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ABSTRACT
Feature selection plays a crucial role in classification tasks as part of the data
preprocessing process. Effective feature selection can improve the robustness and
interpretability of learning algorithms, and accelerate model learning. However,
traditional statistical methods for feature selection are no longer practical in the context
of high-dimensional data due to the computationally complex. Ensemble learning,
a prominent learning method in machine learning, has demonstrated exceptional
performance, particularly in classification problems. To address the issue, we propose a
three-stage feature selection algorithm framework for high-dimensional data based on
ensemble learning (EFS-GINI). Firstly, highly linearly correlated features are eliminated
using the Spearman coefficient. Then, a feature selector based on the F-test is employed
for the first stage selection. For the second stage, four feature subsets are formed using
mutual information (MI), ReliefF, SURF, and SURF* filters in parallel. The third stage
involves feature selection using a combinator based on GINI coefficient. Finally, a
soft voting approach is proposed to employ for classification, including decision tree,
naive Bayes, support vector machine (SVM), k-nearest neighbors (KNN) and random
forest classifiers. To demonstrate the effectiveness and efficiency of the proposed
algorithm, eight high-dimensional datasets are used and five feature selection methods
are employed to compare with our proposed algorithm. Experimental results show that
our method effectively enhances the accuracy and speed of feature selection. Moreover,
to explore the biological significance of the proposed algorithm, we apply it on the
renal cell carcinoma dataset GSE40435 from the Gene Expression Omnibus database.
Two feature genes, NOP2 and NSUN5, are selected by our proposed algorithm. They
are directly involved in regulating m5c RNA modification, which reveals the biological
importance of EFS-GINI. Through bioinformatics analysis, we shows that m5C-related
genes play an important role in the occurrence and progression of renal cell carcinoma,
and are expected to become an important marker to predict the prognosis of patients.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning, Data
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INTRODUCTION
Feature selection is a crucial process in machine learning and pattern recognition, aimed
at selecting a subset of features from a large feature space. The main objectives of feature
selection are to enhance the prediction accuracy, eliminate the redundant features, and
reduce the time consumption (Wang, 2011; Wang et al., 2022; Jiang et al., 2022). The filter
feature selectionmethod is utilized to select a subset of features from high-dimensional data
sets without relying on a learning algorithm.While this method is generally quicker, it does
not guarantee classifier accuracy. On the other hand, the Wrapper method incorporates
a learning algorithm in the classification process to evaluate the accuracy of the selected
feature subset. Embeddedmethods, however, perform feature selection during training and
learn the algorithm for the application. Nevertheless, the wrapper and embedded methods
incur higher costs compared to the filter method. Due to the limitations of the learning
algorithm, their generalization performance is typically lower.

However, those feature selection methods have several main issues. Firstly, most of
these methods do not consider redundancy between selected features. Secondly, a single
filter-based approach may introduce bias against the selected subset of features. Lastly,
inconsistent prediction accuracy can be observed during classification. According to
Rodriguez et al. (2007), the performance of classification models can be enhanced by
eliminating irrelevant and redundant features from the original dataset. Different feature
selection algorithms may select different subsets of features for a given dataset, resulting
in varying precision. Therefore, integrating feature selection methods can improve
classification accuracy by selecting a stable feature set. When designing integration-
based feature selection methods, it is crucial to consider diversity and accuracy (Wang,
Khoshgoftaar & Napolitano, 2012; Guo & Zhou, 2019).

In recent years, machine learning methods have gained widespread attention for
feature selection. Ensemble learning, a significant learning approach in machine learning,
has demonstrated excellent performance, particularly in classification problems. Ensemble
learning involves usingmultiple base learners to learn and integrate their predictive outputs
on input samples (Cao et al., 2020; Hou et al., 2023). Commonly used ensemble methods
include the mean value method, voting method, and learning method. When applied to
feature selection, ensemble learning not only integrates multiple models but also obtains
various feature subsets. It comprehensively measures features from different perspectives,
improving feature availability and effectiveness. It avoids the negative impact of a single
result on the model, thereby enhancing model accuracy. Integrated feature selection
methods can be classified into homogeneous integration and heterogeneous integration
based on the same training data and base learner. Numerous studies have demonstrated that
integrated feature selection methods can enhance the model’s generalization performance
and training speed.

For instance, Zhou & Guo (2021) introduced a two-stage feature learning method based
on the relative classification information entropy and mutual information entropy, which
greatly enhances the efficiency and accuracy of processing high-dimensional data compared
to the bagging method. Li (2018) presented an integrated feature selection approach that
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combines softmax function weighting mechanism, genetic algorithm, and particle swarm
algorithm. This study demonstrated the advantages of these three methods in terms of
accuracy and efficiency. Fengshun et al. (2019) developed a novel CatBoost algorithm by
addressing nominal attribute issues within the GBDT framework. They conducted feature
selection through IV value analysis, effectively reducing overfitting and achieving promising
results in predicting diabetic patients. Xu & Shen (2021) proposed a multi-classification
detectionmethod formalicious programs based on theXGBoost and Stacking fusionmodel.
The authors utilized Bayesianmethods to optimize parameters and employed regularization
to overcome overfitting problems. Wang, Yue & Chen (2018) put forth a feature selection
integration method based on the Analytic Hierarchy Process (AHP). This approach
integrates various feature selections into a consistent feature selection process, considering
multiple criteria of feature identifiability and independence. The study demonstrated
the effectiveness of this method in symbolic data classification. Kiziloz & Deniz (2020)
introduced a dynamic multi-objective selection model that searches for the optimal set of
five classifiers to extract the most representative feature subset. Experimental results on 12
datasets revealed that this method outperforms AdaBoost and Gradient Boosting. Joodaki,
Bagher Dowlatshahi & Joodaki (2022) proposed an integrated feature selection method
based on fuzzy type I-EFSF. This approach applies three different individual feature
selection methods to determine feature grades, while using type I fuzzy to handle feature
selection uncertainty and reduce noise, thereby improving accuracy, precision, and recall
rates. Miri, Dowlatshahi & Hashemi (2022) presented an integrated multi-label feature
selection method called GMA, based on geometric mean aggregation of text datasets. This
method utilizes four different structures of multi-label feature selection algorithms and
has demonstrated excellent results on high-dimensional text data. Lastly, Hoque, Singh &
Bhattacharyya (2018) proposed an integrated feature selection method based on mutual
information. This method integrates feature subsets from multiple filter feature selectors
and reduces feature redundancy by considering feature-feature and feature-class mutual
information. It has achieved impressive results on high-dimensional datasets.

