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ABSTRACT16

With the exponential growth of network resources, recommendation systems have become effective in
overcoming information overload. Click-through rate (CTR) prediction holds importance in the realm
of intelligent recommendation systems. Most of the CTR models use parallel network architecture to
effectively capture both implicit and explicit feature interactions, and they employ �xed functions and deep
neural networks to respectively capture the interactions of higher-order features. However, the existing
models ignore two aspects. One limitation observed in most models is their exclusive focus on pairwise
feature interactions and do not emphasize the effect of one feature on the others. The second is that
most models input features indiscriminately into parallel networks, leading to an over-sharing of network
inputs. To better simulate complex characteristic interactions, we propose Disentangled Self-attention
Neural Network (DSAN) for CTR prediction. First, high-dimensional sparse features are transformed
into low-dimensional dense matrices through an embedding layer. Then, the decoupled multi-head
self-attention learns relationships at different levels and serves as the input to a parallel network structure.
Finally, we set up a shared interaction layer to solve the problem of insuf�cient information sharing in
parallel networks. In comparison with the state-of-the-art CTR prediction models on both the Criteo
and Avazu datasets, our proposed model improved the AUC values by an average of 1.7% and 1.2%
respectively, and decreased the Logloss values by an average of 3% and 1% respectively.
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INTRODUCTION33

Deep learning has gained signi�cant popularity in various �elds such as computer vision and natural34

language processing in recent years (Aldarmaki et al., 2022; Tong and Wu, 2022; Reddy, 1976). Deep35

neural network can automatically adjust their internal weights and biases based on changes in input data,36

thereby improving their accuracy and robustness (Santarsiero et al., 2019). Based on the above learning37

ability, deep learning becomes an effective model for estimating online user response rate problems such38

as advertising Click-Through rate (CTR). CTR prediction plays a vital role in industrial online advertising39

and recommendation systems (Graepel et al., 2010; Lu, 2021), and its purpose is to determine whether to40

recommend the item to users based on the likelihood of users clicking on the item. Unlike the image and41

text �elds, most input features in the recommendation �eld are discrete classi�cation features, such as42

user gender, device type, and advertising category. Enhancing the prediction accuracy of CTR models43

often involves employing effective methods to model feature interactions (Gao et al., 2023).44

At an early stage, experts manually select feature combinations, wasting signi�cant labor and �nancial45
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resources. To address this issue, Factorization Machines (FM) (Rendle, 2010) represent each feature using46

latent factor vectors, and the pairwise feature interactions are modeled by taking the inner product of these47

latent vectors. While FM has the capability to extend to high-order feature interactions, it should be noted48

that not all feature combinations contribute equally to the prediction accuracy. Some combinations may49

contain useful information, while others may be irrelevant or even detrimental to the model’s performance.50

Deep neural networks show high learning ability and can capture intricate feature interactions. This makes51

them ideal for acquiring knowledge of complex relationships between features. Factorization machines52

deep neural network (FNN) (Liu, 2023) employs DNNs to learn and represent the intricate relationships53

among features, enabling it to uncover complex patterns and dependencies. The PNN (Qu et al., 2016) is54

a feature interaction model that leverages the concept of inner product to capture interactions between55

features. It uses the Product Layer to capture higher order interactions between features. In addition56

to the Product Layer, PNN also contains a fully connected layer for learning more complex feature57

representations. This allows PNN to effectively capture both linear and non-linear feature interactions.58

One limitation of both FNN and PNN models is their emphasis on high-order feature interactions, often59

overlooking the importance of low-order interactions. In order to better model the interaction of high-order60

and low-order features, Google proposed the model of Wide & Deep (WDL) (Cheng et al., 2016) in 2016,61

which combined the linear model with DNN to improve the model generalization ability and take into62

account the memory ability. Deep & cross (DCN) (Wang et al., 2017) and DeepFM (Guo et al., 2017)63

not only overcome the problem of focusing only on high-order feature interaction, but also requires no64

manual feature engineering. According to literature (Zhang et al., 2021), we classify CTR models into65

two types in the way of combining explicit and implicit features of network modeling, namely parallel66

network architecture and stacked network architecture.67

The majority of CTR models consist of parallel network architectures, with one network dedicated to68

