
Submitted 19 October 2023
Accepted 29 November 2023
Published 3 January 2024

Corresponding author
Chin-Chia Wu, cchwu@fcu.edu.tw

Academic editor
Željko Stević

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1763

Copyright
2024 Xu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A bi-criterion sequence-dependent
scheduling problem with order deliveries
Jian-You Xu1, Win-Chin Lin2, Kai-Xiang Hu2, Yu-Wei Chang2,
Wen-Hsiang Wu3, Peng-Hsiang Hsu4, Tsung-Hsien Wu5 and Chin-Chia Wu2

1College of Information Science and Engineering, Northeastern University, Shenyang, China
2Department of Statistics, Feng Chia University, Taichung, Taiwan
3Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
4Department of Business Admistration, University of Kang-Ning, Taipei, Taiwan
5Bachelor’s Program in Business Management, Fu Jen Catholic University, New Taipei City, Taiwan

ABSTRACT
The manufacturing sector faces unprecedented challenges, including intense compe-
tition, a surge in product varieties, heightened customization demands, and shorter
product life cycles. These challenges underscore the critical need to optimize man-
ufacturing systems. Among the most enduring and complex challenges within this
domain is production scheduling. In practical scenarios, setup time is whenever a
machine transitions from processing one product to another. Job scheduling with setup
times or associated costs has garnered significant attention in both manufacturing and
service environments, prompting extensive research efforts. While previous studies on
customer order scheduling primarily focused on orders or jobs to be processed across
multiple machines, they often overlooked the crucial factor of setup time. This study
addresses a sequence-dependent bi-criterion scheduling problem, incorporating order
delivery considerations. The primary objective is to minimize the linear combination of
the makespan and the sum of weighted completion times of each order. To tackle this
intricate challenge, we propose pertinent dominance rules and a lower bound, which
are integral components of a branch-and-bound methodology employed to obtain an
exact solution. Additionally, we introduce a heuristic approach tailored to the problem’s
unique characteristics, along with three refined variants designed to yield high-quality
approximate solutions. Subsequently, these three refined approaches serve as seeds to
generate three distinct populations or chromosomes, each independently employed in
a genetic algorithm to yield a robust approximate solution. Ultimately, wemeticulously
assess the efficacy of each proposed algorithm through comprehensive simulation trials.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Scheduling, Sequence-dependent, Branch-and-bound, Genetic algorithm, Setup time,
Customer order scheduling, Makespan, Weighted completion times, Single-machine, Bi-criterion

INTRODUCTION
In today’s manufacturing landscape, challenges such as intense competition, a proliferation
of product varieties, heightened customization demands, and shortened product life cycles
have become more pressing than ever. Consequently, there is greater focus on the need
to optimize manufacturing systems. Among the well-established scheduling problems, the
customer order scheduling problem (COSP) has always held significant importance in

How to cite this article Xu J-Y, Lin W-C, Hu K-X, Chang Y-W, Wu W-H, Hsu P-H, Wu T-H, Wu C-C. 2024. A bi-criterion sequence-
dependent scheduling problem with order deliveries. PeerJ Comput. Sci. 10:e1763 http://doi.org/10.7717/peerj-cs.1763

https://peerj.com/computer-science
mailto:cchwu@fcu.edu.tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1763
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1763


the realm of manufacturing. The primary challenge of the COSP lies in determining the
sequence of jobs to meet the diverse demands of customers ordering various products to
be processed on a single machine.

The COSP holds particular significance in make-to-order and make-to-assembly
production systems, wherein a single machine is responsible for creating various types of
products. In this context, a customer may place an order for one or multiple such products,
with the shipment dispatched only after all specified items have been manufactured and
packaged together. The concept of COSP was initially introduced by Julien & Magazine
(1990). Their work introduced a dynamic programming model and delved into the
fundamental characteristics of the optimal solution for the broader case. Over the past
decades, COSP on both single and multiple machines has attracted numerous researchers.
For instance, Erel & Ghosh (2007) addressed COSP with the objective of minimizing
the total order lead time and established for the first time that the problem is NP-hard.
Su, Chen & Chen (2013) considered COSP on parallel machines dispatched in batches
to minimize maximum lateness and developed three heuristics based on scheduling
rules. Framinan & Perez-Gonzalez (2018) proposed a mixed-integer linear programming
formulation, a constructive heuristic, and twomatheuristics to minimize the total tardiness
of orders. Wu et al. (2019) addressed COSP with learning effects on multiple machines to
minimize total tardiness, subsequently developing four heuristics, three metaheuristics,
and a branch-and-bound to solve it.

In practical scenarios, a setup time is required whenever a machine transitions from
processing one product to another. Optimizing setup times is an important issue for several
reasons, particularly in manufacturing and production environments. For example, shorter
setup times mean less downtime between production runs. Reduced setup times enhance
a company’s ability to respond quickly to changes in customer demand or shifts in the
market. Longer setup times often involve increased labor costs, asmore time andmanpower
are required for the setup process. Optimizing setup times is a strategic initiative that can
positively impact various aspects of a business, including productivity, flexibility, costs,
and overall competitiveness. It aligns with modern manufacturing principles such as lean
manufacturing and just-in-time production, which aim to eliminate waste and enhance
efficiency throughout the production process. Allahverdi & Soroush (2008) emphasized
that streamlining setup times or reducing costs contributes to the timely delivery of
dependable products or services. For a comprehensive review of setup time applications,
readers are directed to the in-depth survey papers authored by Allahverdi (2015), Yang &
Liao (1999), Allahverdi, Gupta & Aldowaisan (1999), Allahverdi et al. (2008), Cheng, Gupta
& Wang (2000), and other notable works.

Despite the acknowledged significance of setup time in job scheduling, the literature on
the COSPwith setup time is limited.Hazır, Günalay & Erel (2008) conducted a comparative
study involving four differentmetaheuristics tominimize average customer order flow time.
Recently, de Athayde Prata, Rodrigues & Framinan (2021a) proposed two mixed-integer
linear programming models and a fixed variable list algorithm for solving the COSP
with sequence-dependent setup time (SDST). Furthermore, they introduced a discrete

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


differential evolution algorithm for the same problem in de Athayde Prata, Rodrigues &
Framinan (2021b).

To align with the reality of customer order scheduling, this study considers the
classification of jobs from different orders into distinct classes. Every order consists of
at least one job from each job class, necessitating a setup time whenever the machine
transitions between classes. In the domain of single-machine scenarios with multiple
objectives and various job classes, Liao (1993) introduced a branch and bound (B&B)
algorithm to systematically investigate all viable solutions.Gupta, Ho & van der Veen (1997)
were pioneers in investigating COSP with multiple classes and setup times, introducing
a bi-criteria problem. They aimed to minimize both makespan and the total carrying
costs of customer orders, with carrying costs computed based on the time difference
between the completion times of the first and last job in each customer’s order. Lin, Yin &
Liu (2013) addressed a sequence-dependent scheduling problem that incorporates order
delivery, presenting a binary integer program and a dynamic programming algorithm.
They also introduced tabu search, iterated local search, and genetic algorithm approaches
for obtaining approximate solutions. In related studies on customer order scheduling with
setup times, Erel & Ghosh (2007) examined customer orders with varying quantities of
products from different product families processed on a continuously available machine
in any sequence. Liu (2009), Liu (2010) and Hsu & Liu (2009) explored various scenarios
involving multiple jobs within a job shop setting. Recently, Li et al. (2023) expanded upon
the work laid down by Gupta, Ho & van der Veen (1997) by introducing an innovative
approach that incorporates four heuristics, three locally enhanced search methods, and a
branch and bound algorithm. Additionally, they applied a water wave optimality algorithm,
offering four distinct wavelength variants. This collaborative effort is aimed at minimizing
a mixed criterion including the order ranges, order tardiness, and total job completion
times. In a parallel effort, Lin et al. (2023) presented four heuristics complemented by a
local search method, four theoretical simulated annealing techniques, a cloudy theoretical
simulated annealing hyperheuristic, and a B&B method to solve the problem. Their
collective endeavors focused on minimizing a mixed criterion including the total order
ranges and total order tardiness. Meanwhile, Gupta et al. (2023) introduced six two-phase
heuristics, six variants of water-wave optimization algorithms, a mixed-integer linear
programming formulation, and a B&B algorithm to solve their problem. This concerted
effort is directed at producing approximate solutions that effectively minimize a mixed
criterion of the cumulative holding costs for all orders and makespan for all jobs.

