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ABSTRACT
Transformers have demonstrated significant promise for computer vision tasks.
Particularly noteworthy is SwinUNETR, a model that employs vision transformers,
which has made remarkable advancements in improving the process of segmenting
medical images. Nevertheless, the efficacy of training process of SwinUNETR has been
constrained by an extended training duration, a limitation primarily attributable to
the integration of the attention mechanism within the architecture. In this article,
to address this limitation, we introduce a novel framework, called the MetaSwin
model. Drawing inspiration from the MetaFormer concept that uses other token mix
operations, we propose a transformative modification by substituting attention-based
components within SwinUNETR with a straightforward yet impactful spatial pooling
operation. Additionally, we incorporate of Squeeze-and-Excitation (SE) blocks after
each MetaSwin block of the encoder and into the decoder, which aims at segmentation
performance. We evaluate our proposed MetaSwin model on two distinct medical
datasets, namely BraTS 2023 and MICCAI 2015 BTCV, and conduct a comprehensive
comparison with the two baselines, i.e., SwinUNETR and SwinUNETR+SE models.
Our results emphasize the effectiveness of MetaSwin, showcasing its competitive edge
against the baselines, utilizing a simple pooling operation and efficient SE blocks.
MetaSwin’s consistent and superior performance on the BTCV dataset, in comparison
to SwinUNETR, is particularly significant. For instance, with a model size of 24,
MetaSwin outperforms SwinUNETR’s 76.58% Dice score using fewer parameters
(15,407,384 vs 15,703,304) and a substantially reduced training time (300 vs 467
mins), achieving an improved Dice score of 79.12%. This research highlights the
essential contribution of a simplified transformer framework, incorporating basic
elements such as pooling and SE blocks, thus emphasizing their potential to guide the
progression of medical segmentation models, without relying on complex attention-
based mechanisms.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Computer Vision
Keywords Medical image segmentation, Transformer, Spatial pooling, Vision transformers, MRI

INTRODUCTION
Deep learning has irrevocably impacted medical imaging, where deep learning-based
applications have transcended traditional techniques in terms of efficiency, accuracy, and
diagnostic quality. These applications range from organ delineation to lesion localization
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and diagnostic precision on a variety of imaging modalities such as computed tomography
(CT) and magnetic resonance imaging (MRI). Medical image segmentation techniques are
useful to assist in diagnosing the patient and establishing an intervention plan (Valanarasu
& Patel, 2022; Wang, Huang & Yang, 2023). In addition to diagnosis and medical plans,
delineated tumor analysis can be applied to examining the progression of the malignant
object and predicting life expectancy (Joshua et al., 2022). The pervasive influence of deep
learning-based technology in medical imaging calls for a continuous effort to refine and
further optimize these applications to benefit clinical decision-making processes.

AI-based medical image segmentation techniques have shown prominence in providing
precise and efficient results. Recently, transformer-based models have gained significant
attention and achieved innovative performance in various computer vision fields
(Tabik et al., 2020; Tang et al., 2020; Zeid, El-Bahnasy & Abo-Youssef, 2021). Since the
groundbreaking research of Vision Transformer (ViT) (Dosovitskiy et al., 2020), which
adapts pure transformer to image classification tasks, demonstrated that transformers
could be employed beyond natural language processing, it stimulates a surge of research
activity in computer vision. To make further progress and achieve promising performance
in medical image segmentation as well, various follow-up models are generated (Ambita,
Boquio & Naval, 2021; Tyagi et al., 2021).

Following the success of ViT, the Swin Transformer (Liu et al., 2021) was introduced,
featuring a hierarchical structure that enabled the examination of varying scales via the
Shifted Window concept. This design demonstrated its versatility and adaptability by
providing a path to higher performance in numerous downstream tasks. Building on this
innovation, a new model known as SwinUNETR (Hatamizadeh et al., 2022a) was created
by making use of a U-shaped network with a Swin transformer as the encoder and links
it to a CNN-based decoder using skip connections at various resolutions. This model
demonstrated particularly improved performance in semantic segmentation of medical
images.

However, recent studies suggest that the performance of the transformer-based model
is more dependent on the general architecture MetaFormer than on a particular attention
module (Yu et al., 2022). Transformer based-models can maintain considerably high
performance with relatively low computational complexity even when the attention-based
module is switched out for the extremely simple non-parametric operator pooling, which
basically operates the most fundamental token mixing. However, SwinUNETR encounters
the issue of prolonged training and inference runtimes, a problem specifically caused
by the incorporation of the attention mechanism within the architecture. Additionally,
PoolFormer is primarily designed as an improved model within the Transformer structure
and is not tailored specifically for U-shaped architectures used in semantic segmentation.