explicit feature interaction and another network focused on implicit feature interaction. EDCN (Chen69

et al., 2021) proposes the concept of network late fusion, that is, in a parallel network architecture, explicit70

and implicit interactions are only fused at the last layer, and information is not shared at the intermediate71

layer, which weakens the interaction signals between each other. In addition, most models input features72

indiscriminately into parallel networks, resulting in excessive sharing of network inputs. There are two73

problems that are not considered in the existing model. First, it does not consider the in�uence of one74

feature on other features, but places greater emphasis on feature interactions. The second is that it also75

ignores the defect that there is no interaction between the layers of the parallel network architecture. In76

order to solve the �rst issue, we propose an interaction model in which the self-attention mechanism is77

disentangled into two parts, the pair term is used to model the speci�c interaction between two features,78

and the unary term is used to model the in�uence of one feature on other features (Xu et al., 2021; Yin79

et al., 2020). For the second problem, we propose a shared interaction layer to solve the problem of80

insuf�cient information sharing in the parallel network. Speci�cally, this paper sets up two modules in the81

shared interaction layer to enhance the interaction signals in parallel networks. One is the decomposition82

module, and the other is the sharing module. Decomposition module is used to distinguish feature83

distribution in different networks by �eld control network, and the sharing module can to capture the84

layered interaction signals in parallel networks.85

This paper makes three main contributions, as follows:86

� We propose a disentangled multi-head self-attention mechanism, and de�ne paired terms and unary87

terms. Multi-head self-attention can additionally be employed to examine the potential interactions88

between features across diverse semantic subspaces.89

� In this paper, two modules are proposed in the shared interaction layer to enhance the interaction90

signals between parallel networks. One module distinguishes the feature distribution and the other91

module fuses the features of the parallel network.92

� Extensive experiments have been conducted on two datasets to demonstrate the superior accuracy93

and lower loss rate of the proposed method compared to existing prediction methods.94

RELATED WORK95

Researchers and academics are experimenting with ways to improve CTR prediction (Singh et al., 2022).96

From the early LR and FM to the current DNN, DeepFM, etc, the accuracy of prediction is constantly97

improving. In this section, we primarily concentrate on the development of the CTR prediction model98
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and discuss the approach for feature interaction. It also brie�y introduces the knowledge related to the99

attention mechanism.100

Click-through Rate prediction101

CTR prediction is an important task in recommendation systems to predict whether a user will click102

on a recommendation (Sangaiah et al., 2023; Guo et al., 2022; Aljunid and Huchaiah, 2022). CTR103

prediction can help recommendation systems better understand user behavior and preferences, and104

provide more personalized and accurate recommendations. CTR prediction is typically achieved through105

machine learning methods. Input data for CTR prediction typically includes user characteristics, item106

characteristics and contextual characteristics. User characteristics may include a user’s historical behavior,107

personal information, social relationships, etc.; item characteristics may include attributes, tags, historical108

click-through rates, etc.; and context information may include time, location, device, etc. In CTR109

prediction models, commonly used algorithms include LR, GBDT, FM, FFM, DeepFM, WDL, DIN,110

DIEN, etc. LR is a linear model mainly used for sparse features; GBDT is a tree model capable of111

handling nonlinear features; FM, FFM, DeepFM, etc. are models based on factorization machines which112

can handle high-dimensional and sparse feature; WDL, DIN, DIEN, etc. combine linear models and113

deep learning models to handle both low-dimensional and high-dimensional features. In order to further114

automate learning of basic feature interactions, the HoAFM (Tao et al., 2020) establishes intersectional115

features that are expressive and informative by stacking multiple cross interaction layers. CAN (Cai et al.,116

2021) is an effective CTR prediction model, which believed that there was no information sharing among117

the feature combinations of previous models, and thus introduced a dynamic pluggable feature interactive118

learning Unit Co-Action Unit, which realized the expression of feature combination information.119

Figure 1. Parallel architectures based on CTR prediction.

