


1 An ensemble learning-based feature selection 
2 algorithm for identification of biomarkers of renal cell 
3 carcinoma 
4
5 Zekun Xin1, Ruhong Lv2+, Shenghan Wang1, Qiang Gao, Bao Zhang1*, Guangyu Sun3* 

6 1 Department of Urology, Aerospace Center Hospital, Beijing, Beijing, China

7 2School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

8 3 Department of urology, The Second Hospital of Tianjin Medical University, Tianjin, Tianjin, China

9 +These authors contributed to the work equally.

10 Corresponding Author: 

11 Bao Zhang

12 Department of Urology, Aerospace Center Hospital, Beijing, Beijing, China

13 Email address: zhangbao721@126.com

14 Guangyu Sun

15 Department of urology, The Second Hospital of Tianjin Medical University, Tianjin, Tianjin, China 

16 Email address: 806860535@qq.com

17 Abstract 
18 Feature selection plays a crucial role in classification tasks as part of the data preprocessing 
19 process. Effective feature selection can improve the robustness and interpretability of learning 
20 algorithms, and accelerate model learning. However, traditional statistical methods for feature 
21 selection are no longer practical in the context of high-dimensional data due to the computationally 
22 complex. Ensemble learning, a prominent learning method in machine learning, has demonstrated 
23 exceptional performance, particularly in classification problems. To address the issue, we propose 
24 a three-stage feature selection algorithm framework for high-dimensional data based on ensemble 
25 learning (EFS-GINI). Firstly, highly linearly correlated features are eliminated using Spearman 
26 coefficient. Then, a feature selector based on F-test is employed for the first stage selection. For 
27 the second stage, four feature subsets are formed using MI, ReliefF, SURF, and SURF* filters in 
28 parallel. The third stage involves feature selection using a combinator based on GINI coefficient. 
29 Finally, a soft voting approach is proposed to employ for classification, including decision tree, 
30 naive Bayes, SVM, KNN, and random forest classifiers. To demonstrate the effectiveness and 
31 efficiency of the proposed algorithm, eight high-dimensional datasets are used and five feature 
32 selection methods are employed to compare with our proposed algorithm. Experimental results 
33 show that our method effectively enhances the accuracy and speed of feature selection.
34 Moreover, to explore the biological significance of the proposed algorithm, we apply it on the 
35 renal cell carcinoma dataset GSE40435 from the Gene Expression Omnibus database. Two 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89699:0:1:NEW 23 Aug 2023)