Inspired by PoolFormer, which replaces the attention module in Transformers with a
spatial pooling operator, we propose MetaSwin, a new modified U-shaped architecture
that incorporates PoolFormer. Our study builds upon the established SwinUNETR model,
well-recognized for its efficacy in 3D image segmentation. Therefore, MetaSwin integrates
the concepts from PoolFormer into SwinUNETR by substituting attention-based modules
in SwinUNETR with an extremely simple spatial pooling operator. In addition to this
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fundamental transformation, we also include Squeeze-and-Excitation (SE) blocks after
each MetaSwin block of the encoder and to the decoder, adapted from SE Networks
(Hu, Shen & Sun, 2018), which have been successful in recalibrating channel-wise feature
responses, promising to enhance the model’s accuracy. We validate the effectiveness and
efficiency of our model with two distinct medical datasets: the BraTS 2023 segmentation
challenge dataset, which focuses on brain tumor segmentation, and the BTCV dataset,
which contains abdominal imaging data. By comparing the performance of MetaSwin
on these datasets to the traditional transformer-based model, SwinUNETR, we aim to
demonstrate the potential of MetaSwin as a robust and efficient tool in 3D image semantic
segmentation alongside a significant reduction in computational complexity and training
duration.

RELATED WORK
Medical segmentation deep learning models
The U-Net (Ronneberger, Fischer & Brox, 2015) architecture has proven its efficacy in
medical image segmentation, attracting widespread adoption in both CNN-based (Çiçek
et al., 2016; Futrega et al., 2021; Huang et al., 2020; Isensee et al., 2020; Jin et al., 2019; Luu
& Park, 2022; Myronenko, 2019; Zhou et al., 2020) and more recent Transformer-based
approaches (Peiris et al., 2021; Petit et al., 2021; Wang et al., 2021; Xie et al., 2021; Zheng
et al., 2021). The U-shaped design comprises an encoder and decoder. The encoder
progressively generates lower-resolution representations imbued with heightened semantic
significance and encompassing global contextual insights. Subsequently, the decoder
reconstructs a high-resolution segmented image.

Jin et al. (2019) introduced a refinement termed DUNet, wherein each 3 × 3
convolutional layer of the original U-Net was substituted with a deformable convolutional
block. This adaptation, tailored for precise retinal vessel segmentation, accommodates
intricate vessel structures by dynamically adjusting receptive fields to the varied forms and
sizes present in input features.

Huang et al. (2020) extended the U-Net paradigm with U-Net3+, which enhances
dense skip connections from U-Net++ by incorporating comprehensive full-scale skip
connections. These linkages forge connections between each decoder level and every
preceding encoder level, thus fostering robust information exchange.

The triumph of transformer models in natural language processing (NLP) inspired their
transition into the realm of visual recognition. Dosovitskiy et al. (2020) introduced the ViT,
which can be used to extract fine-grained features directly from sequences of image patches.
They divide an image into patches and provide a Transformer the linear embeddings of
these patches in sequence. Image patches are considered in the same manner as tokens
(words) in an NLP. ViT resolves the long-range dependency between images by applying
global attention to 16× 16 patches of the entire image and focusing on its global significant
features. They demonstrate that a ViT pre-trained on an extensive proprietary dataset can
accomplish outstanding results on supervised image classification tasks.

Chen et al. (2021) pioneered the fusion of ViT and U-Net in an approach to tackle
the challenge of long-range dependencies. By harnessing ViT’s features from distinct
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stages, UNETR (Hatamizadeh et al., 2022b) emerged as an encoder–decoder framework.
It employs ViT as the encoder, generating hierarchical feature maps that cascade into
the decoder, culminating in the creation of precise segmentation masks. This synthesis
capitalizes on the innate strengths of ViT’s global context extraction in the bottleneck
block, while the encoder and decoder pivot toward local feature retrieval using localized
self-attention layers.

The Swin Transformer (Liu et al., 2021), known for its ability to handle hierarchical
structures, has become a key component in vision-related tasks. Its defining feature is
the shifting window technique, which systematically arranges sequential window shifts to
capture localized context through patch-level analysis. The Swin Transformer separates
the patches into non-overlapping windows and restricts the self-attention computation
in the limited or shifted windows, which increases localized inductive bias. Additionally,
it makes use of patch-merging layers to create hierarchical models that are effective
for downstream tasks such as object detection and semantic segmentation. This design,
combinedwith the successful U-Net-inspired architecture, forms the basis for SwinUNETR,
a superior model in the field of medical segmentation.

SwinUNETR (Hatamizadeh et al., 2022a), specifically designed for the semantic
segmentation of brain tumors in multi-modal MRI data, presents a unique structure.
The Swin Transformer functions as the encoder, while a CNN-based decoder forms
connections through skip connections at different resolutions. This collaboration ensures
a comprehensive information flow, leading to improved segmentation accuracy. The
integration of the Swin Transformer’s robust hierarchical features with a U-Net-like
framework represents the core innovation of SwinUNETR’s design.

MetaFormer
The application of transformers in computer vision has shown remarkable potential. The
prevailing consensus attributes much of their efficacy to the attention-based token mixing
component. Recent investigations have brought to light the possibility of substituting the
attention-based module of transformers with spatial MLPs, resulting in models that retain
commendable performance (Tolstikhin et al., 2021; Touvron et al., 2022). Through their
empirical analysis, it has been posited that a model’s effectiveness is influenced more by the
overall architecture of transformers rather than the specific tokenmixingmodule employed.
The research focuses on determining the performance lower limit and adaptability of the
model by leveraging common operators rather than developing innovative token mixing
methods.