Feature Interaction120

The ef�cacy of learning feature interactions has been demonstrated in the click-through rate prediction121

tasks. FM was proposed mainly to capture interactions between features through factorization. Subse-122

quently, a number of FM variants, such as FFM (Juan et al., 2016), AFM (Xiao et al., 2017), FmFM (Sun123

et al., 2021) and FwFM (Pan et al., 2018) were proposed. In recent years, some researchers have modeled124

higher-order feature interactions. CTR models can be classi�ed into two main architectural categories:125

parallel network architecture and stacked network architecture. Stacked architecture models, such as NFM126

(He and Chua, 2017), DIN (Zhou et al., 2018), and DIEN (Zhou et al., 2019), are representative examples.127

In NFM, second-order feature interactions are stacked on deep neural networks to model higher-order128
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features. DIN and DIEN, on the other hand, extract interest representations from historical behavior and129

utilize attention mechanisms to model the relationship between user interests and the target item.130

The parallel architecture model encompasses the capturing of interaction signals from both explicit131

and implicit features, followed by information fusion at the output layer. Notable models in this category132

include DeepFM, DCN, DeepCrossing (Shan et al., 2016), xDeepFM (Lian et al., 2018), and AutoInt (Song133

et al., 2019). In the parallel architecture model’s implicit feature part, feature extraction primarily relies134

on deep neural networks (DNNs). For the explicit feature interaction component, DeepFM employs the135

factorization machine (FM) structure for learning. DCN ef�ciently captures explicit feature interactions136

with bounded degrees. Likewise, CIN (Compressed Interaction Network) is the core component of137

xDeepFM, which effectively captures and models the non-linear interactions between features through a138

series of sparse connectivity and convolution operations, improving the expressive power and predictive139

accuracy of the model. AutoInt model ef�ciently captures the non-linear relationships between features140

by adaptively learning the interaction weights between each pair of features through stacked multi-141

head self-attentive mechanism. Figure 1 shows the classic models DeepFM and NFM in two network142

architectures.143

Attention mechanism144

In traditional machine learning models, all features of the input are treated equally, with no speci�c focus145

or weighting. The purpose of the attention mechanism is to differentiate features, with different features146

being given different weights. In natural language processing tasks, attention mechanisms are extensively147

employed, including machine translation, text summarization, question answering systems, and more148

(Choi et al., 2016; Yang et al., 2016). In general, the attention mechanism assigns weights to each input149

item to re�ect their importance in the target task (Ali et al., 2021). Transformer (Vaswani et al., 2017)150

introduces a self-attentive mechanism that enables the model to focus on different positions in the input151

sequence simultaneously, without having to process them sequentially. BERT (Devlin et al., 2018) is152

built by stacking bi-directional Transformer layers, achieves good performance. In summary, attentional153

mechanisms simulate the behavior of human attention, allowing models to better handle complex tasks154

with remarkable success in many areas (Wenzuixiong Xiong, 2023).155

Figure 2. DSAN architecture based on disentangled self-attention mechanism. Rx represents the number
of interaction layers and is set to 3 on both datasets.

METHODS156

At present, most of the existing CTR models adopt parallel network architecture to learn explicit and157

implicit feature interactions. The implicit part uses DNN to automatically learn feature interactions, while158

the explicit part usually uses �xed functions. However, most existing models focus on the interactions159

between pairs of resources, without emphasizing the effect of one feature on other features. It also ignores160

the defect that there is no interaction between the layers of the parallel network architecture. To address161

the aforementioned issues, we propose a CTR prediction model based on disentangled self-attention162

attention neural network.163

As shown in Figure 2, the DSAN has the following four parts, namely the embedding layer, the164

disentangled self-attention layer, the shared interaction layer and the output layer. Firstly, the embedding165
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layer receives the input features and converts them into compact, lower-dimensional embedding vectors.166

Secondly, the embedded features are input into the disentangled self-attention model. Thirdly, the shared167

interaction layer is used to model high-order interaction. Finally, the embedded features are fed into the168

output layer to make predictions on the probability of the user clicking.169

Problem De�nition170

The main purpose of CTR prediction is to help advertisers or e-commerce companies predict the prob-171

ability of users clicking on recommended items, so as to select the most potentially valuable items172

for recommendation in the recommendation system and maximize the effect and commercial value of173

the recommendation system. Suppose the entire dataset D = f(x1;y1) ;(x2;y2) ; : : : ;(xN ;yN)g consists174

of N examples, where each sample xi consisting of m user and item feature �elds and its associated175

label yi 2 f0;1g is the ground truth i-th sample. CTR prediction the probability of a user clicking on a176

recommendation by constructing a �y = f (xi) under the given feature vector xi.177

Figure 3. Structure embedding layer.