Manuscript to be reviewedComputer Science

mailto:bao721@126.com
mailto:806860535@qq.comorresponding_author_email@email.com




42 1 Introduction
43
44 Feature selection is a crucial process in machine learning and pattern recognition, aimed at 
45 selecting a subset of features from a large feature space. The main objectives of feature selection 
46 are to enhance prediction accuracy, eliminate redundant features, and reduce time consumption 
47 during analysis. [1] The Filter feature selection method is utilized to select a subset of features 
48 from high-dimensional data sets without relying on a learning algorithm. While this method is 
49 generally quicker, it does not guarantee classifier accuracy. On the other hand, the Wrapper 
50 method incorporates a learning algorithm in the classification process to evaluate the accuracy 
51 of the selected feature subset. Embedded methods, however, perform feature selection during 
52 training and learn the algorithm for the application. Nevertheless, the Wrapper and Embedded 
53 methods incur higher costs compared to the Filter method, and due to the limitations of the 
54 learning algorithm, their generalization performance is typically lower.
55 However, those feature selection methods have several main issues. Firstly, most of these 
56 methods do not consider redundancy between selected features. Secondly, a single filter-based 
57 approach may introduce bias against the selected subset of features. Lastly, inconsistent 
58 prediction accuracy can be observed during classification. According to the reference [2], the 
59 performance of classification models can be enhanced by eliminating irrelevant and redundant 
60 features from the original dataset. Different feature selection algorithms may select different 
61 subsets of features for a given dataset, resulting in varying precision. Therefore, integrating 
62 feature selection methods can improve classification accuracy by selecting a stable feature set. 
63 When designing integration-based feature selection methods, it is crucial to consider diversity 
64 and accuracy [3][4].
65 In recent years, machine learning methods have gained widespread attention for feature 
66 selection. Ensemble learning, a significant learning approach in machine learning, has 
67 demonstrated excellent performance, particularly in classification problems. Ensemble learning 
68 involves using multiple base learners to learn and integrate their predictive outputs on input 
69 samples [1]. Commonly used ensemble methods include the mean value method, voting method, 
70 and learning method. When applied to feature selection, ensemble learning not only integrates 
71 multiple models but also obtains various feature subsets. It comprehensively measures features 
72 from different perspectives, improving feature availability and effectiveness. It avoids the 
73 negative impact of a single result on the model, thereby enhancing model accuracy. Integrated 
74 feature selection methods can be classified into homogeneous integration and heterogeneous 
75 integration based on the same training data and base learner. Numerous studies have 
76 demonstrated that integrated feature selection methods can enhance the model's generalization 
77 performance and training speed.
78 For instance, Zhou Gang et al. [5] introduced a two-stage feature learning method based on the 
79 relative classification information entropy and mutual information entropy, which greatly 
80 enhances the efficiency and accuracy of processing high-dimensional data compared to the 
81 bagging method. Li Zhuping [6] presented an integrated feature selection approach that 
82 combines softmax function weighting mechanism, genetic algorithm, and particle swarm 
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83 algorithm. This study demonstrated the advantages of these three methods in terms of accuracy 
84 and efficiency. Miao Fengshun et al. [7] developed a novel CatBoost algorithm by addressing 
85 nominal attribute issues within the GBDT framework. They conducted feature selection through 
86 IV value analysis, effectively reducing overfitting and achieving promising results in predicting 
87 diabetic patients. Xu Guotian et al. [8] proposed a multi-classification detection method for 
88 malicious programs based on the XGBoost and Stacking fusion model. The authors utilized 
89 Bayesian methods to optimize parameters and employed regularization to overcome overfitting 
90 problems. Wang et al. [9] put forth a feature selection integration method based on the Analytic 
91 Hierarchy Process (AHP). This approach integrates various feature selections into a consistent 
92 feature selection process, considering multiple criteria of feature identifiability and 
93 independence. The study demonstrated the effectiveness of this method in symbolic data 
94 classification. Kiziloz et al. [10] introduced a dynamic multi-objective selection model that 
95 searches for the optimal set of five classifiers to extract the most representative feature subset. 
96 Experimental results on 12 datasets revealed that this method outperforms AdaBoost and 
97 Gradient Boosting. Joodaki et al. [11] proposed an integrated feature selection method based on 
98 fuzzy type I-EFSF. This approach applies three different individual feature selection methods 
99 to determine feature grades, while using type I fuzzy to handle feature selection uncertainty and 