A novel conceptual framework known as MetaFormer (Yu et al., 2022) has emerged,
drawing inspiration from the transformer paradigm while abstracting the intricacies
of token mixing approaches. By omitting the token mixer, MetaFormer stands as a
generalized architectural construct derived from transformers. A deliberate replacement
of Transformers’ attention module with a straightforward spatial pooling operator is
undertaken to probe the core token mixing aspects. Termed as PoolFormer, this approach
significantly reduces computational complexity compared to transformer-based networks
that employ multi-head self-attention. Intriguingly, PoolFormer showcases competitive
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performance across an array of computer vision tasks. This emphasizes the need for future
research projects aimed towards improvingMetaFormer rather than concentrating only on
token mixer modules. The suggested PoolFormer also provides a starting point for future
architectural improvements within the MetaFormer framework.

MATERIALS & METHODS
We propose a novel design called MetaSwin by adapting SwinUNETR and incorporating
ideas fromMetaFormer. Furthermore, we additionally include SE blocks in our architecture
to allow our model to dynamically prioritize important information. This model addresses
the shortcomings of SwinUNETR, notably its resource-intensive computations and
prolonged training/inference times. We showcase the proficiency and potency of MetaSwin
across diverse datasets for segmentation tasks, achieving competitive performance
compared to the latest benchmarks.

U-shaped architecture
In our study, we introduce a U-shaped architecture for semantic segmentation, which is
conventionally used in this domain. Based on this conventional architecture, we propose a
new modified U-Net design. This design draws inspiration from the SwinUNETR model,
effectively merging the capabilities of two influential models, Swin Transformer and U-Net.
The architecture takes an input image slice and processes it through an encoder–decoder
framework.

The encoder part of our model is based on MetaSwin blocks, where we substitute
the attention-based modules in Swin Transformer with a much simpler average pooling
operator. Each MetaSwin block can be then followed by a SE block, which helps in
recalibrating channel-wise feature responses, thereby enhancing the model’s accuracy.

On the other hand, the decoder consists of ResNet-based (He et al., 2016) blocks, and
it is connected to the encoder through skip connections. The decoder also incorporates
residual blocks of various resolutions, and each of these blocks is complemented by its own
SE block.

MetaSwin block
Recently, attention mechanisms have gained significant attention in the deep learning
community, and many efforts have been made to design attention-based token mixer
components (D’Ascoli et al., 2021; Han et al., 2021). The Swin Transformer model, known
for its attention-based transformer architecture and the clever utilization of shiftedwindows
technique, has been successful in various tasks.

However, recent researches, particularly the MetaFormer study (Yu et al., 2022), has
highlighted that the general architecture MetaFormer, not the equipped particular
token mixers such as the attention module, is the primary source of the competency
of transformer/MLP like models. This insight suggests that even a straightforward pooling
operator can perform effectively in place of the attention-based token mixer.

Motivated by the findings of MetaFormer, we propose our novel MetaSwin model in
this work. MetaSwin is comprised of multiple stages, each containing a MetaSwin Block.
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Figure 1 The overall framework of MetaSwin+SE.MetaSwin+SE is the addition of SE blocks to
MetaSwin. The model uses a 4-stage hierarchical architecture. Each stage contains a MetaSwin Block and
SE Block as depicted in the figure. The multi-head self-attention module of the traditional transformer
model is replaced by the average pooling operator within each MetaSwin Block. SE Block is applied after
each MetaSwin Block in the encoder and each residual block in the decoder. MetaSwin is the model
without any SE blocks.

Full-size DOI: 10.7717/peerjcs.1762/fig-1

As depicted in Fig. 1, within each MetaSwin Block, we replace the traditional Multi-head
self-attention module of Swin Transformer with a much simpler average pooling operator.

The key advantage of this substitution lies in the computational complexity. While
self-attention typically demands a quadratic amount of computation with respect to
the tokens being mixed, the pooling operator only requires linear complexity, making
it computationally efficient. Moreover, the pooling operator involves no learnable
parameters, as it merely averages the attributes of each token’s neighboring tokens.

The pooling operator can be represented as

T
′

:i,j =
1

K ×K

K∑
p,q=1

T
:,i+p− K+1

2 ,j+q− K+1
2 ,

where K denotes the kernel size.
In stage 1 of the MetaSwin block, we employ a linear embedding layer to create 3D

tokens with reduced dimensions H
2 ×

W
2 ×

D
2 and set them in a dimension C embedding

space. Subsequently, at the end of each stage, the resolution of the feature representations
is halved to preserve the hierarchical structure of the encoder.

To summarize, the MetaSwin model comprises four stages, each containing MetaSwin
Blocks with resolutions of H

2 ×
W
2 ×

D
2 ,

H
4 ×

W
4 ×

D
4 ,

H
8 ×

W
8 ×

D
8 , and

H
16 ×

W
16 ×

D
16 ,

respectively. This design choice allows our model to efficiently process and extract
meaningful features from the input image slice, leading to promising results in semantic
segmentation tasks.
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Squeeze-and-excitation (SE) block
In order to enable our model to dynamically prioritize essential information, we introduce
SE blocks into our architecture, which is applied after each MetaSwin block after each
MetaSwin block of the encoder and to the decoder., as illustrated in Fig. 1.