However, most of the datasets used in the aforementioned methods are characterized
by low dimensionality. When dealing with high-dimensional data, those feature selection
methods often encounter a ‘‘dimensional disaster’’ issue. This arises due to the excessive
number of features compared to the limited number of available samples, resulting in
poor generalization ability of the feature selection model (Iffat & Smith, 2009; Guyon &
Elisseeff, 2003). Furthermore, it is important to note that an improved feature selection
effect is often accompanied by reduced selection efficiency and generalization ability, while
enhancing selection efficiency may lead to a loss of precision. Hence, there exists a need to
design an algorithm that can achieve high accuracy while maintaining low time and energy
consumption when handling high-dimensional data.

To address the problem of feature selection methods for high-dimensional datasets,
we propose a three-stage integrated feature selection framework. In the first stage, the
Spearman correlation coefficient is utilized for correlation analysis as a data pre-processing
step to eliminate highly linear correlated redundant features and reduce the computational
time for subsequent feature selection. Then, the f_classif method is employed for the initial
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Figure 1 The overall framework of EFS-GINI.
Full-size DOI: 10.7717/peerjcs.1768/fig-1

feature selection, while the MI, ReliefF, SURF, and SURF* filters are processed in parallel to
generate four feature subsets for the second stage of selection. Finally, a combinator based
on the Gini coefficient is utilized for further screening to obtain the final feature subset.
The performance evaluation is conducted using decision tree, naive Bayes, support vector
machine (SVM), k-nearest neighbors (KNN), and random forest classifiers through soft
voting for classification. Experimental results demonstrate that the proposed method can
enhance both the accuracy and efficiency of feature selection for high-dimensional data
compared to traditional approaches.

METHODS
In this section, we propose an integrated feature selection algorithm framework called
EFS-GINI and explain each component of the algorithm. This algorithm exhibits strong
generality, low complexity, and multiple base selectors to avoid local optimality caused by
a single feature selector (Chandrashekar & Sahin, 2014; Khaire & Dhanalakshmi, 2022).

The proposed algorithm framework is depicted in Figs. 1 and 2. Firstly, data
preprocessing is conducted, which involves removing highly linearly correlated features
using the Spearman coefficient and standardization. Next, a feature selector based on F-test
is employed for the initial stage of feature selection. In the second stage, parallel feature
selection is performed using feature filters like MI, ReliefF, SURF, and SURF* to generate
four feature subsets. Finally, a combinator based on the GINI coefficient is employed for the
third stage of feature selection. The final classifier utilizes decision tree, naive Bayes, SVM,
KNN, and random forest algorithms for soft voting in multi-classification and prediction
verification.
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Figure 2 The structure of the classifier.
Full-size DOI: 10.7717/peerjcs.1768/fig-2

Data preprocessing
Spearman correlation analysis
Since the initial dimensionality of the dataset was excessively high, we adopted Spearman
correlation analysis, taking into consideration the subsequent feature selection’s time
complexity. The Spearman rank correlation is a non-parametric test utilized to measure
the level of correlation between two variables. The correlation coefficient ranges from
−1 to 1. Values closer to 1 indicate a stronger correlation between the variables. Unlike
Pearson correlation coefficient, Spearman correlation does not rely on the assumption
of continuous level data (intervals or ratios), as it employs grades instead. Additionally,
Spearman correlation does not assume a normal distribution for the variables (Siying,
2019). The formula for Spearman correlation is as follows:

rs= 1−
6
∑n

i=1d
2
i

n
(
n2−1

) (1)

where i represents the difference in ranks for each pair of data, and n is the total number
of observed samples. In our study, a correlation threshold of 0.9 was set, and features with
high correlation were identified by calculating the Spearman correlation matrix.

Standardized data
Tomitigate the adverse effects of excessive differences in data dimension levels and enhance
model accuracy and convergence speed, this study employs data standardization as a
preliminary data preprocessing step, scaling the data to the range [−1, 1]. In contrast to data
normalization, the standardized operation does not alter the data distribution, rendering
it suitable for scenarios where distance-based similarity measurement is applicable. The
transformation formula for standardization is as follows:

x
′

=
x−µ
σ

(2)

where µ represents the mean and σ denotes the standard deviation.
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Feature selector based on F-test
An F-test is a statistical method based on analysis of variance that compares variance
differences between two or more samples. In the context of feature selection, the F-test is
employed to assess the importance of each feature by comparing the variance differences
between the response variable and each feature.

The steps involved in conducting an F-test are as follows:
(1) Calculate the variance (SS) and mean (MS) between each feature and the response

variable.
(2) Compute the variance (SST) and mean (MST) of the population.
(3) Calculate the F statistic, which is the ratio of SS/MS to SST/MST.
(4) Determine the critical value of the F statistic using the F distribution table.
(5) If the computed F statistic exceeds the critical value, it indicates a significant variance

difference between the feature and the response variable, thereby identifying the feature
as important.
A higher F value or F statistic signifies a larger variance difference between the feature

and the response variable, indicating greater importance of the feature in predicting the
response variable.

In this study, the feature selector based on the F-test exhibitsmuch faster feature selection
times (at the millisecond level) compared to the other four feature selectors (at the second
level). Therefore, it is deemed appropriate to utilize the F-test-based feature selector in the
initial stage.

Parallel feature selector
We employ both a ranking-based feature selectionmethod (usingMutual Information) and
three search strategy-based feature selection methods (ReliefF, SURF, SURF* (Urbanowicz
et al., 2018)) to perform parallel feature selection on the preprocessed data.

Mutual information
Mutual information is a widely used criterion for feature selection in data filtering. In the
field of information theory, mutual information I(X;Y) quantifies the uncertainty in X that
is reduced by knowing Y. Mathematically, mutual information is defined as follows:

I (X ;Y )=
∑
x,y

p
(
x,y

)
log2

p
(
x,y

)
p(x)p

(
y
) . (3)

Here, P(x,y) represents the joint probability distribution function of variables X and Y,
while P(x) and P(y) denote the marginal probability distribution functions of X and Y,
respectively. We can also express mutual information as:

I (X ;Y )=H (X)−H (X |Y ). (4)

Here, H(X) represents the marginal entropy of X, and H(X|Y) represents the conditional
entropy of X given Y. Joint entropy, H(X;Y), quantifies the total uncertainty in both X and
Y. If H(X) represents the uncertainty of a random variable X, then H(X|Y) measures the
amount of uncertainty in X that remains after knowing Y, i.e., the information provided
by one variable to another.
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Marginal entropy refers to the entropy associated with the marginal distribution of a
random variable X. If the marginal distribution is denoted as P(X), the marginal entropy
is defined as:

H (X)=
∑
i

P (xi)log2
1

P (xi)
. (5)

In the case of discrete random variables X and Y, the conditional entropy H(Y|X) is
defined as follows, considering the joint probability distribution P(x, y) and conditional
probability distribution P(y|x):

H (Y |X)=−
∑
x∈X

∑
y∈Y

P
(
x,y

)
log2P

(
y|x
)
. (6)

ReliefF
Relief is a feature selection method that is typically used for binary targets. ReliefF, on
the other hand, extends Relief to accommodate multiple types of targets, making it a
relief-based regression method.