100 reduce noise, thereby improving accuracy, precision, and recall rates. Miri et al. [12] presented 
101 an integrated multi-label feature selection method called GMA, based on Geometric Mean 
102 aggregation of text datasets. This method utilizes four different structures of multi-label feature 
103 selection algorithms and has demonstrated excellent results on high-dimensional text data. 
104 Lastly, Nazrul Hoque et al. [13] proposed an integrated feature selection method based on 
105 mutual information. This method integrates feature subsets from multiple filter feature selectors 
106 and reduces feature redundancy by considering feature-feature and feature-class mutual 
107 information. It has achieved impressive results on high-dimensional datasets.
108 However, most of the datasets used in the aforementioned methods are characterized by low 
109 dimensionality. When dealing with high-dimensional data, those feature selection methods often 
110 encounter a "dimensional disaster" issue. This arises due to the excessive number of features 
111 compared to the limited number of available samples, resulting in poor generalization ability of 
112 the feature selection model [14][15]. Furthermore, it is important to note that an improved 
113 feature selection effect is often accompanied by reduced selection efficiency and generalization 
114 ability, while enhancing selection efficiency may lead to a loss of precision. Hence, there exists 
115 a need to design an algorithm that can achieve high accuracy while maintaining low time and 
116 energy consumption when handling high-dimensional data.
117 To address the problem of feature selection methods for high-dimensional datasets, we propose 
118 a three-stage integrated feature selection framework. In the first stage, the Spearman correlation 
119 coefficient is utilized for correlation analysis as a data pre-processing step to eliminate highly 
120 linear correlated redundant features and reduce the computational time for subsequent feature 
121 selection. Then, the f_classif method is employed for the initial feature selection, while the MI, 
122 ReliefF, SURF, and SURF* filters are processed in parallel to generate four feature subsets for 
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307 classification performance.
308 4 Experiment and results
309
310 4.1 Dataset
311
312 The data set used in this experiment is a high-dimensional multi-class data set, which are 
313 shown in Table 1. The COIL20 dataset is a commonly used image recognition dataset, 
314 consisting of 20 objects, each represented by 72 images taken from different angles. Each 
315 image in the dataset is converted to a grayscale image of size 128×128. The ORL dataset is 
316 a classic face image dataset containing 400 grayscale face images of 40 individuals, with 
317 each person having 10 face images captured in different poses. The images in this dataset 
318 have a size of 92x112 pixels. The warpPIE10P dataset is a face recognition dataset that 
319 comprises 4,000 images from 600 individuals, exhibiting different facial expressions, 
320 lighting conditions, occlusions, and facial poses. The images in this dataset are of size 32x32 
321 pixels and have been feature extracted using PCA, resulting in 4,096 features. The 
322 Prostate_GE dataset is a gene expression dataset used to predict the tumor grade of prostate 
323 cancer (Gleason Score). Each sample in the dataset represents a specific gene expression 
324 profile in normal, precancerous, and cancerous tissues. The jaffe dataset is a facial expression 
325 database consisting of 213 grayscale images of Japanese women. Each image in the dataset 
326 has a size of 256x256 pixels and exhibits very uniform expressions and postures. The lung 
327 dataset is a biological dataset comprising CT images of the lungs along with corresponding 
328 annotated data. The TOX_171 dataset is a compound toxicity dataset containing 171 
329 molecules and 12 bioactivity indicators. The Isolet dataset is specifically designed for speech 
330 recognition tasks and includes randomized English word sounds. Each instance in the dataset 
331 is represented by 617 features, including 13 linear predictive coding (LPC) coefficients and 
332 13 Mel frequency cepstrum coefficients (MFCC) per frame, as well as fundamental 
333 frequency and energy per frame. Detailed information about these datasets can be found at 
334 https://jundongl.github.io/scikit-feature/datasets.html.
335
336 4.2 Evaluation criteria
337 In this experiment, we employed various feature selection methods including F-test, MI, 
338 ReliefF, SURF, SURF*, and EFS-GINI to conduct a comprehensive control study. 
339 Specifically, we selected the top 1% features from the aforementioned datasets. 
340 Accuracy, precision, recall, F1 score (f1_score), and confusion matrix are commonly used 
341 evaluation indicators in machine learning. In our study, we divided the training set and the 
342 test set in a 3:2 ratio.
343 For binary classification, we present the model's prediction confusion matrix in Table 2. In 
344 this table, TP (True Positive) and TN (True Negative) represent the data that was correctly 