Embedding Layer178

The input data typically encountered in the �eld of vision or natural language processing consist of
images or text signals that possess spatial or temporal relevance. However, in recommendation system,
input characteristics are usually sparse and there is no obvious spatiotemporal correlation. For predicting
click-through rates, feature embedding is essential because the click-through records include discrete
categorical terms that cannot be directly used for numerical computations. Suppose the entire dataset
consists of N examples, each consisting of m user and item feature �elds. Some of these features are
categorical data, some are numerical data. The commonly used method for categorical data is feature
embedding, that is, transforming each sparse vector into a low-dimensional dense vector. To illustrate,
the one-hot vector of the i-th �eld is represented as xi , then the associated embedding matrix would be
denoted as wi . The formulation of the ei can be expressed in the following manner.

ei = wixi

where xi is a one-hot vector and is the embedding matrix of the i-th sparse feature. By applying a
conversion process, the numerical feature x j can also be transformed into the same low-dimensional
space.

e j = w jx j

where w j is an embedding vector and x j is a scalar value.179

According to the above method, the embedding layer compresses a high-dimensional sparse vector180

into a low-dimensional dense vector, as shown in Figure 3. The equation for the embedding layer is181

expressed as:182

E = [e1;e2; : : :ei; : : :e j; : : :em]

where �;� represents the matrix stacked operation, m represents the number of feature �elds.183

Disentangled Self-attention Layer184

Multi-head self-attention is a variant of the self-attention mechanism used in neural networks, particularly185

in models like the Transformer architecture. Self-attention is a mechanism that allows the model to weigh186

the importance of different positions within its input sequence in order to make predictions or generate187
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output. In traditional self-attention, a single attention head is used to compute the attention weights188

between all pairs of positions in the input sequence. However, in multi-head self-attention, multiple189

attention heads are used in parallel to capture different types of relationships and dependencies. This190

paper builds on this to decouple the multi-headed self-attentive layer.191

For the input feature xi, it is transformed into a dense embedding vector ei by embedding search. After
obtaining the low-dimensional representation of each feature, to model higher-order interactions between
features, we utilize the dot product attention scheme. We de�ne four different matrices W (h)

q , W (h)
k1 , W (h)

k2

and W (h)
v , then multiplied ei by each of them, and the four vectors are represented as follows:

8
>>><

>>>:

Q(h)
i = W (h)

q ei

K(h)
i = W (h)

k1 ei
eK(h)

i = W (h)
k2 ei

V (h)
i = W (h)

v ei

where query, key1, key2 and value transformation are obtained by W (h)
q , W (h)

k1 , W (h)
k2 and Wv 2 Rd0�d

192

respectively. d is the dimension of the �led embedding, d0 is the dimension of the attention.193

It has been demonstrated in previous visual learning tasks that the standard self-attention mechanism
is detrimental to feature learning. In this paper, the disentangled self-attention mechanism is adopted, and
pairs term and unary terms are disentangled by using independent activation functions and embedded
matrices. The unary term captures the overall importance of a single feature on all other features, while
the pairwise term aids in learning the speci�c impact of each feature pair. Add these two terms to get the
attention score, and then dot it with the value. The formula is:

8
>>>><

>>>>:

Pi = s
��

Q(h)
i � m(h)

q

�T �
K(h)

i � m(h)
k1

��

Ui = s
�

m(h)
k2

�
eK(h)

i

�T
�

Head(h) = åM
i=1 [Ui + Pi]V

(h)
i

where s(�) is the activation function, m(h)
q = 1

M åM
i=1W (h)

q ei and m(h)
k1 = 1

M åM
i=1W (h)

k1 ei take average of194

the key and the query vectors, respectively, M is the total number of features for users and items,195

m(h)
k2 = 1

M åM
i=1W (h)

k2 ei takes average of the key vectors. Then, we connect all the attention heads with the196

following formula:197

Z =
h
Head1;Head2; : : : ;Head(h)

i
W1 + b1

where h is the number of attention heads, Z stacks up all the features after getting the attention head. W1198

means the weight matrix and b1 denotes the bias.199

To retain information about the original embedded vector, add a residual structure to the network
de�ned as follows:

Lo = j (Z +WrE)+br

where Wr 2 Rd0�d is a linear projection matrix to avoid dimension mismatch, j(�) is ReLU activation200

function, where Lo represents the input of sharing interaction layer.201

Sharing Interaction Layer202

In the shared interaction layer, there are two main modules, one is the decomposition module, the other203

is the sharing module. Decomposition module is used to distinguish feature distribution in different204

networks by �eld control network. The shared module establishes a link between the hierarchical attention205

and the deep network, and captures the interaction signals between the two networks. These two modules206

are lightweight, and have low time and space complexity, which can be well generalized to the CTR207

model of parallel network architecture.208
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Decomposition module The existing CTR models provide all features equally to the two networks.
Decomposition modules apply different characteristics to different interactive functions. We take the
matrix Lo 2 Rm�d as the input of shared interaction layer. Then, we use the decomposition module to get
two parts.

Cl = gi �Lo = s2 (w2=g2)�Lo
Dl = g0

i �Lo = s3 (w3=g3)�Lo

where gi and g0
i denote the gating weight for the i-th �eld, � denotes the Hadamard product of two209

vectors. And s2 and s3 are softmax activation function, w2 and w3 are learnable parameter, g2 and g3 are210

hyperparameter.211

The paper (Lian et al., 2018) proves that each hidden layer of CrossNet is a scalar multiple of x0 and212

interacts in a bit-wise manner. In this paper, the explicit feature interaction part uses hierarchical attention213

to construct vector-wise level feature interaction, implicit feature interaction is learned through the full214

connection layer. Cl is the explicit high-order interaction part, Dl is the implicit high-order interaction215

part. We focus on explicit higher-order interactions. To obtain the l +1-th order cross-features Cl+1 , we216

�rst aggregate the l-th layer named Cl . The formula for attention aggregation is as follows:217

C j
l+1 =

M

å
j=1

a j
l C j

l �C j
0 + C j

l ; j 2 f1; : : : ;Mg

where a j
l is the attention on the j-th �eld in the l-th attention aggregation layer. a j

l expressed as:

a j
l =

exp
�

cT
l Re lu

�
WlC

j
l

��

åm
j0=1 exp

�
cT

l Re lu
�
WlC

j0
l

��

Sharing module Current parallel network architectures typically handle explicit and implicit feature218

interactions independently and postpone information fusion until the �nal layer. These models do not219

re�ect well the interrelationships between parallel networks and weaken the interaction signals between220

explicit and implicit feature interactions. To address this issue, this paper proposes three ways to capture221

the signals. An evaluation and comparison of the performance of these three methods is presented in the222

experimental section.223

1. We assume that we have two data Cl and Dl , the �rst feature fusion denoted as FHP, can be224

expressed as FHP = Cl �Dl , where � is the Hadamard product, it takes their element-wise product.225

2. It may not be possible to effectively model sparse feature interaction using Hadamard product226

or inner product. Therefore, we combine inner product and Hadamard product to learn feature227

interaction. We named the second feature fusion FIH. This interaction function is denoted as228

FIH = ai
l �Cl � Dl , where ai

l are the shared parameters in the l-th layer and � denotes the regular229

inner product.230

3. The third feature fusion method concatenates two vectors. In order to keep the vector dimension of231

output m�d, we design a feedforward layer with activation function. The formula can be expressed232

as FCN = relu
�
wT

l [Cl ;Dl ]+ bl
�

, where wl and bl are the weight and bias parameters the l-th layer,233

respectively.234

Recurrently applying formulas in the shared interaction layer can generate an l-th layer vector
representation. The two vector representations obtained at the l-th layer are Cl 2 Rm�d and Dl 2 Rm�d

respectively. We add the FHP vector obtained from the shared module to these two vectors and then
dimensionally transformed. Finally, the �nal prediction result was obtained through a layer of linear
function.