SURF (Spatially Uiform ReliefF)
The SURF algorithm is a variation of the ReliefF algorithm. In ReliefF, a fixed number of
closest neighbors are considered, whereas SURF considers all neighbors within a predefined
distance from an individual (Junwei, 2016). This distance is known as the similarity
threshold T. Thus, SURF selects neighbors that are more similar to the individual than the
T threshold. In contrast, ReliefF may utilize a different number of neighbors, potentially
overlooking individuals who provide useful information or including individuals who
are not informative. Furthermore, SURF incorporates a precomputation of distances,
eliminating the need for a user-defined parameter k in the algorithm. This simplification
does not compromise the complexity of the algorithm. Additionally, SURF demonstrates a
higher success rate in estimating a similarity threshold from the data compared to ReliefF.

SURF*
The SURF* algorithm is an extension of the SURF algorithm, incorporating the concept
of instances that are either closer or farther away from the target. In contrast to SURF,
SURF* introduces a T-threshold to determine the proximity of instances. Instances within
this threshold are considered close, while those outside are regarded as far away. Notably,
SURF* assigns different weights to ‘‘far’’ and ‘‘near’’ cases. Specifically, the difference
in eigenvalues for hits is positively weighted (+1), whereas the difference in eigenvalues
for misses is negatively weighted (−1). Moreover, we summarize the neighbor selection
difference among Relief, ReliefF, SURF, SURF* in Fig. 3.

Feature combiner based on Gini coefficient
The Gini Index is a measure of feature importance, derived from the Classification and
Regression Tree (CART) method (Lewis, 2000; Tangirala, 2020). In the CART algorithm,
feature importance is calculated based on purity enhancement. At each node, the purity

Xin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1768 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1768


Figure 3 The difference of the neighbor selection between Relief, ReliefF, SURF, and SURF*.
Full-size DOI: 10.7717/peerjcs.1768/fig-3

boost of each feature is calculated, and the feature with the highest boost is selected for
node splitting. For classification trees in CART, the GINI value is used for node splitting.
A lower GINI value indicates a purer node set and reduces the probability of misclassifying
selected samples in the set (Erhu, 2019). Specifically, the Gini coefficient for a sample is
defined as:

Gini(D)= 1−
N∑
k=1

P2
k (7)

where Pk is the proportion of the Kth sample category.
Let’s consider a node t, where feature j is chosen for splitting, dividing the dataset D into

subsets D1 and D2. The Gini coefficient after splitting with feature j can be calculated as:

Gini
(
D,j

)
=
|D1|

|D|
Gini(D1)+

|D2|

|D|
Gini(D2). (8)

The purity boost of feature j is defined as:

Gain
(
j
)
=Gini(D)−Gini

(
D,j

)
. (9)

After constructing the decision tree, the importance scores of all features are normalized
to have a sum of 1 for comparison. The Gini importance score for feature j is given by:

importance
(
j
)
=

Gai
(
j
)∑m

j=1Gain
(
j
) . (10)
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It is important to note that for handling continuous values, the CART and C4.5
algorithms both discretize continuous features. For multi-classification problems,
the CART classification tree adopts the idea of continuously dichotomizing discrete
features (Bo, 2018).

Algorithm 1 provides the complete steps of the feature combinator, which can be divided
into the following three steps:

First, add the selected features from subsets S1, S2, S3, and S4 of size k to the feature
subset F for final selection. The remaining unselected features form the subset D, selected
by the combinator.

Second, construct a CART decision tree and calculate the Gini importance of each
feature in D as an evaluation index.

Third, select the k-len(F) features with the highest Gini importance and combine them
with F to form the final feature subset.

Algorithm 1 GINI-Select algorithm
Input: feature subsets S1, S2, S3, S4, number of features to be selected k
Output: Optimal feature subset F
1: Initializes the optimal feature collection as F←∅
2: D←Initializes the feature subset to be selected as∅
3: j← 0
4: while j ≤k do
5: ({S1[j]}=S2[j}=S3[j]}=S4[j]}}) then
6: F← F

⋃
{S1 [j}

7: else
8: D←D{S1[j]}
9: end if
10: end
11: gini_importance[{D}]=0
12: Build CART decision tree based on data set D
13: Calculate the Gini importance of each feature D[i] in D gini_importance[i]
14: Select the former k-len(D) feature with the greatest Gini importance as f
15: F← F

⋃
f

16: return optimal subset F

Soft voting-based classifiers
Voting is a widely used combination strategy in ensemble learning, wherein multiple
learners participate in a classification problem and each model’s prediction is considered
as a single ’’vote’’. The final prediction result is determined by the majority vote among
the models. In other words, a statistical analysis is conducted on the classification results
of K learners, and the class with the highest frequency is chosen as the predicted class. The
voting method can be categorized into hard voting and soft voting based on the voting
strategies employed. An example of the voting method is shown in Fig. 4.
(1) Hard Voting Mechanism
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Figure 4 The voting method.
Full-size DOI: 10.7717/peerjcs.1768/fig-4

A ‘‘majority by majority’’ approach is employed to select the classification results based
on the prediction of each model.

(2) Soft voting
The classification rates generated by all classifiers are averaged and selected in this study.

The classifier employed in this research is a soft voting classifier, which combines several
individual classifiers including decision tree, naive Bayes, support vectormachine (SVM), k-
nearest neighbors (KNN), and random forest. This ensemble approach effectively mitigates
the errors introduced by a single classifier, thereby enhancing the overall classification
performance.