345 predicted, while FP (False Positive) and FN (False Negative) represent the data that was 
346 incorrectly predicted. TP indicates the correct prediction of a positive example, TN indicates 
347 the correct prediction of a negative example, FP indicates the incorrect prediction of a 
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348 positive example, and FN indicates the incorrect prediction of a negative example.
349
350 The criteria for accuracy, precision, recall, and F1-score are calculated as follows: accuracy 
351 (ACC) is determined by (TP+TN)/(TP+TN+FP+FN), representing the percentage of correct 
352 predictions in the total sample; precision (P) is calculated as TP/(TP + FP), indicating the 
353 percentage of correctly predicted results in the total sample; recall (R) is TP/(TP+FN), which 
354 represents the percentage of correctly predicted results in the total sample. Since precision 
355 and recall are conflicting measures, the F1-score (F1) is introduced as 2PR/(P+R) to better 
356 evaluate the performance of the representation learner in terms of precision and recall. The 
357 closer the F1-score is to 1, the better the classification effect.
358 For multi-classification problems (taking three-classification as an example), the confusion 
359 matrix can be represented as Table 3. The evaluation indices are calculated as follows: 
360 ACC = (T00+T11+T22)/(T00+T11+T22+F01+F02+F10+F12+F20+F21); 
361 P0 = T00 / (T00 + F10 + F20), P1 = T11 / (F01 + T11 + F21), P2 = T22 / (F02 + F12 + T22), 
362 and P = (P0 + P1 + P2) / 3. Similarly, R0 = T00 / (T00 + F01 + F02), R1 = T11 / (F10 + T11 
363 + F12), R2 = T22 / (F20 + F21 + T22), and R = (R0 + R1 + R2) / 3. Finally, F1-score (F1) is 
364 calculated as 2PR/(P+R). The same calculations apply for other multi-class problems.
365
366
367
368
369 4.3 Experimental results and analysis
370
371 In this section, we conducted performance evaluations on the data set presented in Section 
372 3.1.1. To ensure a fair evaluation of the models, we adopted the soft voting method for the 
373 final classification assessment. Our proposed models were compared with five traditional 
374 feature selection methods: mutual information (MI), F test (f_classif), ReliefF, SURF, and 
375 SURF*. First, we compared the impact of Spearman's dimensionality reduction. Table 4 
376 displays the number of features before and after dimensionality reduction for different 
377 datasets. We focused on evaluating Spearman's optimization of dimensionality reduction 
378 using the jaffe dataset as an example. The evaluation metrics used were confusion matrix, 
379 accuracy, precision, recall, F1 score, and running time. Figures 5 and 6 depict the confusion 
380 matrix before and after dimensionality reduction. The experimental results are presented in 
381 Tables 5 and 6, which respectively display the evaluation metrics for different feature 
382 selection methods on the jaffe dataset before and after dimensionality reduction. Table 7 
383 shows the improvement in various metrics after dimensionality reduction, comparing the 
384 results with and without dimensionality reduction for different feature selection methods. 
385 Next, we compared the accuracy, recall rate, and F1 score of the five traditional feature 
386 selection methods after Spearman's dimensionality reduction and EFS-GINI on the 
387 aforementioned eight datasets. The results of our experiments on these models are presented 
388 in line charts in Figures 7 to 10. Lastly, we assessed the improvement of EFS-GINI on various 
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509 ReliefF, SURF, and SURF*, for parallel feature selection, resulting in four feature subsets. 
510 Furthermore, we applied the Gini coefficient-based combinator for further feature selection. 
511 Features selected by all four base selectors were directly added to the feature subset, while 
512 features with high Gini coefficients were also included. Finally, a decision tree, naive Bayes, 
513 SVM, KNN, and random forest were used for soft voting in the final classifier, facilitating 
514 multi-classification and prediction verification. To demonstrate the effectiveness of the 
515 proposed algorithm, we conducted experiments on eight high-dimensional datasets, 
516 containing a range of 600 to 6000 features. Experimental results show that our proposed 
517 method EFS-GINI effectively exhibits superior performance in high-dimensional multi-
518 classification datasets compared to traditional feature selection methods in terms of accuracy, 
519 precision, recall, and F1 score. Moreover,  to reveal the biological significance of the 
520 proposed algorithm, we apply EFS-GINI on GSE40435 dataset, the experimental results 
521 demonstrate that the gene expression signature of m5c modification regulators possesses great 
522 potential for KIRC prognosis prediction. Our study offers additional evidence for further research 
523 regarding m5c RNA modification in KIRC. However, further experimental and clinical 
524 exploration are necessary to confirm these finding.
525
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Figure 1 Overall framework of EFS-GINI 2 