�y = s
�
wT

c [Cl �Dl � FHP]+ bc
�

where wc and bc are parameters of weight and bias, respectively, and �y 2 (0;1) is predicted label of CTR,235

and s is the activation function.236
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Output Layer237

In the click-through rate prediction task, the loss function is used to measure the difference between the238

model prediction and the actual click-through rate situation. The true value can only be 0 or 1, and the239

model output is a probability value between 0 and 1. Binary cross entropy measures losses by calculating240

the difference between the predicted value and the actual click-through rate. The loss function seeks241

to minimize cross entropy in the training process so that the predicted result can match the actual click242

situation accurately. Our loss function is J , which is de�ned as follows:243

J = �
1
N

N

å
i=1

(yi log( �yi)+(1� yi) log(1� �yi))

where yi and �yi represent the real value and predicted value respectively, yi is the true label of i-th sample.244

We use a gradient descent algorithm to update model weights.245

EXPERIMENT AND ANALYSIS246

In this section we conduct experiments to verify the validity of the proposed DSAN model. First,247

we describe the experimental setup, which includes data set, benchmark model, evaluation index and248

experimental details. Then the in�uence of the hyperparameter is observed by experiment, and the249

validity of the model is veri�ed by comparing with the benchmark model. Finally, we perform ablation250

experiments to verify that each component is effective.251

Experimental Settings252

Datasets We evaluate DSAN on two publicly available datasets, namely Criteo and Avazu. The Criteo253

dataset is a widely used public data set for predicting click-through rates of Internet ads. The dataset254

contains data on billions of advertisements displays and clicks on anonymous websites in a month.255

Each data point consists of 13 digital characteristics and 26 category characteristics and is marked256

clicked or unclicked. Avazu contains 10-day mobile ad click logs with 22 categories including domains,257

categories, connection types, etc. We removed the ID �eld from the sample. The category characteristics258

of the two datasets are hashed to protect user privacy. The data set is presented in Table 1, where we259

partitioned the training, validation and test sets into a ratio of 8:1:1. The veri�cation set is used to tune the260

hyperparameters, and we report the �nal performance on the test set.261

Table 1. Statistics of evaluation data sets

Data Total Train Fields Pos ratio

Criteo 45.0M 36.0M 39 25.26%
Avazu 40.0M 32.0M 22 17.18%

Evaluation metrics In the experiment, we evaluated the performance of all methods using two popular262

metrics. These two indices are widely used in CTR prediction evaluations, AUC and Logloss.263

AUC: We present a quantitative evaluation of the model’s performance using the ROC curve. The
evaluation takes into account the sorting order of positive and negative instances. To achieve this, a
positive sample and a negative sample are randomly selected, and the trained classi�er is used to predict
the two samples. The model’s performance is measured by the AUC, with higher values indicating better
performance. If there are M positive samples and N negative samples in the data set. The AUC formula is
de�ned as follows:

AUC =
å I

�
Ppositive ;Pnegative

�

M �N

I
�
Ppositive ;Pnegative

�
=

8
<

:

1;Ppositive > Pnegative
0:5;Ppositive > Pnegative
0;Ppositive < Pnegative

Logloss: Logloss is a commonly used metric for evaluating the performance of classi�cation models264

and is particularly suitable for binary classi�cation problems. It calculates the loss based on the difference265

between the probability value predicted by the model and the actual label. It is de�ned as shown in output266

layer J.267

8/15PeerJ Comput. Sci. reviewing PDF | (CS-2023:05:86192:0:1:NEW 25 May 2023)

Manuscript to be reviewedComputer Science



Baseline models We compare the proposed method with the following state-of-the-art approaches268

speci�cally designed for CTR tasks. Here is some introduction to the benchmark model.269

� LR model can only learn the �rst-order feature interaction, which is not enough to represent the270

interaction between features.271

� FM is able to effectively handle high-dimensional sparse features by modelling the interaction272

between features and has good generalization capabilities. But it can’t simulate higher-order feature273

interactions.274

� NFM model, a neural network-based extension of Factorization Machines, leverages deep learning275

techniques to capture feature interactions and improve click-through rate prediction in various276

applications.277

� Wide & Deep (WDL) is a hybrid architecture that combines the power of deep neural networks for278

learning intricate patterns with the memorization capability of a wide linear model, enabling accurate279

click-through rate prediction by capturing both generalization and speci�c feature interactions.280