EXPERIMENT AND RESULTS
Dataset
The data set used in this experiment is a high-dimensional multi-class data set, which are
shown in Table 1. The COIL20 dataset is a commonly used image recognition dataset,
consisting of 20 objects, each represented by 72 images taken from different angles. Each
image in the dataset is converted to a grayscale image of size 128 × 128. The ORL dataset
is a classic face image dataset containing 400 grayscale face images of 40 individuals,
with each person having 10 face images captured in different poses. The images in this
dataset have a size of 92× 112 pixels. The warpPIE10P dataset is a face recognition dataset
that comprises 4,000 images from 600 individuals, exhibiting different facial expressions,
lighting conditions, occlusions, and facial poses. The images in this dataset are of size
32 × 32 pixels and have been feature extracted using PCA, resulting in 4,096 features.
The Prostate_GE dataset is a gene expression dataset used to predict the tumor grade of
prostate cancer (Gleason Score). Each sample in the dataset represents a specific gene
expression profile in normal, precancerous, and cancerous tissues. The jaffe dataset is
a facial expression database consisting of 213 grayscale images of Japanese women. Each
image in the dataset has a size of 256× 256 pixels and exhibits very uniform expressions and
postures. The lung dataset is a biological dataset comprising CT images of the lungs along
with corresponding annotated data. The TOX_171 dataset is a compound toxicity dataset
containing 171 molecules and 12 bioactivity indicators. The Isolet dataset is specifically
designed for speech recognition tasks and includes randomized English word sounds. Each
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Table 1 High-dimensional data set used in the experiment.

Name Sample
number

Number of
features

Number of
categories

COIL20 1440 4430 20
jaffe 213 676 10
lung 203 3312 5
ORL 400 1024 40
warpPIE10P 210 2420 10
Prostate_GE 102 5966 2
TOX_171 171 5748 4
Isolet 1560 617 26

instance in the dataset is represented by 617 features, including 13 linear predictive coding
(LPC) coefficients and 13 Mel frequency cepstrum coefficients (MFCC) per frame, as well
as fundamental frequency and energy per frame. Detailed information about these datasets
can be found at https://jundongl.github.io/scikit-feature/datasets.html.

Evaluation criteria
In this experiment, we employed various feature selection methods including F-test,
MI, ReliefF, SURF, SURF*, and EFS-GINI to conduct a comprehensive control study.
Specifically, we selected the top 1% features from the aforementioned datasets.

Accuracy, precision, recall, F1-score (f1_score), and confusion matrix are commonly
used evaluation indicators in machine learning. In our study, we set the proportion of the
training set and the test set is 60:40 (Arusada, Putri & Alamsyah, 2017).

For binary classification, we present the model’s prediction confusion matrix in Table 2.
In this table, TP (true positive) and TN (true negative) represent the data that was correctly
predicted, while FP (false positive) and FN (false negative) represent the data that was
incorrectly predicted. TP indicates the correct prediction of a positive example, TN
indicates the correct prediction of a negative example, FP indicates the incorrect prediction
of a positive example, and FN indicates the incorrect prediction of a negative example.
The criteria for accuracy, precision, recall, and F1-score are calculated as follows: accuracy
(ACC) is determined by (TP+TN)/(TP+TN+FP+FN), representing the percentage of
correct predictions in the total sample; precision (P) is calculated as TP/(TP + FP),
indicating the percentage of correctly predicted results in the total sample; recall (R) is
TP/(TP +FN), which represents the percentage of correctly predicted results in the total
sample. Since precision and recall are conflicting measures, the F1-score (F1) is introduced
as 2PR/(P+R) to better evaluate the performance of the representation learner in terms
of precision and recall. The closer the F1-score is to 1, the better the classification effect.
For the multi-class classification, ACC and F1 can also be calculated using the confusion
matrix.

Experimental environment and parameter settings
The experimental environment of the proposed methods EFS-GINI and the parameter
settings in different methods are summarized in Tables 3 and 4 respectively.
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Table 2 Model prediction confounding matrix.

Real situation Predicted results

Positive example Counterexample

Positive example True Positive example TP False Counter example TP
Counter example False positive example FP True Counter example TN

Table 3 The experimental environment of EFS-GINI.

Experimental environment Environment configuration

Operating system Windows 10 64-bit, based on an x64 processor
CPU Intel® Core™ i5-8265U 1.60 GHz
RAM 8G
Programming language and version Python
Programming environment Jupyter Notebook (Anaconda)

Table 4 The parameter settings of different methods.

Parameter in different methods Setting

Threshold of Spearman 0.9
relifF n_neighbors= 20
Random forest classifier n_estimators= 100
SVC Probability=True
precision_score Average= ’macro’
recall_score Average= ‘macro’
Voting classifier Voting= ’soft’

Experimental results and analysis
In this section, we conducted performance evaluations on the data set presented in the
‘Dataset’ section. To ensure a fair evaluation of the models, we adopted the soft voting
method for the final classification assessment. Our proposed models were compared with
five traditional feature selection methods: mutual information (MI), F test (f_classif),
ReliefF, SURF, and SURF*. First, we compared the impact of Spearman’s dimensionality
reduction. Table 5 displays the number of features before and after dimensionality
reduction for different datasets. We focused on evaluating Spearman’s optimization
of dimensionality reduction using the jaffe dataset as an example. The evaluation metrics
used were confusion matrix, accuracy, precision, recall, F1-score, and running time.
Figures 5 and 6 depict the confusion matrix before and after dimensionality reduction.
The experimental results are presented in Tables 6 and 7, which respectively display the
evaluation metrics for different feature selection methods on the jaffe dataset before
and after dimensionality reduction. Table 8 shows the improvement in various metrics
after dimensionality reduction, comparing the results with and without dimensionality
reduction for different feature selection methods. Next, we compared the accuracy, recall
rate, and F1-score of the five traditional feature selection methods after Spearman’s
dimensionality reduction and EFS-GINI on the aforementioned eight datasets. The results
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Table 5 Number of features before and after dimensionality reduction for different datasets.

Number of features jaffe warpPIE10P COIL20 Isolet

Before 676 2420 1024 617
After 238 277 119 337
Number of features lung ORL TOX_171 Prostate_GE
Before 3312 1024 5748 5966
After 3170 405 5635 4818

Figure 5 Confusionmatrix of different feature selection methods on the jaffe dataset (before Spear-
man dimensionality reduction).

Full-size DOI: 10.7717/peerjcs.1768/fig-5

Table 6 Effects of different feature selection methods on the jaffe dataset (before Spearman dimen-
sionality reduction).

Method Accuracy(%) Precision(%) Recall(%) F1-score Runtime(s)

MI 70.16 73.19 71.05 0.73 5.29
F_filter 60.85 65.94 57.55 0.61 0.01
reliefF 45.16 59.70 43.26 0.53 50.94
SURF 78.68 76.87 78.09 0.77 21.08
SURFstar 73.64 75.14 73.38 0.74 47.09
EFS-GINI 88.37 89.01 88.50 0.89 4.81

of our experiments on these models are presented in line charts in Figs. 7, 8, 9 and 10.
Lastly, we assessed the improvement of EFS-GINI on various metrics compared to the five
traditional feature selection methods, as shown in Table 9.