 3 
Figure 2 The classifier structure 4 

 5 

 6 
 7 

Figure 3 Relief, ReliefF, SURF, SURF* Neighbor selection difference[19]8 
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 10 
Figure 4 Example voting method 11 

 12 

Figure 5 Confusion matrix of different feature selection methods on the jaffe dataset (before 13 
Spearman dimensionality reduction) 14 

 15 
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 16 

Figure 6 Confusion matrix of different feature selection methods on jaffe dataset (after Spearman 17 
dimensionality reduction) 18 

 19 

 20 
 21 

Figure 7 Line chart of accuracy of different feature selection methods on different datasets 22 
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 24 
Figure 8 Line chart of accuracy rate of different feature selection methods on different datasets 25 

 26 
 27 

 28 
Figure 9 Line chart of exact rate of different feature selection methods on different datasets 29 
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 31 
Figure 10 Line chart of F1 score on different data with different feature selection methods 32 
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(a)  

(b) 

Figure 13. The difference in clinicopathological features and overall survival between cluster 1 and 46 
cluster 2.(a) Heatmap and clinicopathological characteristics of these two clusters. Green represents 47 
low expression and red represents high expression. *p < 0.05, * *p < 0.01, ***p < 0.001; (b) 48 
Comparison of overall survival (OS) between cluster 1 and cluster 2. 49 

 50 
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(e) 

Figure 14. Gene ontology (GO) analyses, Kyoto Encyclopedia of Genes and Genomes (KEEG) 51 
analyses, and Gene Set Enrichment Analysis (GSEA) differentially expressed genes between two 52 
clusters. Function annotation on differently expressed genes in cluster 1 and cluster 2 using GO terms 53 
(Figure 14A-B)�È  KEGG pathway (Figure 14C-D), and GSEA(Figure 14E). (a) GO analysis; (b) GO  54 
analysis;(c) KEGG analysis;(d) KEGG analysis;(e) GSEA analysis. 55 
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(f) 

Figure 15. M5C Related Genes Immune Infiltration Analysis.(a) Difference analysis of StromalScore�È57 
ImmuneScore ESTIMATEScore between cluster 1 and cluster 2. (ns, no significance, *p < 0.05, * *p 58 
< 0.01, ***p < 0.001);(b) Difference analysis of TumorPurity between cluster 1 and cluster 2. (ns, no 59 
significance, *p < 0.05, * *p < 0.01, ***p < 0.001);(c) Association between m5C regulators and 60 
StromalScor�È  ImmuneScore, ESTIMATEScore, TumorPurity;(d) The proportion of 22 kinds of 61 
immune cells in tumor tissues; (e) The difference between cluster 1 and 2 through CIBERSORT.(ns, 62 
no significance,*p < 0.05,* *p < 0.01,***p < 0.001);(f) Difference analysis of immune cell infiltration 63 
in cluster 1 and 2 through ssGSEA. (ns , no significance, *p < 0.05, * *p < 0.01, ***p < 0.001). 64 

 65 
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(c) 

Figure 16. Identify a Prognostic Risk Model in KIRC.(a) Univariate Cox regression analysis of the 66 
m5C RNA methylation regulators;(b-c) The coefficients and variable selection using the LASSO 67 
model.  68 

 69 

  
(a) (b) 
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(c) 