Setup times present a significant concern for manufacturing companies. Lengthy setup
times can jeopardize the on-time delivery of customer orders, leading to potential losses in
customer satisfaction and incurring direct or indirect costs. Effectively incorporating and
managing the setup time factor in scheduling decisions can yield substantial benefits (Kim
& Bobrowski, 1997; Allahverdi, Gupta & Aldowaisan, 1999; Allahverdi et al., 2008; van Donk
& van Doorne, 2016; Zhao et al., 2018; Ying et al., 2023).

Motivated by the scarcity of research that address sequence-dependent bi-criteria
scheduling problems that incorporate order deliveries, we introduce a novel problem in
this domain.Our aim is to pinpoint a schedule that optimally balances themakespan and the

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


weighted completion timeof designated orders through a linear combination. Expanding on
these insights, this study addresses a sequence-dependent bi-criteria scheduling challenge
involving order deliveries. The primary aim is to devise an optimized schedule that
minimizes a mixed criterion of the overall job makespan and the aggregated weighted
completion time of all orders.

The main contributions of this study are summarized as follows: (a) we address a
sequence-dependent bi-criteria scheduling challenge involving order deliveries; (b) we
propose three lemmas and a lower bound in a branch-and-bound algorithm for finding an
optimal solution; (c) we propose a simple heuristic according to the smallest first value of
duv and their three improvements by three local searching methods and (d) we build three
population-based genetic algorithms. The subsequent sections of this study are structured
as follows. ‘Problem Statement’ outlines the proposed problem formulation. In ‘Heuristic
methods and heuristic-based genetic algorithm’ , we present three dominant properties,
a proposed lower bound, a heuristic, and its three improved schemes (i.e., pairwise
interchange, extraction and forward-shifted reinsertion, and extraction and backward-
shifted reinsertion). Additionally, we propose three variants of the genetic algorithm (GA)
based on these three improved heuristics. ‘Tuning the Related Parameter of the Three
Heuristic-Based Genetic Algorithms’ focuses on testing the appropriate parameter values
in the GA. ‘Computational Simulations and Discussions’ provides a comprehensive report
of all test results. The final section offers conclusions and outlines future research directions.

PROBLEM STATEMENT
The formal framework of our proposed study is outlined as follows. Let us consider a set
�=O1,...,Om comprising m orders designated for processing on a single machine. The
machine cannot break down while performing all jobs. Each order Oi consists of ni jobs,
each assigned a weight wi (wi ∈ (0,1)). The total number of jobs across all orders amounts
to n, which defines the set N = {J1,...,Jn}.

A critical assumption In this model (see examples in Lin, Yin & Liu (2013)) is that,
irrespective of their respective orders, if job Jv immediately follows job Ju in the schedule,
then there is a sequence-dependent setup time duv > 0 required. Additionally, we define
d0Ju to signify the machine status before the initial scheduling of job Ju, elucidating the
setup required.

Notably, in this model, we assume that the processing times for all jobs in set N are
negligible. Given a complete schedule σ encompassing all jobs, we introduce the notation
COp(σ ) to represent the completion time for order Op, which is the time at which the
last job of Op is finished. Simultaneously, the makespan, denoted as Cmax(σ ), signifies the
completion time of the last job in set N.

The primary objective of this study is to determine an optimal schedule that minimizes
a linear combination of the sum of makespan and the weighted completion times of all
m orders. In mathematical terms, we aim to find a solution to the following optimization
problem:

Minimize g(σ )= θCmax (σ )+ (1−θ)
∑m

p=1wpCOp(σ ).

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


Here, θ represents a weighting parameter that allows for the adjustment of the trade-off
between makespan and weighted completion times.

To simplify matters, we use the terms ‘‘node,’’ ‘‘job,’’ and ‘‘city’’ interchangeably to
describe the fundamental elements of our scheduling problem. Additionally, we introduce
two notations, Cu(σ ) and Cv (σ ) to represent the completion times of jobs u and v in
schedule σ , respectively. Cv

(
σ ′
)
and Cu

(
σ ′
)
represent the completion times of jobs v and

u in schedule σ ′, respectively, where σ = (π,Ju,Jv ,π c) and σ ′= (π,Jv ,Ju,π c). Here, π and
π c are two distinct sequences within set N.

To enhance the efficiency of our B&B method, we establish two properties that assist in
narrowing down the nodes that satisfy the conditions outlined in these properties. Before
presenting the properties, we designate job JL as the final job in sequence π .
Property 1: As jobs Ju ∈Op, Jv ∈Oq, p 6= q, if Ju is the last assigned job of Op, and Jv is the
last assigned job of Oq, dLu+

wq
wp+wq

duv < dLv+
wp

wp+wq
dvu and dLu+duv+maxx∈π c {dvx}<

dLv+dvu+minx∈π c {dux}, then σ dominates σ ′.
Proof: In following, one will claim that (i) Cmax

(
σ ′
)
− Cmax (σ ) > 0, and (ii)∑m

p=1wpCOp
(
σ ′
)
−
∑m

p=1wpCOp(σ )> 0. Then, g
(
σ ′
)
−g(σ )> 0.

Let tπ be the completion time of the last job in π , and tp1 (tq1) be the completion time of
the first job of Op (Oq). Note that tp1< tπ (tq1< tπ ). Moreover, for any possibly arranged
job sequence of all jobs in π c , let Js be the first assigned job in π c . Note that Js 6= Ju, Js 6= Jv .
Then, one has the following results, (i) and (ii).
(i) Cmax

(
σ ′
)
−Cmax (σ )= [dLv+dvu+dus]− [dLu+duv+dvs]> 0. The last inequality

follows from the given condition dLu+duv+maxx∈π c {dvx}< dLv+dvu+minx∈π c {dux}.
(ii) For the orders Op and Oq, [wqCOq

(
σ ′
)
+wpCOp

(
σ ′
)
]− [wpCOp(σ )+wqCOq(σ )] =[

wq
(
tπ+dLv− tq1

)
+wp

(
tπ+dLv+dvu− tp1

)]
−
[
wp
((
tπ+dLu− tp1

))
+wq

(
tπ+dLu+duv− tq1

)]
=wq[dLv−dLu−duv]+wp[dLv+dvu−dLu]=

(
wq+wp

)[
dLv−dLu+

wp
wq+wp

dvu−
wq

wq+wp
duv
]
> 0.

For these orders (not including Op and Oq), which are the last jobs of the order
assigned in π c , the sum of all wpCOp

(
σ ′
)
−wpCOp(σ ) is

∑
pwpCOp

(
σ ′
)
−
∑

pwpCOp(σ )=∑
pwp[(dLv+dvu+dus)−(dLu+duv+dvs)] > 0. Therefore,

∑m
p=1wpCOp

(
σ ′
)
−∑m

p=1wpCOp(σ )> 0. Combining the results of (i) and (ii), g
(
σ ′
)
> g(σ ) follows. �

Property 2: As jobs Ju ∈Op, Jv ∈Oq, p 6= q, if Ju is not the last assigned job of Op, and Jv is
also not the last assigned job of Oq, dLu+duv < dLv+dvu and maxx∈π cdvx <miny∈π cduy ,
then σ dominates σ ′.
Proof: It needs to be shown that g(σ )< g

(
σ ′
)
.