First, we assess the effectiveness of Spearman dimensionality reduction. As shown in
Tables 6, 7 and 8, Spearman dimensionality reduction enhances the average accuracy,
accuracy rate, recall rate, and F1-score of traditional feature selection methods (F test,
mutual information, ReliefF, SURF, SURF*, and ESF-GINI) to varying degrees. Moreover,
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Figure 6 Confusionmatrix of different feature selection methods on jaffe dataset (after Spearman di-
mensionality reduction).

Full-size DOI: 10.7717/peerjcs.1768/fig-6

Table 7 Effects of different feature selection methods on the jaffe dataset (after Spearman dimension-
ality reduction).

Method Accuracy(%) Precision(%) Recall(%) F1-score Runtime(s)

MI 83.33 85.74 83.01 0.84 2.15
F_filter 73.26 78.95 73.78 0.76 0.003
reliefF 69.77 73.88 68.66 0.71 17.56
SURF 85.66 87.47 86.09 0.87 8.99
SURFstar 79.46 82.26 81.10 0.82 18.78
EFS-GINI 93.02 92.9 93 0.93 3.30

Table 8 Enhancement effect of Spearman dimensionality reduction on feature selection.

Method Accuracy Precision Recall F1-score Runtime

MI 13.51% 16.22% 13.70% 14.94% −59.42%

F_filter 19.67% 19.70% 29.82% 24.93% −62.50%

reliefF 48.94% 15.63% 53.33% 35.14% −65.53%

SURF 10.26% 14.29% 3.85% 8.85% −57.35%

SURFstar 8.22% 9.33% 10.96% 10.15% −60.12%

EFS-GINI 1.10% 15.97% 26.65% 21.30% −31.50%

it significantly reduces the running time and improves feature selection efficiency by
eliminating linearly dependent redundant features. The impact of Spearman dimensionality
reduction on the Jaffe dataset can be observed in the confusionmatrices presented in Figs. 5
and 6, where it notably reduces prediction errors.
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Figure 7 Line chart of accuracy of different feature selection methods on different datasets.
Full-size DOI: 10.7717/peerjcs.1768/fig-7

Figure 8 Line chart of accuracy rate of different feature selection methods on different datasets.
Full-size DOI: 10.7717/peerjcs.1768/fig-8

Figure 9 Line chart of exact rate of different feature selection methods on different datasets.
Full-size DOI: 10.7717/peerjcs.1768/fig-9

Next, we evaluate the effectiveness of EFS-GINI in feature selection. The accuracy,
accuracy rate, recall rate, and F1-score line charts demonstrate that EFS-GINI outperforms
the other five methods on most datasets. However, it exhibits limited advantages or
average performance when dealing with datasets with a small number of samples and
classifications, such as lung, Prostate_GE, and TOX_171 datasets. Conversely, EFS-GINI
excels in high-dimensional feature selection with a large sample size. An example from the
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Figure 10 Line chart of F1-score on different data with different feature selection methods.
Full-size DOI: 10.7717/peerjcs.1768/fig-10

Table 9 Improvement of EFS-GINI compared with traditional feature selection methods.

Method Accuracy Precision Recall F1-score Runtime(s)

MI 7.21% 4.27% 8.11% 6.18% 1.15
F_filter 21.95% 13.24% 21.63% 17.43% 3.29

reliefF 28.05% 21.01% 30.70% 25.85% −14.26
SURF 4.30% 2.21% 4.24% 3.22% −5.69

SURFstar 12.43% 8.68% 10.65% 9.66% −15.48

Jaffe dataset shows that EFS-GINI improves accuracy, accuracy rate, recall, and F1-score
compared to the five traditional feature selectionmethods. Furthermore, EFS-GINI exhibits
significantly faster running time compared to ReliefF, SURF, and SURF* methods. Thus,
the advantages of EFS-GINI in high-dimensional datasets are evident.

BIOLOGICAL ANALYSIS
To further elucidate the biological significance of the proposed algorithm, we applied it
to analyze the renal cell carcinoma dataset GSE40435 obtained from the Gene Expression
Omnibus database. By employing our algorithm, we identified a set of genes from
GSE40435, which included CLDN10, PROM2, SLC15A4, PRRG2, REEP6, PFKFB4,
SLC36A2, FAM151A.1, CAV1.1, SPAG4, NSUN5, and NOP2. Notably, NSUN5 and NOP2
have been implicated in the regulation of m5c RNA modification (Nombela, Miguel-López
& Blanco, 2021).

It has been documented that mutations in m5C genes are closely linked to a
range of human diseases, including nervous system disorders, metabolic diseases,
and viral infections (Barciszewska, 2018; Chellamuthu & Gray, 2020; Wnuk et al., 2020).
Furthermore, dysregulation of m5C regulators has been observed in various human
cancers, such as breast, gallbladder, and bladder cancer (Haruehanroengra et al., 2020; Xue
et al., 2020; Dong & Cui, 2020). However, the underlying tumorigenesis mechanism and
prognostic implications of dysregulated m5C-related regulators in KIRC remain poorly
understood.
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Figure 11 The landscape of m5C RNAmethylation regulators in KIRC. (A) Expression levels of 14 m5C
RNA methylation regulators in KIRC. The red is upregulated, and the green is downregulated. * p< 0.05,
** p< 0.01, *** p< 0.001; (B) The vioplot visualizes the differentially expressed 5C RNA methylation reg-
ulators in KIRC. * p< 0.05, ** p< 0.01, *** p< 0.001; (C): Spearman correlation analysis of the 14 m5C
RNA methylation regulators in KIRC; (D) Sankey of the 14 m5C RNA methylation regulators in KIRC.

Full-size DOI: 10.7717/peerjcs.1768/fig-11

In this case study, we utilized The Cancer Genome Atlas (TCGA) datasets to investigate
the expression of m5c genes and their correlation with patient prognosis. Additionally, we
employed consensus clustering to stratify patients into two distinct clusters with markedly
different clinical outcomes. Encouragingly, we discovered that differentially expressed
genes within these subgroups were predominantly enriched in immune-related pathways.
Lastly, we calculated the risk score for each patient using lasso regression and developed a
prognostic risk model for patient survival prediction.

The landscape of m5C RNA methylation regulators in KIRC encompassed a total of
15 related genes. A heatmap analysis clearly demonstrated differential expression of these
m5C-related genes in 539KIRC tissues compared to 72 normal kidney tissues retrieved from
the TCGA dataset (Fig. 11A). Specifically, NOP2, NSUN2, NSUN5, NSUN6, TET2, TET3,
YBX1, ALKBH1, and ALYREF exhibited significant upregulation in mRNA expression
levels, while NSUN3, NSUN4, NSUN7, and TET1 were significantly downregulated in
KIRC tissues (Fig. 11B). Furthermore, Figs. 11C and 11D depicts a correlation analysis
conducted to gain deeper insights into the intrinsic associations between the 15 m5C RNA
modification regulators. This analysis revealed that the correlation between TRDMT1 and
TET1 was the most prominent among these regulators.
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Figure 12 Consistent cluster analysis of KIRC. (A) The correlation between subgroups when cluster
numbers k = 2; (B) Cumulative distribution function (CDF) is displayed for k= 2–9; (C) The relative
change in area under the CDF curve for k= 2–9; (D) Principal component analysis of the RNA-seq data.