SE blocks employ global average pooling on the feature maps to capture global
information and create a compact channel descriptor. This descriptor is then processed
through two fully connected layers to generate channel-wise scaling factors. These adaptive
weights allow the model to emphasize important channels while downplaying less relevant
ones. As a result, the recalibration mechanism enhances the model’s discriminative power,
enabling it to focus on the most informative features and improve semantic segmentation
performance. Thus, we provide our model with the flexibility to use the SE block to
selectively emphasize important features, which can lead the improvement of the result of
segmentation tasks.

Datasets
To evaluate the performance of our proposed MetaSwin model, we conduct experiments
on two distinct medical imaging datasets. The first dataset is provided by the BraTS
challenge, which offers a collection of 3D MRI scans with voxel-wise ground truth labels
for brain tumor segmentation. This dataset, BraTS 2023 (Baid et al., 2021; Bakas et al.,
2017;Menze et al., 2014), comprises 5,880 MRI scans from 1,470 subjects, each containing
four 3D MRI modalities: native (T1), post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and T2 fluid attenuated inversion recovery (T2-FLAIR) volumes. These scans were
acquired using diverse clinical protocols and scanners from multiple data-contributing
institutions. The input image size is set to 240×240×155, and the dataset includes four
distinct classes: background (label 0), necrotic/non-enhancing tumor (label 1), peritumoral
edematous/invaded tissue (ED) (label 2), and GD-enhancing tumor (label 4). Due to the
unavailability of publicly accessible testing sets, we conduct our experiments using five-
fold cross-validation, with 80% of the data used for training and the remaining 20% for
validation. The training set consists of 1,251 samples, while the validation set includes 219
samples.

The second dataset, the 2015 MICCAI Multi-Atlas Labeling Beyond the Cranial Vault
(BTCV) Challenge dataset, contains 30 portal venous contrast phase CT images with
manual labels for 13 abdominal organs (adrenal, aorta, esophagus, gallbladder, kidney,
liver, pancreas, spleen and portal vein, spleen, stomach, and vena cava). This dataset is
divided into 30 training subjects and 20 test subjects. We split the training dataset into an
80:20 ratio for training and validation purposes, respectively. The training set consists of
2,212 axial slices, totaling 3,779 axial contrast-enhanced abdomen CT images. Each slice
has 512× 512 pixels and the in-plane resolutions range from 2.5 mm to 5.0 mm, while the
slice thicknesses range from 0.54 × 0.54 mm2 to 0.98 × 0.98 mm2.

Implementation details and evaluation methods
For the implementation of MetaSwin, we utilize PyTorch and MONAI (Cardoso et al.,
2022) frameworks, running the experiments on NVIDIA RTX A6000 GPUs. The training
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process was carried out with a batch size of 1 per GPU and a learning rate of 0.0001. For the
BraTS dataset, all models were trained for 800 epochs and the input images were cropped
into randomized patches of size 128×128×128. The embedding space C is set to 48 in
stage 1 for all models. For the BTCV dataset, we employ 6 different feature sizes for each
model to compare the performance of models in various sizes by varying the dimensions
of embedded space C : 24, 36, 48, 60, 72, and 84. The training was conducted for 2,000
epochs, and the input resolution was set to 96×96.

As the loss function, we employ the Soft Dice loss, calculated voxel-wise with the formula

Dice Loss= 1−
2
∑n

i=1pigi∑n
i=1p

2
i +

∑n
i=1g

2
i
,

where pi and gi are corresponding pixel values for prediction and ground truth and n is the
total number of pixels in the image.

RESULTS
Segmentation results with the BraTS 2023 dataset
We conduct a set cross-validation split and evaluated each model’s performance across
all five folds using the BraTS 2023 dataset, resulting in a total of 20 experiments across
four models. We compare the performance of MetaSwin to traditional SwinUNETR
and SwinUNETR+SE, which includes SE blocks added to the encoder and decoder of
SwinUNETR in a manner similar to MetaSwin.

Table 1 shows the results of each model across all five folds on the BraTS 2023 dataset.
Surprisingly, despite simple pooling operator replacing attention only, MetaSwin can still
obtain extremely competitive performance compared to the winning methologies of past
years. While there are instances where MetaSwin exhibits slightly lower average Dice scores
under certain conditions compared to the baseline models, it is essential to emphasize
overall performance of MetaSwin remains highly competitive, accompanied by substantial
reductions in computational complexity and training time. On average, the proposed
MetaSwin outperforms SwinUNETR and separately, MetaSwin obtains competitive
performance inmost of sub-regions classes and five folds. Specifically,MetaSwin performed
the highest average Dice score in Fold 2. Additionally, MetaSwin requires 1.93% and 2.62%
fewer parameters than SwinUNETR and SwinUNETR+SE, respectively, resulting in
reduced learning time by 9.04% and 18.58%, respectively. Furthermore, MetaSwin+SE,
where SE blocks are added into MetaSwin, still achieves performance that is competitive
with fewer parameters and reduced learning time by 1.92% and 15.61%, compared to
SwinUNETR+SE, respectively.