For any possibly arranged job sequence of all jobs in π c , one can be shown that
Cmax (σ )<Cmax(σ ′), and

∑m
p=1wpCOp(σ )−

∑m
p=1wpCOp

(
σ ′
)
< 0.

Let Js be the first assigned job inπ c . Note that Js 6= Ju, Js 6= Jv . Then,Cmax (σ )−Cmax
(
σ ′
)
=

[dLu+duv+dvs]− [dLv+dvu+dus]= [(dLu+duv)−(dLv+dvu)]+ (dvs−dus). Applying
two given inequalities, one has Cmax (σ )− Cmax

(
σ ′
)
<0. By the same argument,∑m

p=1wpCOp(σ )−
∑m

p=1wpCOp
(
σ ′
)
=
∑

pwp[(dLu+duv)− (dLv+dvu)+ (dvs− dus)]<0
because 0 <wp< 1. The last sum is over all orders on which the last job of the order is in
π c . Thus, g(σ )< g

(
σ ′
)
. �

Property 3: Consider a scheduled σ = (PS,US), where PS and US denote the scheduled
part with k jobs and the unscheduled part with (n-k) jobs, and PS∪US = N . If

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


dj[k−1]J[k] > dJ[k−1]Jv for all Jv ∈US, and Jv and J[k] belong to the same order, then σ = (PS,US)
can be eliminated.

In the ensuing discussion, our objective is to establish a lower bound for the schedule
denoted as σ = (π,π c), where π represents the scheduled portion comprising k jobs, and
π c signifies the set of n-k unscheduled jobs. Let tπ denote the completion time of the final
job, JL, in π , and

∑
i∈πwiCOi stand for the aggregate weighted completion time of the

scheduled orders in π .
In light of the sequence-dependent aspect, we incorporate JLL into the set π c , resulting

in the creation of a new set denoted as π c∗
=π c
∪{JL}, now comprising (n−k+1) jobs. To

approximate the completion times in π c , we embark on the following procedure to extract
the (n−k) smallest sequence-dependent setup times within π c∗. These recorded values are
denoted as D(1), D(2), . . . , D(n−k).

01: do u=1, (n−k+1)
02: do v =1, (n−k+1)
03: if (u 6= v) then
04: index(Ju,Jv)= 1 for Ju,Jv ∈π c∗

05: endif
06: enddo
07: enddo
08: l = 0
09: do i= 1, (n−k)
10: idmin=M (a very large number)
11: do u=1, (n−k+1)
12: do v =1, (n−k+1 )
13: if (dJuJv<idmin and index(Ju,Jv)= 1) then
14: idmin= dJuJv
15: id1= Ju
16: id2= Jv
17: endif
18: enddo
19: enddo
20: l = l+1
21: set D(l)= idmin; index(id1, id2)= 0
22: enddo
23: output D(1), . . . , D(n−k).

Notably, the values of D(1), . . . , D(n−k) exhibit a non-decreasing trend. Consequently,
we can estimate the lower bound for each C[k+i](σ ), with i ranging from 1 to n−k, by
employing the following formula:

C[k+i](σ )= tπ+
i∑

v=1

Dv ,i= 1,...,n−k, (1)

Additionally, we maintain a record of the frequency number fi corresponding to each
order in π c , where i spans from 1 to q, with 1≤ f1≤ f2≤ ...≤ fq and q<m. Utilizing Eq. (1),

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


we derive completion times for the outstanding orders in π c as C[k+f1](σ ), C[k+f1+f2](σ ),
. . . , C[k+f1+f2+...+fq](σ ).

Furthermore, we arrange the weights w(1) ≤w(2) ≤ ...≤w(q) in non-decreasing order
within the set {wv ∈π

c ,v =1 ,...,q}. Applying the lemma established by Hardy, Littlewood
& Polya (1967), we arrive at a lower bound for the estimated weighted completion times of
the unscheduled q orders, represented as

∑q
i=1w(q−i+1)C[k+∑i

v=1fv
](σ ). Hence, the lower

bound is derived as follows:
θCmax (σ ) + (1 − θ)

∑m
p=1wpCp(σ ) ≥ θ

(
tπ+

∑n−k
v=1Dv

)
+

(1−θ)
(∑b

v=1wvC[v](σ )+
∑q

i=1w(q−i+1)C[k+∑i
v=1fv

](σ )
)
, where b +q =m.

Heuristic methods and heuristic-based genetic algorithm
Given that the proposed problem with only a single criterion has been shown to be
NP-hard, the problem require significant CPU time to find exact solutions as the
number of jobs increases. Thus, three heuristics based on problem characteristics will
be provided. In the beginning, we choose a job Ju with the smallest value among job set
N, that is, d0Ju =min{d0Ji, Ji ∈N } to be scheduled on the first position. Subsequently,
we choose the second job Jv with the smallest value among job set N \{Ju}; i.e.,
dJuJv =min{dJuJi,Ji ∈N \{Ju}}, andwe perform the same process until all jobs are determined
to yield an initial schedule σ . To obtain a finer quality of solutions, following the idea of
Della Croce, Narayan & Tadei (1996), we perform three improved schemes (pairwise
interchange (PI), extraction and forward-shifted reinsertion (FOR) and extraction and
backward-shifted reinsertion (BK)) on the initial schedule σ . They are denoted as DPI,
DFOR, and DBK. The details of the proposed heuristics are given as follows:

The procedures of three improved algorithms:

However, the existing level of complexity is insufficient to address the intricacies of the
proposed model. Conversely, metaheuristics present a notably higher level of complexity
and present a significant challenge in terms of effective design and implementation,
especially in the context of intelligent random search strategies (Holland, 1975; Bean, 1994;
Larranaga et al., 1999; Nguyen, Mei & Zhang, 2017).

Within the realm of metaheuristics, the GA distinguishes itself as a well-established
and effective method for generating high-quality approximate solutions to a diverse set of
combinatorial problems. Extensive research has demonstrated the GA’s ability to discover
near-optimal solutions for a wide array of complex challenges (Iyer & Saxena, 2004; Essafi,
Matib & Dauzere-Peres, 2008; Beasley, Bull & Martin, 1993; Fan et al., 2022).

The foundational principles of GA were rigorously established by Holland (1975). A
genetic algorithm initiates with a set of feasible solutions, referred to as the population,
and subsequently replaces the current population through an iterative process. This entails
the necessity of a suitable encoding for the specific problem and the formulation of a
fitness function that serves as a metric for assessing the quality of each encoded solution
(chromosome or individual). The reproductive mechanism selects the parents and employs
a crossover operator to recombine them, resulting in offspring that undergo a mutation

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


00: Input {d0Ji , Ji ∈N } and {dJiJj ,Ji,Jj ∈N }
01: Set σ as an empty set and l =1
02: Choose Ju with the smallest value of d0Ju among {d0Ji , Ji ∈N } to be the l th position
03: Set σ = (Ju,...), delete Ju from N, record as N \{ Ju}, and l =l +1
04: Do while {l <= n}
05: Choose Jv with the smallest value of dJuJv among {dJuJi ,Ji ∈N \{Ju}} to be the l

th position
06: Set σ = (Ju,Jv ,...), delete Jv from N {Ju}
07: Record as N \{Ju,Jv}, and l = l+1
08: End while.
09: Output the final solution σ .
10: Apply the methods (PI, FOR, and BK) separately to improve σ
11: Do k1 =1 to n−1
12: Do k2 =k 1+1 to n
13: Choose the k1 position job and the k2 position job in σ to perform the PI, FOR, and BK
separately to improve σ .
14: Keep the best one.
15: End do
16: End do
17: Output these three refined solutions (DPI, DFOR, and DBK).

operator to introduce local alterations (Essafi, Matib & Dauzere-Peres, 2008). The genetic
algorithm proceeds through the following key stages:
Step 1. Representation of structure:
IA structure is defined as a sequence of jobs (Etiler et al., 2004)

Step 2. Initial population:
IDrawing on established heuristics in the literature is advised for constructing the initial

population (Etiler et al., 2004). This approach expedites the convergence toward the final
solution. This study adopts three initial sequences:
IDPIGA, DFORGA, and DBKGA create their populations based on three initial

sequences DPI, DFOR, and DBK by using the pairwise interchange method.
Step 3. Population size:
IThe population is set at nsize.