� Deep & Cross(DCN) model is a neural network architecture that incorporates cross-network [40]281

operations to capture high-order feature interactions, enabling accurate click-through rate prediction282

by balancing depth-wise representation learning and explicit feature interactions.283

� DeepFM model is a hybrid approach that combines deep neural networks and factorization machines,284

leveraging their complementary strengths to capture both high-order feature interactions and low-285

rank representations, enabling accurate click-through rate prediction in large-scale recommendation286

systems.287

� xDeepFM model is an advanced deep learning architecture that integrates both cross-network288

operations and deep neural networks, enabling effective capturing of intricate feature interactions289

and hierarchical representations.290

� FiBiNet introduces two modules, SENet is a powerful mechanism that selectively recalibrates291

feature representations by learning channel-wise attention weights. The bilinear-interaction layer292

performs element-wise product and linear transformation operations to capture intricate feature293

interactions.294

� InterHAt incorporates hierarchical self-attention mechanisms to capture feature interactions at295

different levels, improving click-through rate prediction by effectively modeling the importance296

and dependencies among features in recommendation systems.297

Table 2. Performance comparison of different models. The best and second-best scores in each row are
emphasized with bold and underline formatting

Model Criteo Avazu

AUC LogLoss AUC LogLoss

LR 0.733161 0.536540 0.717866 0.420763
FM 0.743957 0.524984 0.723897 0.409646

NFM 0.761180 0.505426 0.729097 0.411219
WDL 0.764284 0.517800 0.732749 0.407115
DCN 0.776049 0.489888 0.727839 0.410596

DeepFM 0.766734 0.513178 0.725689 0.412674
xDeepFM 0.764592 0.516124 0.733049 0.407925
FiBiNet 0.775783 0.483476 0.734048 0.407493
InterHAt 0.777509 0.482668 0.737538 0.403784
DSAN 0.781631 0.479212 0.741212 0.400157

Experimental details All models are implemented using the Pytorch. All the experiments are conducted298

on an NVIDIA RTX 3080 GPU with 10G memory. We tune the hyperparameters of model, and the best299

Settings for the model will be described in hyper-Parameter experiments. The batch size for all models300

on both data sets is 1024. For DSAN, on the Criteo and Avazu datasets, we set the number of attention301

headers to 2, and the size of the attention embedding to 20. In additions, we set the dropout rate to 0.2302
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to avoid over�tting. The dimension of embedding is 16 and 32 for Criteo and Avazu, respectively. We303

execute an early stop strategy, stopping training when two consecutive Logloss metrics on the veri�cation304

set increase.305

Figure 4. In�uence of dimension of embedding size on model performance.

Performance Comparison306

In an industrial CTR prediction task, a signi�cant improvement in AUC at the 0.001 level is considered307

noteworthy for a large user base. Table 2 presents the performance of various models on the two datasets,308

leading to the following �ndings:309

� In the training of the models, we found that all models had the one-epoch phenomenon. Therefore,310

we only train for one epoch for these models. As presented in Table 2, The performance of the311

model varies depending on the dataset, and DSAN has advantage over all benchmark models. The312

results demonstrate that the LR model performs worse than all other models, highlighting the313

potential for improvement through the use of deep networks and factorization. Additionally, the314

FM model outperforms LR, suggesting that the inclusion of second-order feature interactions can315

positively impact prediction accuracy. NFM and DeepFM are models that incorporate deep neural316

networks on top of FM, resulting in improved prediction accuracy. This demonstrates that the deep317

network’s ability to learn high-order interaction features can enhance the prediction performance.318

� We use the same evaluation protocols and the same data processing methods to make the results319

comparable. Compared with the classical NFM and DeepFM models, DSAN has signi�cant320

advantages in predictive performance. On the Criteo dataset, the AUC values increased by 2.05%321

and 1.49% respectively, and reduced the Logloss values by 2.62% and 3.4% respectively. Compared322

with WDL, DCN and xDeepFM, the DSAN model also has a small improvement. On the Criteo323

dataset, the accuracy has improved by 1.73%, 0.56% and 1.7% respectively, and the Logloss324

was down about 3.86%, 1.07% and 3.7% respectively. The model performance of these parallel325

architectures is not better, thus demonstrating the effectiveness of our proposed shared interaction326

layer.327

� As you can observe, our proposed model is superior to FiBiNet. Compared with FiBiNet, our model328