The utilization of the pooling operator enables each token to uniformly gather features
from its neighboring tokens, making it a remarkably simple token-mixing process.
Moreover, the inclusion of the SE block, a powerful yet straightforward mechanism,
performs a significant role in capturing global spatial information and creating an activation
vector to rescale the feature maps, thereby emphasizing more critical information.

In Fig. 2, the values represent the average results of the 5-fold cross-validation, indicating
a single data point per model. Figure 2 demonstrates explicitly MetaSwin surpasses
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Table 1 Comparison of Five-fold cross-validation performance in SwinUNETR, SwinUNETR+SE, MetaSwin andMetaSwin+SE on BraTS 2023
dataset.winUNETR+SE and MetaSwin+SE are the addition of SE blocks to SwinUNETR and MetaSwin each.

Model Dice
score

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. Num. of
parameters

Training
time
(mins)

TC 0.51970 0.52240 0.53650 0.54916 0.52050 0.52965
WT 0.70440 0.74230 0.73480 0.72261 0.72200 0.72522
ET 0.39720 0.41960 0.43110 0.42231 0.40650 0.41534

SwinUNETR

Avg. 0.54043 0.56143 0.56747 0.56469 0.54967 0.55674

62,191,941 20,426

TC 0.53037 0.53450 0.55048 0.53627 0.54123 0.53857
WT 0.72526 0.74288 0.73920 0.72930 0.73946 0.73522
ET 0.40685 0.42487 0.44479 0.41512 0.42255 0.42284

SwinUNETR+SE

Avg. 0.55416 0.56742 0.57816 0.56023 0.56775 0.56554

62,613,669 22,213

TC 0.51452 0.53941 0.52152 0.54020 0.52777 0.52868
WT 0.71977 0.74849 0.73178 0.73005 0.74035 0.73409
ET 0.38848 0.41930 0.41831 0.41084 0.40217 0.40782

MetaSwin

Avg. 0.54387 0.56906 0.55769 0.56113 0.55873 0.55810

61,012,581 18,733

TC 0.52297 0.52640 0.52500 0.54888 0.53110 0.53087
WT 0.72096 0.74577 0.72730 0.72501 0.73120 0.73005
ET 0.40262 0.42449 0.42330 0.42437 0.40970 0.41690

MetaSwin+SE

Avg. 0.54885 0.56555 0.55853 0.56609 0.55733 0.55927

61,434,309 19,213

Notes.
ET, Enhanced Tumor; TC, Tumor Core; WT, Whole Tumor.
Bold values indicate the best performance.

Figure 2 Average validation Dice score on BraTS 2023 in terms of the number of parameter and train-
ing time (mins). SwinUNETR+SE and MetaSwin+SE are the addition of SE blocks to SwinUNETR and
MetaSwin each.

Full-size DOI: 10.7717/peerjcs.1762/fig-2

SwinUNETR with fewer parameters and less training time. In comparison to SwinUNETR,
not just MetaSwin but also MetaSwin+SE demonstrates competitive results at lower
computational costs. Analyzing each model separately reveals that models with SE addition
perform better with more training parameters and time than models without SE blocks.
These findings imply the significance of a general transformer architecture with relatively
fundamental operators, such as pooling or an SE block, in developing vision models,
surpassing the reliance on designing complex attention-based transformer models.
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Figure 3 presents qualitative segmentation comparisons for brain tumors. The
segmentation outputs for the three sub-regions are clearly defined and consistent with
quantitative results. Rows 2 and 3 in Fig. 3 illustrate our model’s improved ability to
capture intricate tumor characteristics.

Segmentation results with BTCV dataset
Table 2 shows the performance of various model sizes on the BTCV dataset. We assessed
model performance across varying feature sizes by adjusting the dimensions of the
embedding space C . As we compared six sizes for each of the four models, this led to
a total of 24 experiments. Remarkably, the proposed MetaSwin consistently achieves
highly competitive performance compared to SwinUNETR in terms of Test Dice,
despite occasional instances where MetaSwin exhibits slightly lower scores under specific
conditions. This highlights the overall competitiveness of MetaSwin while also delivering
substantial reductions in computational complexity and training time. For instance,
specifically in case of a model size of 24, MetaSwin still shows better performance when
SwinUNETR obtains 76.58% Dice score with 15,703,304 parameters and 467 mins training
time while MetaSwin reaches 79.12%Dice score with 1.92% fewer parameters (15,407,384)
and 55.6% fewer training time (300) than those of SwinUNETR. Additionally, MetaSwin
produced competitive test Dice score results compared to SwinUNETR+SE where SE
blocks are added into SwinUNETR. For example, in a large model of size 84, MetaSwin
outperforms SwinUNETR+SE with fewer computational costs by significant amounts. This
finding suggests a great potential of the general structure of transformer, i.e., MetaFormer
as compared to the attention-based transformer in segmentation tasks.

Furthermore, considering the addition of SE blocks model, even in a large model of size
84 for instance, MetaSwin+SE, in which SE blocks are added into MetaSwin, is paramount
to SwinUNETR+SE with fewer parameters and training time by 1.91% and 14.8%.