Step 4. Fitness function:
IThe objective is to minimize the objective function g (σ ) (i.e., a linear combination

of the sum of the makespan and the weighted completion times of all m orders, i.e.,
g (σ )= θCmax (σ )+(1−θ)

∑m
i=1wiCi(σ ). The fitness function of each string (i.e., ith string

in the t th generation) is calculated as
h(σi(t ))=max1≤j≤nsize

{
g
(
σj (t )

)}
−g (σi(t ))

and the probability of selection of the ith string is defined as
P(σi(t ))= h(σi(t ))/

∑nsize
i=1 h(σi(t ))

IThis function is pivotal for parent selection and reproduction.
Step 5. Crossover:
IThis study employs the partially matched crossover technique, with a crossover rate

of 1
Step 6. Mutation:

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 8/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


IThe mutation rate is set at p.
Step 7. Selection:
IPopulation sizes remain constant at nsize from one generation to the next. Offspring,

excluding the best schedule with the minimum g (σ ), are generated from parent
chromosomes using the roulette wheel method.
Step 8. Stopping rule:
IEach DPIGA, DFORGA, or DBKGA iteration is concluded after gsize times.

TUNING THE RELATED PARAMETER OF THREE HEURISTIC-
BASED GENETIC ALGORITHMS
In this section, we conduct several experimental tests to explore the values of related
parameters of three heuristic-based genetic algorithms (GAs). To determine the parameters
used in three GAs as chromosome count nsize, evolution generations gsize and mutation
rate p, we consider an experimental design as the number of jobs at n =12, the number of
orders at m =2, and the weight of objective function at θ = 0.25. One hundred instances
are tested for this case. The initial setup times d0Ju and sequence-dependent setup time
duv are generated from uniformly distributed U[1, 20], while the weights of orders wi

are generated from uniformly distributed U[1, 10]. The optimal solutions (Opti) and the
near-optimal solutions (GAHi) are produced by performing the B&B method and three
heuristic-based GAs (DPIGA, DFORGA, or DBKGA). The measurement criterion is based
on the average error percentage (AEP) or AEP =

{∑100
i=1
(
GAHi−Opti

)
/Opti

}
/100. The

parameter tuning process is based on a single-factor experimental method applied to a set
of generated problem instances.

To evaluate the value of nsize, gsize was fixed initially at 50 and p was fixed at 0.02.
We executed DPIGA, DFORGA, and DBKGA several times and changed the values of
nsize over the interval [10, 50] with an increment of four. As shown in Fig. 1 (top), as
the nsize value increases, the trends of the AEPs rapidly decrease and become flat at point
50 obtained from DBKGA. Therefore, in subsequent simulation experiments, the nsize is
adopted at 50.

With the previously determined nsize at 50 and fixedmutation rate at 0.02, we performed
three GAs to determine the values of gsize over [10, 200] with an increment of 10. Figure
1 (middle) shows that the AEP of DBKGA has a minimum point at 180. Thus, gsize is set
at 180 for all three proposed GAs in later experiments.

After investigating the parameters nsize and gsize, we established nsize =50 and gsize
=180. We conducted three GAs to assess the mutation rate p, ranging from 0.01 to 0.2
with a consistent increment of 0.01. As depicted in Fig. 1 (bottom), AEP demonstrates a
gradual convergence, while DBKGA attains the minimal error at a mutation rate of 0.2.
Accordingly, we adopt a mutation rate of 0.2 as the benchmark for all three GAs in the
subsequent stages.

In a similar way, we conducted another one hundred random instances at n =240 to
explore the values of three parameters of nsize, gsize, and p for threeGAs (DPIGA,DFORGA,
and DBKGA). Based on previous studies, to capture parameters that outperform three

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 9/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


Figure 1 Exploring the values of parameters for three GAs.
Full-size DOI: 10.7717/peerjcs.1763/fig-1

simple heuristic algorithms (DPI, DFOR, and DBK), we only performed DFORGA to
change the values of one parameter but fixed other parameters each time and compared
the objective function of DFORGA with those from DPI, DFOR, and DBK. In this case,
we performed three simple heuristic algorithms (DPI, DFOR, and DBK) and DFORGA to
solve the data set and computed each average of their objective functions. The final results
are summarized and reported in Table 1. It can be observed in Table 1 that nsize =100,
gsize =1500, and p =0.2 are appropriate values for using DPIGA, DFORGA, and DBKGA.

Based on the above tests, the population size (nsize), generation size (gsize), andmutation
rate (p) are set at (50, 180, 0.2) for the small n case and at (100, 1500, 0.2) for big n case in
all three GAs (DPIGA, DFORGA, and DBKGA).

COMPUTATIONAL SIMULATIONS AND DISCUSSIONS
This section conducts some tested designs to assess the performances of the proposed
B&B, three heuristic methods (DPI, DFOR, and DBK), and three heuristic-based GAs
(DPIGA, DFORGA, and DBKGA). The solution methodologies for the proposed problem
are summarized as follows.

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 10/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1763/fig-1
http://dx.doi.org/10.7717/peerj-cs.1763


Table 1 The summary of changing related parameters in DFORGA.

DPI DFOR DBK DFORGA DFORGA DFORGA DFORGA DFORGA

(nsize, gsize, p) (100, 1500, 0.2) (150, 1500, 0.2) (200, 1500, 0.2) (250, 1500, 0.2) (300, 1500, 0.2)
mean 7076.30 7144.24 7072.63 7069.48 7076.26 7101.08 7125.53 7128.32
(nsize, gsize, p) (100,1200, 0.2) (100, 1300, 0.2) (100, 1400, 0.2) (100, 1500, 0.2) (100, 1600, 0.2)
mean 7076.30 7144.24 7072.63 7079.52 7077.23 7072.63 7069.48 7071.43
(nsize, gsize, p) (100,1500, 0.16) (100,1500, 0.17) (100, 1500, 0.18) (100, 1500, 0.19) (100, 1500, 0.2)
mean 7076.30 7144.24 7072.63 7085.795 7072.375 7072.69 7084.76 7069.48

Xu
etal.(2024),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.1763
11/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


Optimal solution method B&B
Approximate solution methods DPI, DFOR, and DBK

DPIGA, DFORGA, and DBKGA

All the related parameters are designed as follows. The initial setup times d0Ju and
sequence-dependent setup time duv are generated from uniformly distributed U[1, 20],
and the weights of orders wi are generated from uniformly distributed U[1, 10]. The
experimental designs include the weight of the objective function at θ = 0.25, 0.5, and 0.75,
the number of jobs at n =12, 16, 20, and 24 for the small-job case, and n =60, 120, 180
and 240 for the large-number-of-job case. It should be emphasized that n =m*nc signifies
that the total of n jobs can be apportioned among m orders, with each order containing
nc jobs. The details are summarized in Table 2. The experiment investigates 24 cases for
both small and large job numbers. In each case, 100 instances are generated to assess the
performance of all proposed methods. In total, 2,400 instance problems are examined for
both small and large job sets. The findings are summarized in Tables 3, 4, and 5.

