42.1 86 81.7 0.22
0.4 72 92.6 88 0.65 39.5 91.4 86.3 0.29
0.5 69.7 94.8 89.1 0.68 36.8 92.8 87.3 0.29

accuracy, and MCC of 72.4%, 94.4%, 89.5%, and 0.69, respectively. In the independent
dataset, the sensitivity, specificity, accuracy, and MCC were 44.7%, 95.4%, 90.4%, and
0.43, respectively. We can see that the performance of the independent dataset has been
already improved and moved closer to that of the cross-validation dataset. Therefore, the
overfitting problem was gradually resolved, and we used this dropout value for our final
model.

Moreover, the number of epochs used in the experiment extremely affects the
performance results. To discover the optimal epoch, we ran our experiments by ranging
the epoch value from the first epoch to the 500th epoch. During this process, we saved the
checkpoint with the highest performance and used its parameters to create ourmodel. Until
this final step, the independent sensitivity, specificity, accuracy, and MCC reached 65.8%,
90.3%, 87.9% and 0.46, respectively. This result is close to that of the cross-validation
dataset at the same level of 2D CNN architecture. Finally, our model applied 256 filter
layers, nadam optimizer, and dropout value of 0.1 to identify SNARE proteins with the
highest performance.

Comparative performance for identifying SNAREs between 2D CNN
and shallow neural networks
We examined the performances of using different machine learning classifiers for
identifying SNARE proteins. We used four different classifiers (i.e., nearest neighbor
(kNN), Gaussian, Random Forest, and support vector machine (SVM)) to evaluate the
model and compared 2DCNN results with their results. For a fair comparison, we definitely
used the optimal parameters for all the classifiers in all the experiments. Table 5 shows the
performance results between our method and other machine learning algorithms. It can
be seen that our 2D CNN exhibited higher performance than those of the other traditional
machine learning techniques using the same experimental setup. Especially, our 2D CNN
outperformed other algorithms when using the independent dataset.

Comparative performance for identifying SNAREs between 2D CNN
and BLAST search pipeline
To make our prediction have convincing, we aimed to simply BLASTing the SNARE and
non-SNARE sequences. The objective of this step is to check whether the first non-identical
match was a SNARE/non-SNARE protein. We then compared with our PSSM via PSI-
BLAST and the performance results were shown in Table 6. It is easy to say that we are
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Table 5 Comparative performance between 2D CNN and other shallow neural networks.

Classifier Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

kNN 60.1 95.4 87.5 0.62 28.9 95.1 88.6 0.28
RandomForest 59.6 98.2 89.5 0.68 15.8 98 89.9 0.23
Gaussian 93.5 30.5 44.6 0.23 81.6 23.2 28.9 0.03
SVM 35.2 98.1 84 0.48 28.9 97.1 90.4 0.34
2D CNN 76.6 93.5 89.7 0.7 65.8 90.3 87.9 0.46

Table 6 Comparative performance between our classification method and BLAST search pipeline.

Method Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

BLAST 37.0 99.3 85.3 0.53 26.3 99.4 92.2 0.44
2D CNN 76.6 93.5 89.7 0.7 65.8 90.3 87.9 0.46

able to reach a better performance when using the PSSM profiles to build a classifier. It
also means that BLAST can search a sequence within motifs, but it cannot capture hidden
information in sequences. Therefore, it is necessary and useful to create an advanced
classifier with stronger features e.g., PSSM profiles in this study.

Furthermore, source codes and publicly accessible web-servers represent the current
trend for developing various computational methods (Chen et al., 2018; Cheng, Xiao &
Chou, 2018a; Cheng, Xiao & Chou, 2018b; Chou, Cheng & Xiao, 2018; Feng et al., 2018; Jia
et al., 2019; Khan et al., 2018; Le, Ho & Ou, 2019; Xiao et al., 2018b). Actually, they have
significantly enhanced the impacts of computational biology on medical science (Chou,
2015), driving medicinal chemistry into an unprecedented revolution (Chou, 2017), here
we also publish our source codes and dataset at https://github.com/khanhlee/snare-cnn
for presenting the new method reported in this paper.

CONCLUSIONS
Deep learning, a leading technique in various fields, has been increasingly applied in
bioinformatics and computational biology. This study approaches a novel for identifying
SNARE proteins by using deep learning. The idea is to transform PSSM profiles into
matrices and use them as the input to 2DCNNarchitectures.We evaluated the performance
of our model, which was developed by using a 2D CNN and PSSM profiles, using 5-fold
cross-validation and an independent testing dataset. Our method produced superior
performance, and compared to other state-of-the-art neural networks, it achieved a
significant improvement in all the typical measurement metrics. Using our model, new
SNARE proteins can be accurately identified and used for drug development. Moreover,
the contribution of this study could help further research to promote the use of 2D CNN
in bioinformatics, especially in protein function prediction.
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