Figure 4 clearly shows that MetaSwin and MetaSwin+SE are paramount to SwinUNETR
with fewer parameters and training time. These findings further validate the effectiveness
and practicality of our proposed MetaSwin model. However, it is important to note
that Fig. 4 also reveals a noticeable drop in the test Dice scores for MetaSwin+SE and
SwinUNETR+SE. This phenomenon may be attributed to the interaction between the
introduced SE blocks and models of specific sizes. It is plausible that the integration
of SE blocks may not align as effectively with the distinctive design principles and
characteristics of MetaSwin and SwinUNETR, potentially resulting in a negative impact on
their performance.

CONCLUSIONS
In this study, we introduce an innovative and practical approach, the MetaSwin model,
within the domain of deep learning for semantic segmentation tasks. Through the
strategic replacement of attention-based modules within the SwinUNETR framework
with a straightforward spatial pooling operator, our work has effectively unveiled a more
streamlined and efficient model architecture. Moreover, the incorporation of SE blocks
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Figure 3 Qualitative comparisons for brain tumor segmentation on BraTS 2023 between GT, Swin-
UNETR, MetaSwin andMetaSwin+SE.Our models accurately capture the detailed information in seg-
mentation outputs. The combination of the red, blue, and green regions creates the whole tumor (WT).
The tumor core (TC) is formed by merging the red and blue areas, while the blue regions represent the en-
hancing tumor core (ET).

Full-size DOI: 10.7717/peerjcs.1762/fig-3
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Table 2 Comparison with SwinUNETR, SwinUNETR+SE, MetaSwin, andMetaSwin+SE on BTCV dataset. SwinUNETR+SE and MetaSwin+SE
are the addition of SE blocks to SwinUNETR and MetaSwin each. Size means the size of the embedding space C in stage 1 of the encoder.

Model Size Num. of
parameters

Training
time (mins)

Max. Val Acc Test DICE

24 15,703,304 467 0.82016 76.58%
36 35,072,996 649 0.83332 80.17%
48 62,187,296 761 0.83596 79.90%
60 97,046,204 942 0.83250 80.37%
72 139,649,720 1,144 0.83408 79.74%

SwinUNETR

84 189,997,844 1,334 0.83823 80.51%
24 15,809,336 477 0.81962 77.15%
36 35,310,668 668 0.82865 80.62%
48 62,609,024 783 0.83709 79.50%
60 97,704,404 972 0.83729 81.12%
72 140,596,808 1,176 0.83546 81.20%

SwinUNETR+SE

84 191,286,236 1,373 0.84152 81.02%
24 15,407,384 300 0.81549 79.12%
36 34,408,796 484 0.82300 79.33%
48 61,007,936 601 0.83581 80.94%
60 95,204,804 773 0.83967 81.07%
72 136,999,400 970 0.84168 80.84%

MetaSwin

84 186,391,724 1,167 0.84192 81.36%
24 15,513,416 313 0.81738 76.76%
36 34,646,468 499 0.83117 80.17%
48 61,429,664 612 0.83003 81.18%
60 95,863,004 798 0.84058 79.48%
72 137,946,488 1,001 0.83994 81.16%

MetaSwin+SE

84 187,680,116 1,196 0.84179 81.00%

Notes.
Bold values indicate the best performance.

Figure 4 Test Dice score on BTCV dataset in terms of the number of parameters and training time
(mins). SwinUNETR+SE and MetaSwin+SE are the addition of SE blocks to SwinUNETR and MetaSwin
each.

Full-size DOI: 10.7717/peerjcs.1762/fig-4
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into the decoder module enhances our model’s capacity for recalibrating features, resulting
in discernibly improved accuracy in the context of segmentation tasks.

The empirical evaluation of our proposed MetaSwin model, conducted on distinct
medical datasets encompassing the BraTS 2023 segmentation challenge dataset and the
BTCV dataset, provides compelling evidence of its efficacy and efficiency. we rigorously
tested our model using a five-fold cross-validation approach on the BraTS dataset. This
method allowed us to thoroughly assess the model’s performance while considering the
limited availability of dataset resources. While we did not employ a separate, completely
independent test set in this study, we acknowledge the importance of setting aside a
portion of the data for such a purpose in future experiments. This added measure
will serve to enhance the overall strength and resilience of our model’s performance
evaluation, addressing the concern of overfitting more effectively. Notably, the evaluation
on the BTCV dataset reveals a noticeable decrease in the test scores of MetaSwin+SE and
SwinUNETR+SE. To understand the underlying reasons for this notable decrease when
compared to the consistent performance of models without SE blocks, more in-depth
analysis and investigation are imperative. Further research is required to elucidate the
precise mechanisms responsible for this observed contrast.

The outcomes of our experimentation underscore the practicality and potential of our
novel approach, as evidenced by its competitive performance in semantic segmentation,
achieved alongside a notable reduction in computational complexity and training duration.
This research not only contributes to the ongoing expansion of efficient deep learning
architectures, but it also underscores the pivotal role played by thoughtful architectural
design choices in yielding remarkable outcomes. By illuminating the capabilities of
MetaSwin as a robust and agile tool, we provide valuable insights that facilitate for future
advancements and innovations in the realm of semantic segmentation methodologies.
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Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 2016. 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin S,
Joskowicz L, Sabuncu MR, Unal G, Wells W, eds.Medical image computing and
computer-assisted intervention—MICCAI 2016. Cham: Springer International
Publishing, 424–432.