When dealing with a case with a small number of jobs, we assess the effectiveness
of the three heuristic algorithms (DPI, DFOR, and DBK) and the DPIGA, DFORGA,
and DBKGA algorithms by examining their average error percentage and maximum
error across various values of n, m, and θ . The AEP is computed as follows: AEP ={∑100

1
(
Hsoli−Opti

)
/Opti

}
/100, where Opti is derived from the B&B method, while Hsoli

isproduced using the six proposed approximate techniques. Additionally, we furnish the
mean and maximum values of the explored nodes, along with their respective CPU times
(measured in seconds), to evaluate the performance of B&B for each scenario. It is worth
noting that an instance problem is considered feasible if the B&B process requires fewer
than 108 nodes.

With regard to the performance of B&B, columns 3 and 5 of Table 3 show that B&B
consumes more nodes or CPU time at smaller order numbers (m =2) compared to larger
order numbers (m =3 or 4). This implies that the properties and lower bounds become
more useful as the number of orders increases. The effect of θ in columns 3 and 5 of Table
3 does not show a clear trend. Additionally, the number of nodes increases significantly as
the number of jobs (n) increases. This phenomenon aligns with the characteristics of the
NP-hard problem.

In regard to the obtained results for the three heuristics (DPI, DFOR, andDBK) and three
genetic algorithms (DPIGA, DFORGA, and DBKGA) applied to cases with small n, Table 4
and Fig. 2 present their respective average error percentages. To summarize, the mean AEP
values are 0.4733, 0.5246, and 0.4551 for DPI, DFOR, and DBK and 0.3412, 0.3504, and
0.3358 for DPIGA, DFORGA, andDBKGA, respectively. The DBKGA algorithm performed
better than all other approaches. Table 4 provides the mean AEP values corresponding to
different values of parameters θ , m, and n. Upon inspection of Table 4, it is evident that
the AEPs for the three heuristics and three GAs experience a marginal rise as n increases

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


Table 2 The data set of stimulation design.

parameter n =m *nc

n 12=2*6,12= 3*4,16= 2*8,16= 4*420=2*10,20= 4*5,
24=2*12, 24=4*6
60=4*15, 60=6*10, 120=6*20, 120=10*12, 180=6*30,
180=10*18, 240=6*40, 240=10*24

θ 0.25, 0.5, 0.75
d0Ju uniformly distributed U[1, 20]
duv uniformly distributed U[1, 20]
wi uniformly distributed U[1, 10]

Table 3 The results of the B&Bmethod.

node CPU-time

n m mean max mean max Total FS

12 2 3603 23080 0.09 0.39 300
3 2738 14983 0.07 0.30 300

16 2 94499 674705 4.57 28.60 300
4 39709 266953 2.27 14.09 300

20 2 1976143 13814903 216.12 1445.10 300
4 754438 6457332 101.95 805.16 300

24 2 21693624 87773444 4728.86 17225.56 176
4 13871371 80046608 3447.21 18942.06 291
θ

12 0.25 3250 16567 0.08 0.30 200
0.50 2910 16983 0.08 0.32 200
0.75 3352 23545 0.08 0.41 200

16 0.25 73172 407531 3.71 20.28 200
0.50 73943 666187 3.70 28.70 200
0.75 54198 338770 2.84 15.06 200

20 0.25 1588482 13093062 181.34 1368.09 200
0.50 1254223 7857226 147.42 879.21 200
0.75 1253167 9458065 148.35 1128.09 200

24 0.25 19043167 93142508 4370.00 20408.00 183
0.50 14440245 88944864 3553.43 19576.63 98
0.75 15884964 69785019 3696.21 15540.97 186

Total mean 3844723 852.64

from 12 to 24. In contrast, these AEPs exhibit a comparatively stable trend when subjected
to changes in the values of m or θ .

According to the criterion of average relative percentage deviation (RPD), RPD is
calculated as follows: RPD=

{∑100
1 (Hsoli−Hmin)/Hmin

}
/100, whereHsoli represents the

output obtained using the six proposed approximate methods, and Hmin is the minimum
value among these six solutions. Table 5 and Fig. 3 present an evaluation of the performance
of the heuristics and genetic algorithms in the context of larger n values. The data in Table

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


Table 4 The results of three heuristics (DPI, DFOR, and DBK) and three GAs (DPIGA, DFORGA, and DBKGA).

DPI DFOR DBK DPIGA DFORGA DBKGA

n m mean max mean max mean max mean max mean max mean max

12 2 0.3628 1.1018 0.4169 1.4138 0.3477 1.3154 0.2307 0.7681 0.2348 0.8269 0.2289 0.7269
3 0.3565 0.9779 0.4097 1.4292 0.3409 1.1221 0.2197 0.7931 0.2243 0.7955 0.2140 0.7603

16 2 0.4482 1.1769 0.4980 1.4854 0.4433 1.2741 0.3273 0.9767 0.3397 0.8941 0.3282 0.8980
4 0.4388 1.3809 0.4839 1.6221 0.4247 1.3785 0.3173 1.0354 0.3246 1.0215 0.3138 0.9138

20 2 0.4978 1.2862 0.5535 1.4642 0.4699 1.2807 0.3596 1.0299 0.3705 0.9695 0.3491 0.8306
4 0.5263 1.8886 0.5890 1.6876 0.5108 1.4705 0.3801 1.0245 0.3870 1.1743 0.3761 1.0183

24 2 0.5799 1.2430 0.6258 1.3743 0.5519 1.2469 0.4418 1.0662 0.4550 0.9625 0.4303 0.9644
4 0.5771 1.1681 0.6211 1.6622 0.5524 1.1642 0.4538 0.9000 0.4681 0.9188 0.4466 0.8626
θ

12 0.25 0.3461 0.9620 0.3876 1.1592 0.3139 1.0635 0.2178 0.7679 0.2085 0.7535 0.2035 0.6884
0.5 0.3699 1.2663 0.4293 1.8764 0.3639 1.6117 0.2247 0.8055 0.2313 0.9864 0.2290 0.7887
0.75 0.3630 0.8914 0.4231 1.2290 0.3551 0.9812 0.2332 0.7684 0.2489 0.6938 0.2319 0.7538

16 0.25 0.4348 1.0311 0.4722 1.3818 0.4100 1.2300 0.3101 0.8895 0.3094 0.8825 0.2993 0.7854
0.5 0.4365 1.2126 0.4982 1.4653 0.4325 1.1328 0.3092 0.8963 0.3299 0.9468 0.3167 0.8663
0.75 0.4593 1.5929 0.5025 1.8142 0.4596 1.6161 0.3477 1.2324 0.3571 1.0443 0.3471 1.0660

20 0.25 0.4957 1.9983 0.5483 1.5351 0.4710 1.2238 0.3512 0.8905 0.3587 1.0120 0.3488 0.8983
0.5 0.5079 1.4066 0.5646 1.6820 0.4925 1.4998 0.3643 0.9674 0.3742 0.9044 0.3582 0.9088
0.75 0.5327 1.3574 0.6009 1.5105 0.5077 1.4032 0.3942 1.2237 0.4034 1.2992 0.3809 0.9664

24 0.25 0.5393 1.1736 0.5730 1.2878 0.5161 1.1983 0.4190 0.9343 0.4259 0.9161 0.4092 0.9483
0.5 0.6034 1.2514 0.6547 1.9296 0.5745 1.2461 0.4624 1.0145 0.4725 0.9711 0.4529 0.8980
0.75 0.5916 1.1856 0.6411 1.3456 0.5649 1.1663 0.4622 0.9883 0.4864 0.9311 0.4537 0.8884

Total mean 0.4733 0.5246 0.4551 0.3412 0.3504 0.3358

Figure 2 Boxplots of AEPs for three heuristics and three GAs for small n.
Full-size DOI: 10.7717/peerjcs.1763/fig-2

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 14/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1763/fig-2
http://dx.doi.org/10.7717/peerj-cs.1763


Figure 3 Boxplots of RPDs for three heuristics and three GAs for large n.
Full-size DOI: 10.7717/peerjcs.1763/fig-3

5 reveal a consistent trend: regardless of the value of n, DBKGA consistently achieves the
lowest average RPD among the three heuristics (DPI, DFOR, and DBK) and the two GAs
(DPIGA, DFORGA). Specifically, the average RPD values are 0.0383, 0.0548, and 0.0341 for
DPI, DFOR, and DBK, respectively, and 0.0136, 0.0201, and 0.0099 for DPIGA, DFORGA,
and DBKGA, respectively.