improves the AUC by 0.58% and 0.72% in the Criteo and Avazu datasets, respectively. Compared329

to the best baseline approach on the Criteo and Avazu datasets, the performance measures Logloss330

declined by approximately 0.35% and 0.36%, respectively, and the AUC improved by 0.41% and331
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0.37%. There are two reasons for this improvement. The �rst reason is that the shared interaction332

part of the DSAN model uses two modules to differentiate features and integrate features. Secondly,333

disentangled multi-head self-attention mechanisms can analyze the interaction between features in334

different semantic subspaces and improve the model’s expressiveness. The results presented in the335

table demonstrate that the DSAN model outperforms others on all datasets.336

Figure 5. In�uence of number of heads on model performance.

Hyper-Parameter Experiments337

To enhance our understanding and validation of the proposed model, we investigate the impact of338

hyperparameters on its performance. We validated on two datasets and stuck to the principle of changing339

only one hyperparameter and leaving the rest unchanged.340

Dimension of embedding layer Due to the embedding layer’s crucial role in deep learning models, its341

primary purpose is to transform discrete input features into dense vector representations. This conversion342

enables the model to gain a deeper understanding of and effectively process these inputs. Consequently,343

the choice of embedding size signi�cantly impacts the model’s performance. In order to study the344

in�uence of embedded dimensions on the model, our embedding sizes on both datasets were adjusted345

to 8, 16, 24, 32, 40. Figure 4 shows the experimental results of different embedding sizes on the two346

datasets. As demonstrated from our observations, smaller embedding vectors may not capture all the347

features in the input data, resulting in a reduction in the generalization ability of the model. Larger348

embedding vectors require more computational resources and memory to store and process, which can349

lead to slower model computation. For the Criteo dataset, the optimal performance was achieved when350

we assigned an embedding size of 16. Conversely, for the Avazu dataset, the best results were obtained351

with an embedding size of 32.352

Number of attention heads In this section, the number of attention heads is the hyperparameter study353

object. We varied the number of attention heads within the range of 1 to 5. We keep the other parameters354

optimal. As we can see, increasing the number of heads enables the model to better capture the different355

information in the input and improves the representation power of the model. This is because each head356

can focus on a different part of the input, allowing the model to better understand different input features.357

As shown in Figure 5, as the number of heads of attention continues to increase, performance may get358

better, but the number of model parameters also increases, leading to higher storage costs. It should be359
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noted that for both datasets, the best performance is attained when the number of attention heads is set to360

2.361

Different variant of sharing module We investigate the effect of three different variants in the shared362

module. To capture the signal between different networks of the parallel architecture, we express the363

Hadamard product of two vectors as DSAN-HP, which is also the way used in the paper, and thus as364

DSAN. The inner product and Hadamard product feature fusion is denoted as DSAN-IH, and the way365

the two vectors are connected and then passed through the feed-forward neural network is denoted as366

DSAN-CN.367

Observe from Table 3 that DSAN works best. This is due to the Hadamard product being in the same368

position as the elements and not involving any weights or coef�cients. DSAN-IH and DSAN-CN became369

signi�cantly less effective on the Criteo dataset, due to the fact that the Criteo dataset has more samples370

and adds more additional parameters.371

Table 3. Performance comparison of different variants

Model Criteo Avazu

AUC LogLoss AUC LogLoss

DSAN 0.781631 0.479212 0.741212 0.400157
DSAN-IH 0.742683 0.561273 0.734358 0.408094
DSAN-CN 0.748853 0.523003 0.717586 0.418778

Ablation study372

To assess the ef�cacy of each component in the DSAN model and gain a better understanding of their373

relative signi�cance. We designed three sets of experiments in which only one part was removed at a time374

and the rest was kept constant. We removed the disentangled multi-head self-attention section named375

DSAN w/o DA. The part where we remove the two modules in the shared interaction layer is named376

DSAN w/o SI, which also means that only DNN network and hierarchical attention exist in the parallel377

architecture.378

As can be seen in Figure 6, removing each component in DSAN individually leads to a decrease in379

model performance. It is clear that DSAN achieves better performance using decoupled multi-headed380

self-attentive modules.381

Figure 6. Performance of the different components of the DSAN model.
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