Full-size DOI: 10.7717/peerjcs.1768/fig-12

Based on the similarity of the expression of m5C RNA methylation regulators, we
grouped KIRC patients into subgroups. After clustering, k= 2 was found to be the optimal
number, resulting in two distinct and non-overlapping clusters within the KIRC cohort
(Figs. 12A, 12B and 12C). To confirm the validity of our classification, PCA analysis was
conducted, revealing that cluster 1 and cluster 2 did not exhibit clear aggregation (Fig. 12D).

Subsequently, we examined the correlation between the identified subgroups and
survival rates (OS rates), as well as various clinicopathological characteristics, which
included age, gender, stage status, fustat status, T status, M status, and N status. The
analysis revealed significant associations between the KIRC subgroups and the OS rates, as
well as the clinicopathological features, with the exception of age (Figs. 13A and 13B).

Additionally, the gene ontology (GO) analysis results revealed that the upregulated
genes were significantly associated with various malignancy-related processes. These
processes include humoral immune response, B cell receptor signaling pathway, humoral
immune response mediated by circulating immunoglobulin, and immunoglobulin
mediated immune response (Figs. 14A and 14B). The KEGG analysis results revealed
significant enrichment of the upregulated genes in various pathways, including viral
protein interaction with cytokine and cytokine receptor, TGF-beta signaling pathway,
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Figure 13 The difference in clinicopathological features and overall survival between cluster 1 and
cluster 2. (A) Heatmap and clinicopathological characteristics of these two clusters. Green represents low
expression and red represents high expression. * p < 0.05, ** p < 0.01, *** p < 0.001; (B) Comparison of
overall survival (OS) between cluster 1 and cluster 2.

Full-size DOI: 10.7717/peerjcs.1768/fig-13

cytokine-cytokine receptor interaction, and chemokine signaling pathway (Figs. 14C and
14D).

Next, we conducted GSEA analysis on the differentially expressed genes and observed
enrichment of genes associated with multiple immune pathways. These pathways include
adaptive immune response, adaptive immune response based on somatic recombination
of immune receptors utilizing immunoglobulin superfamily domains, humoral immune
response, immune effector process, leukocyte-mediated immunity, and lymphocyte-
mediated immunity (Fig. 14E).

The estimation analysis revealed significant differences in StromalScore, ImmuneScore,
ESTIMATEScore, and TumorPurity between cluster 1 and cluster 2. Specifically, cluster 2
exhibited higher StromalScore, ImmuneScore, and ESTIMATEScore compared to cluster
1, whereas the TumorPurity was lower in cluster 2 as compared to cluster 1 (Figs. 15A
and 15B). Furthermore, Spearman’s correlation analysis indicated that YbX1, NSUN7, and
ESTIMATEScore exhibited the most significant correlation (Fig. 15C).

CIBERSORT analysis revealed that the proportion of 22 different immune cell
populations infiltrating cluster 1 and cluster 2 (shown in Fig. 15D). The proportions
of CD4 memory activated T cells, regulatory T cells (Tregs), M0 macrophages, and M2
macrophages were significantly higher in cluster 2 compared to cluster 1 (Fig. 15E).

The SSGSEA analysis was also conducted to assess the variance in immune cell infiltration
between cluster 1 and cluster 2. There were notable discrepancies observed in the infiltration
of 22 distinct immune cell populations, with higher proportions in cluster 2 compared to
cluster 1. Some examples include activated B cells, activated CD4 T cells, and activated
CD8 T cells (Fig. 15F). These findings suggest that cluster 2 may exhibit a more robust
immune response.
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Figure 14 Gene ontology (GO) analyses, Kyoto Encyclopedia of Genes and Genomes (KEEG) analyses,
and Gene Set Enrichment Analysis (GSEA) differentially expressed genes between two clusters. Func-
tion annotation on differently expressed genes in cluster 1 and cluster 2 using GO terms (Figs. 14A–14B),
KEGG pathway (Figs. 14C–14D), and GSEA (Fig. 14E). (A) GO analysis; (B) GO analysis; (C) KEGG anal-
ysis; (D) KEGG analysis; (E) GSEA analysis.

Full-size DOI: 10.7717/peerjcs.1768/fig-14

In order to investigate the prognostic significance of m5C RNA methylation regulators
in KIRC, we conducted a univariate Cox regression analysis using the expression levels
of these regulators and corresponding clinical survival data. The analysis revealed that
NOP2, NSUN2, NSUN5, and NSUN6 were identified as risky genes (HR > 1, P < 0.05),
while NSUN4, NSUN7, TET2, TRDMT1, and ALKBH1 were identified as protective genes
(HR < 1, p< 0.05) (Fig. 16A). Additionally, we employed LASSO Cox regression analysis
to identify the m5C RNA modification regulators with the strongest prognostic power.
Subsequently, six genes (NSUN4, NSUN5, NSUN6, TET2, and ALKBH1) were selected
to construct a risk signature for calculating the risk score in KIRC patients (Figs. 16B and
16C). The formula for calculating the risk score is as follows: risk score= 0.686 expression
value of NOP2 +0.168 expression value of NSUN5 +0.565 expression value of NSUN6 −
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Figure 15 M5C related genes immune infiltration analysis. (A) Difference analysis of StromalScore, Im-
muneScore, ESTIMATEScore between cluster 1 and cluster 2. (ns, no significance, * p< 0.05, ** p< 0.01,
*** p < 0.001); (B) Difference analysis of TumorPurity between cluster 1 and cluster 2. (ns, no signifi-
cance, * p< 0.05, ** p< 0.01, *** p< 0.001); (C) Association between m5C regulators and StromalScore,
ImmuneScore, ESTIMATEScore, TumorPurity; (D) The proportion of 22 kinds of immune cells in tumor
tissues; (E) The difference between cluster 1 and 2 through CIBERSORT. (ns, no significance,* p< 0.05,**
p< 0.01, *** p< 0.001); (F) Difference analysis of immune cell infiltration in cluster 1 and 2 through ss-
GSEA. (ns , no significance, * p< 0.05, ** p< 0.01, *** p< 0.001).