Additionally, box plots are presented in Fig. 3 to visually depict the mean RPD for the
heuristics and GAs. These plots clearly show that the overall range and interquartile ranges
of the mean RPDs are broader for DPI, DFOR, and DBK than for DPIGA, DFORGA, and
DBKGA.As indicated in Table 5, as n increases from 60 to 240, the average RPD values
exhibit a declining trend.

Regarding computational times, Fig. 4 displays violin plots that visualize the distribution
of average CPU time for both the three heuristic algorithms and the three GAs under the
conditions of large n. These plots clearly indicate that the overall range and interquartile
ranges of average CPU times for DPIGA, DFORGA, and DBKGA are broader compared to
DPI, DFOR, and DBK. Specifically, the average CPU time values are 0.0196, 0.0195, and
0.0197 for DPI, DFOR, and DBK, respectively, while they are 2.5596, 2.6028, and 2.5983
for DPIGA, DFORGA, and DBKGA, respectively. We do not provide CPU time reports for
these six methods in the case of small n because they are less than one second of CPU time.

Below, we delve into the statistical significance of distinctions among the three heuristic
approaches and the three GA algorithms. Initially, we applied an analysis of variance
(ANOVA) technique utilizing a linear model on the AEP data for small ‘n’ or RPD data
for large ‘n’ within SAS 9.4. The ANOVA, shown in Table 6 and 7, revealed that the model
was significant for both small ‘n’ and large ‘n’. Additionally, the algorithm and job-size
(n) factors exhibited significance for both small ‘n’ with an F test value of 456.67 and five
degrees of freedom and for RPD with an F test value of 50.13 and five degrees of freedom.
It is also noticeable that the factors of weight (θ) for the objective function and number

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 15/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1763/fig-3
http://dx.doi.org/10.7717/peerj-cs.1763


Table 5 Summary of RPDs of three heuristics (DPI, DFOR, and DBK) and three GAs (DPIGA, DFORGA, and DBKGA) (large n).

DPI DFOR DBK DPIGA DFORGA DBKGA

n m mean max mean max mean max mean max mean max mean max Total FS

60 4 0.0864 0.3481 0.1162 0.3768 0.0786 0.3346 0.0251 0.1814 0.0350 0.2119 0.0177 0.1285 300
6 0.0780 0.2712 0.1001 0.3603 0.0688 0.2885 0.0239 0.1475 0.0301 0.1507 0.0190 0.1046 300

120 6 0.0368 0.1408 0.0545 0.1774 0.0320 0.1337 0.0136 0.1155 0.0190 0.1179 0.0112 0.0638 300
10 0.0348 0.1163 0.0509 0.1575 0.0303 0.1061 0.0133 0.0778 0.0205 0.1062 0.0101 0.0735 300

180 6 0.0221 0.0843 0.0352 0.1276 0.0198 0.0845 0.0104 0.0685 0.0165 0.0737 0.0063 0.0456 300
10 0.0204 0.0585 0.0335 0.1076 0.0185 0.0588 0.0084 0.0530 0.0163 0.0782 0.0063 0.0387 300

240 6 0.0154 0.0555 0.0256 0.0901 0.0136 0.0597 0.0076 0.0551 0.0124 0.0557 0.0043 0.0330 300
10 0.0124 0.0471 0.0224 0.0852 0.0109 0.0479 0.0060 0.0319 0.0112 0.0553 0.0042 0.0262 300
θ

60 0.25 0.0771 0.2836 0.1028 0.3270 0.0696 0.2745 0.0212 0.1082 0.0303 0.1614 0.0192 0.1380 200
0.50 0.0826 0.3361 0.1082 0.4000 0.0763 0.3409 0.0259 0.1940 0.0317 0.2023 0.0195 0.1062 200
0.75 0.0868 0.3093 0.1134 0.3786 0.0753 0.3193 0.0264 0.1913 0.0357 0.1801 0.0163 0.1055 200

120 0.25 0.0357 0.1433 0.0537 0.1625 0.0303 0.1325 0.0127 0.0902 0.0184 0.1274 0.0094 0.0696 200
0.50 0.0339 0.1096 0.0491 0.1504 0.0303 0.1053 0.0136 0.0918 0.0198 0.0964 0.0105 0.0526 200
0.75 0.0379 0.1328 0.0554 0.1895 0.0328 0.1220 0.0141 0.1080 0.0211 0.1123 0.0121 0.0838 200

180 0.25 0.0206 0.0717 0.0337 0.1128 0.0188 0.0661 0.0084 0.0586 0.0140 0.0616 0.0062 0.0369 200
0.50 0.0230 0.0674 0.0368 0.1200 0.0206 0.0765 0.0100 0.0640 0.0191 0.0841 0.0060 0.0429 200
0.75 0.0202 0.0752 0.0325 0.1199 0.0181 0.0723 0.0098 0.0596 0.0161 0.0821 0.0066 0.0466 200

240 0.25 0.0140 0.0461 0.0231 0.0804 0.0116 0.0517 0.0075 0.0383 0.0114 0.0497 0.0045 0.0286 200
0.50 0.0146 0.0568 0.0255 0.0804 0.0136 0.0610 0.0067 0.0465 0.0126 0.0589 0.0042 0.0289 200
0.75 0.0131 0.0509 0.0234 0.1022 0.0115 0.0486 0.0063 0.0457 0.0114 0.0580 0.0040 0.0315 200

Total mean 0.0383 0.0548 0.0341 0.0136 0.0201 0.0099

Xu
etal.(2024),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.1763
16/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


Figure 4 Violin plots of CPU time for three heuristics and three GA algorithms (large n).
Full-size DOI: 10.7717/peerjcs.1763/fig-4

Table 6 ANOVA for small n.

Source DF Type I SS Mean Squared F value Pr>F

Algorithm 5 0.78956555 0.15791311 456.67 <.0001
n 3 0.91580969 0.30526990 882.82 <.0001
θ 2 0.04142559 0.02071280 59.90 <.0001
m 4 0.00987289 0.00246822 7.14 <.0001

Table 7 ANOVA for big n.

Source DF Type I SS Mean Squared F value Pr>F

Algorithm 5 0.03502865 0.00700573 50.13 <.0001
n 3 0.04215221 0.01405074 100.55 <.0001
θ 2 0.00010492 0.00005246 0.38 0.6878
m 4 0.00044112 0.00011028 0.79 0.5342

of orders (m) are significant in Table 6 for small ‘n’, whereas they did not demonstrate
significance for the large ‘n’ case shown in Table 7. The rationale behind this observation
is that the effect of ‘n’ outweighs the values of weight (θ) for the objective function or the
number of orders (m) in the context of the large ‘n’ case.