Figure 17. Relationship between the risk score and the OS, besides clinicopathological features of 70 
KIRC. (a) Kaplan-Meier OS curves for patients in the high- and low-risk groups based on the risk 71 
score. the survival probability of the low-risk group is higher than the high-risk group (p �Ø0.001);(b) 72 
Relationship between the risk score and the clinicopathological features. The heatmap showed the 73 
expression levels of the six m5C RNA methylation regulators in low- and high-risk KIRC patients. It 74 
also indicated that the risk score was closely correlated to stage, grade, T status, N status, M status, 75 
and fustat of KIRC patients; (c) ROC curves showed the predictive efficiency of the risk signature. 76 
The 1-, 3-, and 5-year AUCs were 0.749, 0.719, and 0.712, respectively. 77 
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1 Table 1 High-dimensional data set used in the experiment

Name Sample number Number of features Number of Categories

COIL20 1440 4430 20

jaffe 213 676 10

lung 203 3312 5

ORL 400 1024 40

warpPIE10P 210 2420 10

Prostate_GE 102 5966 2

TOX_171 171 5748 4

Isolet 1560 617 26

2

3 Table 2 Model prediction confounding matrix

Predicted results
Real situation

Positive example Counterexample

Positive example
True Positive example 

TP

False Counter 

example TP

Counter example False positive 

example FP

True Counter example 

TN

4

5 Table 3 Models predict confusion matrices

Predicted results
Real situation

Category 0 Category 1 Category 2

Category 0 T00 F01 F02

Category 1 F10 T11 F12

Category 2 F20 F21 T22

6
7

8 Table 4 Number of features before and after dimensionality reduction for different datasets

Number of 
Features

jaffe warpPIE10P COIL20 Isolet
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Before 676 2420 1024 617

After 238 277 119 337

Number of 

Features
lung ORL TOX_171 Prostate_GE

Before 3312 1024 5748 5966

After 3170 405 5635 4818

9

10 Table 5 Effects of different feature selection methods on the jaffe dataset (before Spearman 
11 dimensionality reduction)

Method accuracy(%) precision(%) recall(%) f1score runtime(s)

MI 70.16 73.19 71.05 0.73 5.29

F_filter 60.85 65.94 57.55 0.61 0.01

reliefF 45.16 59.70 43.26 0.53 50.94

SURF 78.68 76.87 78.09 0.77 21.08

SURFstar 73.64 75.14 73.38 0.74 47.09

EFS-GINI 88.37 89.01 88.50 0.89 4.81

12

13 Table 6 Effects of different feature selection methods on the jaffe dataset (after Spearman 
14 dimensionality reduction)

Method accuracy(%) precision(%) recall(%) f1score runtime(s)

MI 83.33 85.74 83.01 0.84 2.15

F_filter 73.26 78.95 73.78 0.76 0.003

reliefF 69.77 73.88 68.66 0.71 17.56

SURF 85.66 87.47 86.09 0.87 8.99

SURFstar 79.46 82.26 81.10 0.82 18.78

EFS-GINI 93.02 92.9 93 0.93 3.30
15
16

17 Table 7 Enhancement effect of Spearman dimensionality reduction on feature selection

Method accuracy precision recall f1score runtime
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MI 13.51% 16.22% 13.70% 14.94% -59.42%

F_filter 19.67% 19.70% 29.82% 24.93% -62.50%

reliefF 48.94% 15.63% 53.33% 35.14% -65.53%

SURF 10.26% 14.29% 3.85% 8.85% -57.35%

SURFstar 8.22% 9.33% 10.96% 10.15% -60.12%

EFS-GINI 1.10% 15.97% 26.65% 21.30% -31.50%

18
19

20 Table 8 Improvement of EFS-GINI compared with traditional feature selection methods

Method accuracy precision recall f1score runtime(s)

MI 7.21% 4.27% 8.11% 6.18% 1.15

F_filter 21.95% 13.24% 21.63% 17.43% 3.29

reliefF 28.05% 21.01% 30.70% 25.85% -14.26

SURF 4.30% 2.21% 4.24% 3.22% -5.69

SURFstar 12.43% 8.68% 10.65% 9.66% -15.48

21
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