Full-size DOI: 10.7717/peerjcs.1768/fig-15

0.321 expression value of NSUN4 − 0.463 expression value of TET2 − 0.213 expression
value of ALKBH1. Based on the median cut-off value of the risk score, all patients were
divided into two groups to establish the risk score model.

Survival analysis demonstrated a significantly worse overall survival (OS) rate in patients
with KIRC belonging to the high-risk group (Fig. 17A). A heatmap (Fig. 17B) visualized
the expression levels of six prognostic genes in both the high- and low-risk groups.
The findings indicated a close correlation between the risk score and several clinical
characteristics, including stage, grade, T status, N status, M status, and fustat. Notably,
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Figure 16 Identify a prognostic risk model in KIRC. (A) Univariate Cox regression analysis of the m5C
RNA methylation regulators; (B–C) The coefficients and variable selection using the LASSO model.

Full-size DOI: 10.7717/peerjcs.1768/fig-16

the high-risk group tended to have higher T status and N status. To further evaluate the
predictive ability of the risk score model, we performed a receiver operating characteristic
(ROC) curve analysis. The area under the curve (AUC) values for the 1-, 3-, and 5-year
survival predictions were 0.749, 0.719, and 0.712, respectively, indicating a good predictive
power for survival outcomes (Fig. 17C).

CONCLUSION
In this article, a three-stage integrated learning framework, EFS-GINI, is proposed for
feature selection in high-dimensional multi-classification datasets. Firstly, we performed
data preprocessingwhich involved standardization and removal of highly linearly correlated
features using the Spearman coefficient. Next, we utilized the F test-based feature selector
for the initial stage of selection. Additionally, we employed four feature filters, namely
MI, ReliefF, SURF, and SURF*, for parallel feature selection, resulting in four feature
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Figure 17 Relationship between the risk score and the OS, besides clinicopathological features of
KIRC. (A) Kaplan–Meier OS curves for patients in the high- and low-risk groups based on the risk score.
The survival probability of the low-risk group is higher than the high-risk group (p< 0.001); (B) Relation-
ship between the risk score and the clinicopathological features. The heatmap showed the expression levels
of the six m5C RNA methylation regulators in low- and high-risk KIRC patients. It also indicated that the
risk score was closely correlated to stage, grade, T status, N status, M status, and fustat of KIRC patients;
(C) ROC curves showed the predictive efficiency of the risk signature. The 1-, 3-, and 5-year AUCs were
0.749, 0.719, and 0.712, respectively.

Full-size DOI: 10.7717/peerjcs.1768/fig-17

subsets. Furthermore, we applied the Gini coefficient-based combinator for further feature
selection. Features selected by all four base selectors were directly added to the feature
subset, while features with high Gini coefficients were also included. Finally, a decision
tree, naive Bayes, SVM, KNN, and random forest were used for soft voting in the final
classifier, facilitating multi-classification and prediction verification. To demonstrate
the effectiveness of the proposed algorithm, we conducted experiments on eight high-
dimensional datasets, containing a range of 600 to 6,000 features. Experimental results
show that our proposed method EFS-GINI effectively exhibits superior performance in
high-dimensional multi-classification datasets compared to traditional feature selection
methods in terms of accuracy, precision, recall, and F1-score. Moreover, to reveal the
biological significance of the proposed algorithm, we apply EFS-GINI on the GSE40435
dataset, the experimental results demonstrate that the gene expression signature of m5c
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modification regulators possesses great potential for KIRC prognosis prediction. Our study
offers additional evidence for further research regarding m5c RNA modification in KIRC.
However, further experimental and clinical exploration are necessary to confirm these
finding.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The studywas fundedby theNationalNatural Science Foundation ofChina (No. 82302920).
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 82302920.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Zekun Xin conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.
• Ruhong Lv conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Wei Liu conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Shenghan Wang analyzed the data, prepared figures and/or tables, and approved the
final draft.
• Qiang Gao analyzed the data, prepared figures and/or tables, and approved the final
draft.
• Bao Zhang analyzed the data, prepared figures and/or tables, and approved the final
draft.
• Guangyu Sun performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data is available at Zenodo:
- LvRuH. (2023). LvRuH/EFS-GINI: EFS-GINI. Zenodo. https://doi.org/10.5281/zenodo.

10065391.

REFERENCES
ArusadaMDN, Putri NAS, Alamsyah A. 2017. Training data optimization strategy for

multiclass text classification. In: 2017 5th International conference on information and
communication technology (ICoIC7). Piscataway: IEEE, 1–5.

Xin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1768 24/27

https://peerj.com
https://doi.org/10.5281/zenodo.10065391
https://doi.org/10.5281/zenodo.10065391
http://dx.doi.org/10.7717/peerj-cs.1768


Barciszewska AM. 2018. Global DNA demethylation is an epigenetic marker of human
brain metastases. Bioscience Reports 38(5):BSR20180731 DOI 10.1042/BSR20180731.

Bo Z. 2018. Research on anti-fraud of auto insurance claims settlement based on data
mining technology. Master’s thesis, University of International Business and
Economics, Beijing, China.

Cao Y, Geddes TA, Yang HJY, Yang P. 2020. Ensemble deep learning in bioinformatics.
Nature Machine Intelligence 2(9):500–508 DOI 10.1038/s42256-020-0217-y.

Chandrashekar G, Sahin F. 2014. A survey on feature selection methods. Computers &
Electrical Engineering 40(1):16–28 DOI 10.1016/j.compeleceng.2013.11.024.

Chellamuthu A, Gray SG. 2020. The RNA methyltransferase NSUN2 and its potential
roles in cancer. Cells 9(8):1758–1779 DOI 10.3390/cells9081758.

Dong Z, Cui H. 2020. The emerging roles of RNA modifications in glioblastoma. Cancers
12(3):736–762 DOI 10.3390/cancers12030736.

ErhuW. 2019. Research on human motion posture recognition based on mobile phone
sensor. Master’s thesis, Shaanxi University of Science and Technology, Shaanxi,
China.

FengshunM, Yan L, Cen G, Meiji W, Dongmei L. 2019. Diabetes prediction method
based on CatBoost algorithm. Computer System Application 28(9):215–218
DOI 10.15888/j.carolcarrollnki.Csa.007054.

Guo F, Zhou G. 2019. Analysis of influencing factors of prediction accuracy ensemble
learning. Ordnance Industry Automation 38(01):78–83.

Guyon I, Elisseeff A. 2003. An introduction to variable and feature selection. Journal of
Machine Learning Research 3:1157–1182.

Haruehanroengra P, Zheng YY, Zhou Y, Huang Y, Sheng J. 2020. RNA modifications
and cancer. RNA Biology 17(11):1560–1575 DOI 10.1080/15476286.2020.1722449.