The normality assumption of the linear model was validated for both the AEP and RPD
data. This was evidenced by the Kolmogorov–Smirnov normality test, which produced p
values exceeding 0.05 (with statistic values of 0.053336 for small ‘n’ and 0.058442 for large
‘n’). Additionally, the AEP and RPD Tukey grouping for means of algorithms were also
tested. Figure 5 shows that the algorithms can be ranked into five groups. The five groups
range from the worst to the best as DFOR, DPI, DBK, DFORGA, and (DPIGA, DBKGA)
for the AEPs, shown in Fig. 5 (left) as well as the four groups from the worst to the best as

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 17/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1763/fig-4
http://dx.doi.org/10.7717/peerj-cs.1763


Figure 5 The AEP and RPD Tukey grouping for means of algorithms (Alpha= 0.05). Means covered
by the same bar are not significantly different.

Full-size DOI: 10.7717/peerjcs.1763/fig-5

DFOR, (DPI, DBK), (DFORGA, DPIGA), and (DPIGA, DBKGA) for the RPDs shown in
Fig. 5 (right).

The three heuristics (DPI, DFOR, and DBK) rely on predefined rules or strategies to find
solutions quickly.While effective in some cases, theymay get stuck in local optima and fail to
explore the entire solution space. On the other hand, the three GAs (DPIGA, DFORGA, and
DBKGA) employ population-based searches and a genetic-inspired selection, crossover,
and mutation process, which allows them to explore a broader range of the solution
space, potentially discovering better solutions. The advantages of genetic algorithms over
heuristics in setup time optimization often stem from their ability to handle complex
relationships, explore diverse solution spaces, and converge toward globally optimal
solutions by using evolutionary mechanisms. Overall, it can be confirmed that the DBKGA
is the best approach with the smallest value of AEP or RPD among all six proposed
algorithms.

CONCLUSIONS AND SUGGESTIONS
In practical settings, amachine incurs a setup timewhenever it switches fromprocessing one
product to another. Scheduling jobs while taking into account setup times and associated
costs has attracted significant attention in both the manufacturing and service sectors,
driving extensive research endeavors. While prior studies on customer order scheduling
often focused on jobs to be processed across multiple machines, they frequently overlooked
the critical factor of setup time. This study addresses a sequence-dependent bi-criterion
scheduling problem, integrating considerations for order delivery. The primary aim is to
pinpoint an optimal solution that minimizes the combined makespan and weighted sum
of completion times for all specified orders.

To tackle this formidable challenge, we propose a branch-and-bound method
incorporating two dominance properties and a lower bound. This approach is finely tuned
to yield optimal solutions in scenarios involving a limited number of jobs, exemplified by
cases with n =12, 16, 20, and 24. Demonstrating notable efficacy, this method excels for

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 18/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1763/fig-5
http://dx.doi.org/10.7717/peerj-cs.1763


up to n =24 jobs, accommodating diverse combinations of order quantities and objective
weights. For both small n (=12, 16, 20, and 24) and large n (= 60, 120, 180, and 240) tested
instances, we introduce a tailored heuristic approach. This heuristic is complemented by
three strategic techniques: pairwise interchange, extraction and forward-shifted reinsertion,
and extraction and backward-shifted reinsertion (DPI, DFOR, and DBK). Additionally,
we employ three heuristic-based genetic algorithms (DPIGA, DFORGA, and DBKGA) to
obtain reliable approximate solutions.

Notably, it is evident that DBKGA performed significantly better than the five other
proposed heuristics for both small and large test cases. A potential direction for future
research could involve expanding themodel to a sequence-dependent flow shop setting that
incorporates order deliveries. Furthermore, it may be worthwhile to investigate extending
this framework to minimize the total tardiness of all fulfilled orders. As another future
topic, we can also consider that the machine can break down or extend this model to the
multiple-machine setting.

ACKNOWLEDGEMENTS
We thank the Academic Editor and two referees for their positive and useful comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research received support from the National Natural Science Foundation of China,
grant number 72271048, and was also funded by the National Science and Technology
Council of Taiwan, under Grant No. NSTC 112-2221-E-035-060-MY2. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Natural Science Foundation of China: 72271048.
The National Science and Technology Council of Taiwan: NSTC 112-2221-E-035-060-
MY2.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jian-You Xu conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, pay the charge once paper is accepted, and approved the
final draft.
• Win-Chin Lin conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763


• Kai-Xiang Hu performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.
• Yu-Wei Chang performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.
• Wen-Hsiang Wu performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Peng-Hsiang Hsu performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Tsung-Hsien Wu conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
• Chin-ChiaWu analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1763#supplemental-information.

REFERENCES
Allahverdi A. 2015. The third comprehensive survey on scheduling problems with

setup times/costs. European Journal of Operational Research 246(2):345–378
DOI 10.1016/j.ejor.2015.04.004.

Allahverdi A, Gupta JND, Aldowaisan T. 1999. A review of scheduling research involv-
ing setup considerations. Omega 27(2):219–239 DOI 10.1016/S0305-0483(98)00042-5.

Allahverdi A, Ng CT, Cheng TCE, KovalyovMY. 2008. A survey of scheduling problems
with setup times or costs. European Journal of Operational Research 187:985–1032
DOI 10.1016/j.ejor.2006.06.060.

Allahverdi A, Soroush HM. 2008. The significance of reducing setup times/setup costs.
European Journal of Operational Research 187:978–984 DOI 10.1016/j.ejor.2006.09.010.

de Athayde Prata B, Rodrigues CD, Framinan JM. 2021a. Customer order scheduling
problem to minimize makespan with sequence-dependent setup times. Computers &
Industrial Engineering 151:106962 DOI 10.1016/j.cie.2020.106962.

de Athayde Prata B, Rodrigues CD, Framinan JM. 2021b. A differential evolution algo-
rithm for the customer order scheduling problem with sequence-dependent setup
times. Expert Systems with Applications 189:116097 DOI 10.1016/j.eswa.2021.116097.

Bean JC. 1994. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal of Computing 6:154–160 DOI 10.1287/ijoc.6.2.154.

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 20/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1763#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1763#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1763#supplemental-information
http://dx.doi.org/10.1016/j.ejor.2015.04.004
http://dx.doi.org/10.1016/S0305-0483(98)00042-5
http://dx.doi.org/10.1016/j.ejor.2006.06.060
http://dx.doi.org/10.1016/j.ejor.2006.09.010
http://dx.doi.org/10.1016/j.cie.2020.106962
http://dx.doi.org/10.1016/j.eswa.2021.116097
http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.7717/peerj-cs.1763


Beasley D, Bull D, Martin RR. 1993. An overview of genetic algorithms, part 1: funda-
mentals. Journal of University Computing 15:58–69.

Cheng TCE, Gupta JND,Wang G. 2000. A review of flowshop scheduling research
with setup times. Production and Operations Management 9(3):262–282
DOI 10.1111/j.1937-5956.2000.tb00137.x.

Della Croce F, Narayan V, Tadei R. 1996. The two-machine total completion time
flow shop problem. European Journal of Operational Research 90:227–237
DOI 10.1016/0377-2217(95)00351-7.

Erel E, Ghosh JB. 2007. Customer order scheduling on a single machine with family
setup times: complexity and algorithms. Applied Mathematics and Computation
185:11–18 DOI 10.1016/j.amc.2006.06.086.

Essafi I, Matib Y, Dauzere-Peres S. 2008. A genetic local search algorithm for minimiz-
ing total weighted tardiness in the job-shop scheduling problem. Computers and
Operations Research 35:2599–2616 DOI 10.1016/j.cor.2006.12.019.