D’Ascoli S, Touvron H, Leavitt ML, Morcos AS, Biroli G, Sagun L. 2021. ConViT:
improving vision transformers with soft convolutional inductive biases. In: Proceed-
ings of the 38th international conference on machine learning. Proceedings of machine
learning research. 2286–2296.

Dosovitskiy A, Beyer L, Kolesnikov A,Weissenborn D, Zhai X, Unterthiner T,
Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. 2020. An
image is worth 16x16 words: transformers for image recognition at scale. ArXiv
arXiv:2010.11929.

FutregaM,Milesi A, Marcinkiewicz M, Ribalta P. 2021. Optimized U-Net for brain
tumor segmentation. In: Crimi A, Bakas S, eds. Brainlesion: glioma, multiple sclerosis,
stroke and traumatic brain injuries. BrainLes 2021. Lecture notes in computer science,
vol 12963. Cham: Springer, 15–29 DOI 10.1007/978-3-031-09002-8_2.

Han K, Xiao A,Wu E, Guo J, Xu C,Wang Y. 2021. Transformer in transformer. ArXiv
arXiv:2103.00112.

Hatamizadeh A, Nath V, Tang Y, Yang D, Roth H, Xu D. 2022a. Swin UNETR: swin
transformers for semantic segmentation of brain tumors in MRI images. In: Crimi
A, Bakas S, eds. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain
injuries. BrainLes 2021. Lecture notes in computer science, vol 12962. Cham: Springer,
272–284 DOI 10.1007/978-3-031-08999-2_22.

Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth HR, Xu
D. 2022b. UNETR: transformers for 3D medical image segmentation. In: 2022
IEEE/CVF winter conference on applications of computer vision (WACV). 1748–1758.

He K, Zhang X, Ren S, Sun J. 2016. Deep Residual Learning for Image Recognition. In:
2016 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway:
IEEE, 770–778.

Hu J, Shen L, Sun G. 2018. Squeeze-and-Excitation Networks. In: 2018 IEEE/CVF
conference on computer vision and pattern recognition. Piscataway: IEEE, 7132–7141.

Huang H, Lin L, Tong R, HuH, Qiaowei Z, Iwamoto Y, Han X-H, Chen Y-W,Wu
J. 2020. UNet 3+: a full-scale connected UNet for medical image segmentation.
In: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal
processing (ICASSP). Piscataway: IEEE, 1055–1059.

Isensee F, Jaeger PF, Full PM, Vollmuth P, Maier-Hein K. 2020. nnU-Net for brain
tumor segmentation. ArXiv arXiv:2011.00848.

Jin Q, Meng Z, Pham TD, Chen Q,Wei L, Su R. 2019. DUNet: a deformable net-
work for retinal vessel segmentation. Knowledge-Based Systems 178:149–162
DOI 10.1016/j.knosys.2019.04.025.

Joshua E, Bhattacharyya D, Nakka T, Hong S-P. 2022. A novel approach in bio-medical
image segmentation for analyzing brain cancer images with U-NET semantic

Lee and Lee (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1762 15/17

https://peerj.com
http://arXiv.org/abs/2010.11929
http://dx.doi.org/10.1007/978-3-031-09002-8_2
http://arXiv.org/abs/2103.00112
http://dx.doi.org/10.1007/978-3-031-08999-2_22
http://arXiv.org/abs/2011.00848
http://dx.doi.org/10.1016/j.knosys.2019.04.025
http://dx.doi.org/10.7717/peerj-cs.1762


segmentation and TPLD models using SVM. Traitement Du Signal 39:419–430
DOI 10.18280/ts.390203.

Liu Z, Lin Y, Cao Y, HuH,Wei Y, Zhang Z, Lin S, Guo B. 2021. Swin transformer: hier-
archical vision transformer using shifted windows. In: 2021 IEEE/CVF international
conference on computer vision (ICCV). Piscataway: IEEE, 9992–10002.

Luu HM, Park S-H. 2022. Extending nn-UNet for brain tumor segmentation. In: Crimi
A, Bakas S, eds. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain
injuries. Cham: Springer International Publishing, 173–186.

Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz
N, Slotboom J,Wiest R. 2014. The multimodal brain tumor image segmentation
benchmark (BRATS). IEEE Transactions on Medical Imaging 34:1993–2024.

Myronenko A. 2019. 3D MRI brain tumor segmentation using autoencoder regular-
ization. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, eds.
Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham:
Springer International Publishing, 311–320.

Peiris H, Hayat M, Chen Z, Egan G, Harandi M. 2021. A volumetric transformer for
accurate 3D tumor segmentation. ArXiv arXiv:2111.13300.

Petit O, Thome N, Rambour C, Themyr L, Collins T, Soler L. 2021. U-Net trans-
former: self and cross attention for medical image segmentation. In: Lian C,
Cao X, Rekik I, Xu X, Yan P, eds.Machine learning in medical imaging. MLMI
2021. Lecture notes in computer science, vol 12966. Cham: Springer, 267–276
DOI 10.1007/978-3-030-87589-3_28.

Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical
image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, eds.Medical
image computing and computer-assisted intervention – MICCAI 2015. MICCAI
2015. Lecture notes in computer science, vol 9351. Cham: Springer, 234–241
DOI 10.1007/978-3-319-24574-4_28.

Tabik S, Gómez-Ríos A, Martín-Rodríguez JL, Sevillano-García I, Rey-Area M, Charte
D, Guirado E, Suárez JL, Luengo J, Valero-González MA, García-Villanova P,
Olmedo-Sánchez E, Herrera F. 2020. COVIDGR dataset and COVID-SDNet
methodology for predicting COVID-19 based on chest X-ray images. IEEE Journal of
Biomedical and Health Informatics 24:3595–3605 DOI 10.1109/JBHI.2020.3037127.

Tang K, Li Z, Tian L,Wang L, Zhu Y. 2020. ADMIR—affine and deformable medical
image registration for drug-addicted brain images. IEEE Access 8:70960–70968
DOI 10.1109/ACCESS.2020.2986829.

Tolstikhin IO, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, Yung J,
Steiner A, Keysers D, Uszkoreit J. 2021.Mlp-mixer: an all-mlp architecture for
vision. Advances in Neural Information Processing Systems 34:24261–24272.

Touvron H, Bojanowski P, CaronM, CordM, El-Nouby A, Grave E, Izacard G,
Joulin A, Synnaeve G, Verbeek J. 2022. Resmlp: feedforward networks for image
classification with data-efficient training. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45:5314–5321.

Lee and Lee (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1762 16/17

https://peerj.com
http://dx.doi.org/10.18280/ts.390203
http://arXiv.org/abs/2111.13300
http://dx.doi.org/10.1007/978-3-030-87589-3_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/JBHI.2020.3037127
http://dx.doi.org/10.1109/ACCESS.2020.2986829
http://dx.doi.org/10.7717/peerj-cs.1762


Tyagi K, Pathak G, Nijhawan R, Mittal A. 2021. Detecting pneumonia using vision
transformer and comparing with other techniques. In: 2021 5th international
conference on electronics, communication and aerospace technology (ICECA). 12–16.

Valanarasu JMJ, Patel VM. 2022. UNeXt: Mlp-based rapid medical image segmen-
tation network. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds.Medi-
cal image computing and computer assisted intervention – MICCAI 2022. MIC-
CAI 2022. Lecture notes in computer science, vol 13435. Cham: Springer, 23–33
DOI 10.1007/978-3-031-16443-9_3.

Wang L, Huang J, Yang G. 2023. Swin deformable attention hybrid U-Net for medical
image segmentation. ArXiv arXiv:2302.14450.

WangW, Chen C, DingM, Yu H, Zha S, Li J. 2021. TransBTS: multimodal brain
tumor segmentation using transformer. In: de Bruijne M, et al., eds.Medical
image computing and computer assisted intervention – MICCAI 2021. MICCAI
2021. Lecture notes in computer science, vol 12901. Cham: Springer, 109–119
DOI 10.1007/978-3-030-87193-2_11.

Xie Y, Zhang J, Shen C, Xia Y. 2021. CoTr: efficiently bridging CNN and trans-
former for 3D medical image segmentation. In: de Bruijne M, et al., eds.Medical
image computing and computer assisted intervention – MICCAI 2021. MICCAI
2021. Lecture notes in computer science, vol 12903. Cham: Springer, 171–180
DOI 10.1007/978-3-030-87199-4_16.

YuW, LuoM, Zhou P, Si C, Zhou Y,Wang X, Feng J, Yan S. 2022.MetaFormer is
actually what you need for vision. In: 2022 IEEE/CVF conference on computer vision
and pattern recognition (CVPR). Piscataway: IEEE, 10809–10819.

ZeidMAE, El-Bahnasy K, Abo-Youssef SE. 2021.Multiclass colorectal cancer histology
images classification using vision transformers. In: 2021 tenth international conference
on intelligent computing and information systems (ICICIS). 224–230.

Zheng S, Lu J, Zhao H, Zhu X, Luo Z,Wang Y, Fu Y, Feng J, Xiang T, Torr PS, Zhang L.
2021. Rethinking semantic segmentation from a sequence-to-sequence perspective
with transformers. In: 2021 IEEE/CVF conference on computer vision and pattern
recognition (CVPR). Piscataway: IEEE, 6877–6886.

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. 2020. UNet++: redesigning skip
connections to exploit multiscale features in image segmentation. IEEE Transactions
on Medical Imaging 39:1856–1867 DOI 10.1109/TMI.2019.2959609.

Lee and Lee (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1762 17/17

https://peerj.com
http://dx.doi.org/10.1007/978-3-031-16443-9_3
http://arXiv.org/abs/2302.14450
http://dx.doi.org/10.1007/978-3-030-87193-2_11
http://dx.doi.org/10.1007/978-3-030-87199-4_16
http://dx.doi.org/10.1109/TMI.2019.2959609
http://dx.doi.org/10.7717/peerj-cs.1762