Hoque N, SinghM, Bhattacharyya DK. 2018. EFS-MI: an ensemble feature se-
lection method for classification. Complex & Intelligent Systems 4:105–118
DOI 10.1007/s40747-017-0060-x.

Hou Z, Yang Y, Ma Z,Wong KC, Li X. 2023. Learning the protein language of proteome-
wide protein-protein binding sites via explainable ensemble deep learning. Commu-
nications Biology 6(1):73–87 DOI 10.1038/s42003-023-04462-5.

Iffat AG, Smith LS. 2009. Feature subset selection in large dimensionality domains.
Pattern Recognition 43(1):5–13.

Jiang L, Sun J, Wang Y, Ning Q, Luo N, YinM. 2022. Identifying drug-target interactions
via heterogeneous graph attention networks combined with cross-modal similarities.
Briefings in Bioinformatics 23(2):bbac016.

Joodaki NZ, Bagher Dowlatshahi M, Joodaki M. 2022. A novel ensemble feature
selection method through Type I fuzzy. In: 2022 9th Iranian Joint Congress on Fuzzy
and Intelligent Systems, Bam, irfan, al-ahram of. 1–6
DOI 10.1109/CFIS54774.2022.9756433.

Junwei Z. 2016. Research on epistatic effect detection algorithm based on random forest
and gradient lift model. Master’s thesis, Harbin Institute of Technology, Harbin,
China.

Xin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1768 25/27

https://peerj.com
http://dx.doi.org/10.1042/BSR20180731
http://dx.doi.org/10.1038/s42256-020-0217-y
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.3390/cells9081758
http://dx.doi.org/10.3390/cancers12030736
http://dx.doi.org/10.15888/j.carolcarrollnki.Csa.007054
http://dx.doi.org/10.1080/15476286.2020.1722449
http://dx.doi.org/10.1007/s40747-017-0060-x
http://dx.doi.org/10.1038/s42003-023-04462-5
http://dx.doi.org/10.1109/CFIS54774.2022.9756433
http://dx.doi.org/10.7717/peerj-cs.1768


Khaire UM, Dhanalakshmi R. 2022. Stability of feature selection algorithm: a
review. Journal of King Saud University - Computer and Information Sciences
34(4):1060–1073 DOI 10.1016/j.jksuci.2019.06.012.

Kiziloz HE, Deniz A. 2020. Feature selection with dynamic classifier ensembles. In: 2020
IEEE international conference on systems, man, and cybernetics. Piscataway: IEEE,
2038–2043 DOI 10.1109/SMC42975.2020.9282969.

Lewis RJ. 2000. An introduction to classification and regression tree (CART) analysis.
In: Annual meeting of the society for academic emergency medicine in San Francisco,
California.

Li Z. 2018. Design and implementation of feature selection algorithm based on ensemble
learning. Master’s thesis, Harbin Institute of Technology, Harbin, China.

Miri M, Dowlatshahi MB, Hashemi A. 2022. Feature selection for multi-label text data:
an ensemble approach using geometric mean aggregation. In: 2022 9th Iranian
joint congress on fuzzy and intelligent systems, Bam, Islamic Republic of Iran. 1–6
DOI 10.1109/CFIS54774.2022.9756484.

Nombela P, Miguel-López B, Blanco S. 2021. The role of m6A, m5C and9 RNA mod-
ifications in cancer: novel therapeutic opportunities.Molecular Cancer 20(1):1–30
DOI 10.1186/s12943-020-01263-w.

Rodriguez D, Ruiz R, Cuadrado-Gallego J, Aguilar-Ruiz J. 2007. Detecting fault
modules applying feature selection to classififiers. In: IEEE international conference
on information reuse and integration. Piscataway: IEEE, 667–672.

Siying H. 2019. Research on influencing factors and dynamic forecasting methods
of financing performance of reward crowdfunding. Master’s thesis, South China
University of Technology, Guagzhou, China.

Tangirala S. 2020. Evaluating the impact of GINI index and information gain on clas-
sification using decision tree classifier algorithm. International Journal of Advanced
Computer Science and Applications 11(2):612–619.

Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. 2018. Benchmarking
relief-based feature selection methods for bioinformatics data mining. Journal of
Biomedical Informatics 85:168–188 DOI 10.1016/j.jbi.2018.07.015.

Wang H, Khoshgoftaar TM, Napolitano A. 2012. Software measurement data reduction
using ensemble techniques. Neurocomputing 92:124–132
DOI 10.1016/j.neucom.2011.08.040.

WangM, Yue X, Chen CGY. 2018. Feature selection ensemble for symbolic data
classification with AHP. In: 2018 24th international conference on pattern recognition
868–873 DOI 10.1109/ICPR.2018.8546098.

Wang Q. 2011. Research on some key issues in ensemble learning. PhD thesis, Fudan
University, Shanghai, China.

Wang X,Wang Y,Wong KC, Li X. 2022. A self-adaptive weighted differential evolution
approach for large-scale feature selection. Knowledge-Based Systems 235:107633
DOI 10.1016/j.knosys.2021.107633.

Xin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1768 26/27

https://peerj.com
http://dx.doi.org/10.1016/j.jksuci.2019.06.012
http://dx.doi.org/10.1109/SMC42975.2020.9282969
http://dx.doi.org/10.1109/CFIS54774.2022.9756484
http://dx.doi.org/10.1186/s12943-020-01263-w
http://dx.doi.org/10.1016/j.jbi.2018.07.015
http://dx.doi.org/10.1016/j.neucom.2011.08.040
http://dx.doi.org/10.1109/ICPR.2018.8546098
http://dx.doi.org/10.1016/j.knosys.2021.107633
http://dx.doi.org/10.7717/peerj-cs.1768


WnukM, Slipek P, Dziedzic M, Lewinska A. 2020. The roles of host 5-methylcytosine
RNA methyltransferases during viral infections. International Journal of Molecular
Sciences 21(21):8176–8191 DOI 10.3390/ijms21218176.

Xu GT, Shen YT. 2021. A multi-classification detection method for malicious programs
based on the XGBoost and Stacking fusion model. Information Network Security
21(06):52–62.

XueM, Shi Q, Zheng L, Li Q, Yang L, Zhang Y. 2020. Gene signatures of m5C regulators
may predict prognoses of patients with head and neck squamous cell carcinoma.
American Journal of Translational Research 12(10):6841–6852.

Zhou G, Guo F. 2021. Research on integrated learning method of high dimensional data
based on feature selection. Journal of Computer Science 48(S1):250–254.

Xin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1768 27/27

https://peerj.com
http://dx.doi.org/10.3390/ijms21218176
http://dx.doi.org/10.7717/peerj-cs.1768