Etiler O, Toklu B, AtakM,Wilson J. 2004. A generic algorithm for flow shop
scheduling problems. Journal of Operations Research Society 55(8):830–835
DOI 10.1057/palgrave.jors.2601766.

Fan J, Zhang C, Liu Q, ShenW, Gao L. 2022. An improved genetic algorithm for
flexible job shop scheduling problem considering reconfigurable machine tools
with limited auxiliary modules. Journal of Manufacturing Systems 62:650–667
DOI 10.1016/j.jmsy.2022.01.014.

Framinan JM, Perez-Gonzalez P. 2018. Order scheduling with tardiness objective:
improved approximate solutions. European Journal of Operational Research
266(3):840–850 DOI 10.1016/j.ejor.2017.10.064.

Gupta JN, Ho JC, van der Veen JA. 1997. Single machine hierarchical scheduling with
customer orders and multiple job classes. Annals of Operations Research 70:127–143
DOI 10.1023/A:1018913902852.

Gupta JND,Wu CC, LinWC, Zhang XG, Bai D, Lia CC. 2023. Bicriteria single-machine
scheduling with multiple job classes and customer orders. Applied Soft Computing
Journal 147:110809 DOI 10.1016/j.asoc.2023.110809.

Hardy GH, Littlewood JE, Polya G. 1967. Inequalities. London, Cambridge: University
Press.

Hazır Ö, Günalay Y, Erel E. 2008. Customer order scheduling problem: a comparative
metaheuristics study. The International Journal of Advanced Manufacturing Technol-
ogy 37(5–6):589–598 DOI 10.1007/s00170-007-0998-8.

Holland J. 1975. Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

Hsu SY, Liu CH. 2009. Improving the delivery efficiency of the customer order schedul-
ing problem in a job shop. Computers and Industrial Engineering 57:856–866
DOI 10.1016/j.cie.2009.02.015.

Iyer SK, Saxena BS. 2004. Improved memetic genetic algorithm for the permutation
flowshop scheduling problem. Computers and Operations Research 31:593–606
DOI 10.1016/S0305-0548(03)00016-9.

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 21/23

https://peerj.com
http://dx.doi.org/10.1111/j.1937-5956.2000.tb00137.x
http://dx.doi.org/10.1016/0377-2217(95)00351-7
http://dx.doi.org/10.1016/j.amc.2006.06.086
http://dx.doi.org/10.1016/j.cor.2006.12.019
http://dx.doi.org/10.1057/palgrave.jors.2601766
http://dx.doi.org/10.1016/j.jmsy.2022.01.014
http://dx.doi.org/10.1016/j.ejor.2017.10.064
http://dx.doi.org/10.1023/A:1018913902852
http://dx.doi.org/10.1016/j.asoc.2023.110809
http://dx.doi.org/10.1007/s00170-007-0998-8
http://dx.doi.org/10.1016/j.cie.2009.02.015
http://dx.doi.org/10.1016/S0305-0548(03)00016-9
http://dx.doi.org/10.7717/peerj-cs.1763


Julien FM,Magazine MJ. 1990. Scheduling customer orders: an alternative production
scheduling approach. Journal of Manufacturing and Operations Management
3:177–199.

Kim SC, Bobrowski PM. 1997. Scheduling jobs with uncertain setup times and sequence
dependency. Omega 25(4):437–447 DOI 10.1016/S0305-0483(97)00013-3.

Larranaga P, Kuijpers CMH,Murga RH, Inza I, Dizdarevic S. 1999.Memetic genetic
algorithms for the travelling salesman problem: a review of representations and
operators. Artificial Intelligence Review 13:129–170 DOI 10.1023/A:1006529012972.

Li LY, LinWC, Bai D, Zhang XG, Azzouze A, Cheng SR,Wu YL,Wu CC. 2023.
Composite heuristics and water wave optimality algorithms for tri-criteria multiple
job classes and customer order scheduling on a single machine. International Journal
of Industrial Engineering Computations 14:265–274 DOI 10.5267/j.ijiec.2023.2.002.

Liao CJ. 1993. Tradeoff between setup times and carrying costs for finished items.
Computers & Operations Research 20:697–705 DOI 10.1016/0305-0548(93)90057-P.

Lin BMT, Yin PY, Liu YS. 2013. Sequence-dependent scheduling with order deliveries.
Applied Mathematics and Computation 222:58–71 DOI 10.1016/j.amc.2013.06.087.

LinWC, Zhang XG, Liu X, Hu KX, Cheng SR, Azzouz A,Wu CC. 2023. Sequencing
single machine multiple-class customer order jobs using heuristics and improved
simulated annealing algorithms. RAIRO—Operations Research 57:1417–1441
DOI 10.1051/ro/2023056.

Liu CH. 2009. Lot streaming for customer order scheduling problem in job shop
environments. International Journal of Computer Integrated Manufacturing
22(9):890–907 DOI 10.1080/09511920902866104.

Liu CH. 2010. A coordinated scheduling system for customer orders scheduling prob-
lem in job shop environments. Expert Systems with Applications 37:7831–7837
DOI 10.1016/j.eswa.2010.04.055.

Nguyen S, Mei Y, ZhangM. 2017. Genetic programming for production scheduling: a
survey with a unified framework. Complex & Intelligent Systems 3:4–66.

Su LH, Chen PS, Chen SY. 2013. Scheduling on parallel machines to minimise maximum
lateness for the customer order problem. International Journal of Systems Science
44(5):926–936 DOI 10.1080/00207721.2011.649366.

van Donk DP, van Doorne R. 2016. The impact of the customer order decoupling point
on type and level of supply chain Integration. International Journal of Production
Research 54(9):2572–2584 DOI 10.1080/00207543.2015.1101176.

WuCC, LinWC, Zhang X, Chung IH, TH Yang, Lai K. 2019. Tardiness minimi-
sation for a customer order scheduling problem with sum-of-processing-time-
based learning effect. Journal of the Operational Research Society 70(3):487–501
DOI 10.1080/01605682.2018.1447249.

YangWH, Liao CJ. 1999. Survey of scheduling research involving setup times. Interna-
tional Journal of Systems Science 30(2):143–155 DOI 10.1080/002077299292498.

Ying KC, Pourhejazy P, Cheng CY, Syu RS. 2023. Supply chain-oriented permutation
flowshop scheduling considering flexible assembly and setup times. International
Journal of Production Research 61(1):258–281 DOI 10.1080/00207543.2020.1842938.

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 22/23

https://peerj.com
http://dx.doi.org/10.1016/S0305-0483(97)00013-3
http://dx.doi.org/10.1023/A:1006529012972
http://dx.doi.org/10.5267/j.ijiec.2023.2.002
http://dx.doi.org/10.1016/0305-0548(93)90057-P
http://dx.doi.org/10.1016/j.amc.2013.06.087
http://dx.doi.org/10.1051/ro/2023056
http://dx.doi.org/10.1080/09511920902866104
http://dx.doi.org/10.1016/j.eswa.2010.04.055
http://dx.doi.org/10.1080/00207721.2011.649366
http://dx.doi.org/10.1080/00207543.2015.1101176
http://dx.doi.org/10.1080/01605682.2018.1447249
http://dx.doi.org/10.1080/002077299292498
http://dx.doi.org/10.1080/00207543.2020.1842938
http://dx.doi.org/10.7717/peerj-cs.1763


Zhao Y, Xu X, Li H, Liu Y. 2018. Stochastic customer order scheduling with setup
times to minimize expected cycle time. International Journal of Production Research
56(7):2684–2706 DOI 10.1080/00207543.2017.1381348.

Xu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1763 23/23

https://peerj.com
http://dx.doi.org/10.1080/00207543.2017.1381348
http://dx.doi.org/10.7717/peerj-cs.1763

