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ABSTRACT
Topic modeling is a widely used instrument for the analysis of large text collections.
In the last few years, neural topic models and models with word embeddings have
been proposed to increase the quality of topic solutions. However, these models
were not extensively tested in terms of stability and interpretability. Moreover, the
question of selecting the number of topics (a model parameter) remains a challenging
task. We aim to partially fill this gap by testing four well-known and available to
a wide range of users topic models such as the embedded topic model (ETM),
Gaussian Softmax distribution model (GSM), Wasserstein autoencoders with Dirichlet
prior (W-LDA), and Wasserstein autoencoders with Gaussian Mixture prior (WTM-
GMM). We demonstrate that W-LDA, WTM-GMM, and GSM possess poor stability
that complicates their application in practice. ETM model with additionally trained
embeddings demonstrates high coherence and rather good stability for large datasets,
but the question of the number of topics remains unsolved for this model. We also
propose a new topic model based on granulated sampling with word embeddings
(GLDAW), demonstrating the highest stability and good coherence compared to
other considered models. Moreover, the optimal number of topics in a dataset can
be determined for this model.

Subjects Data Mining and Machine Learning, Data Science, Natural Language and Speech, Text
Mining, Neural Networks
Keywords Topic modeling, Neural topic models, Stability, Coherence, Optimal number of topics,
Renyi entropy, Word embeddings

INTRODUCTION
Topic modeling is widely used in various areas that require big data clustering, especially
when analyzing text collections. In practice, however, many topic models generate
uninterpretable topics that require users to measure the coherence of the model. Moreover,
many topic models possess a certain level of semantic instability, whichmeans that different
runs of the algorithm on the same source data lead to different solutions, and this problem
is still open. Furthermore, not for every model, it is possible to determine the correct
number of topics in a dataset. However, the model parameter ‘number of topics’, which
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determines the level of granularity of the cluster solution, has to be set manually in
an explicit form. Recent research (Koltcov et al., 2021; Koltcov et al., 2020) has shown that
models supporting an automatic setting of the number of topics performpoorly and depend
on other hidden parameters, for example, the concentration parameter. Nevertheless, using
domain knowledge, for example, word embeddings or combinations of neural network
layers, seems promising in solving the above problems. Currently, several topic models
with neural network elements have been proposed. However, systematic research of
such models in terms of quality measures, such as interpretability and stability, and the
possibility of determining the correct number of topics, was not conducted. Commonly,
researchers concentrate only on interpretability ignoring the problems of stability and
the problem of the number of topics. The tuning of topic models is usually based on
empirical criteria, which have not been tested on labeled datasets. Thus, the main goal of
this work is to fill this gap partially and to test four well-known and available to a wide
range of users neural topic models such as (1) embedded topic model (ETM) (Dieng,
Ruiz & Blei, 2020), (2) Gaussian Softmax distribution (GSM) model (Miao, Grefenstette
& Blunsom, 2017), (3) Wasserstein autoencoders with Dirichlet prior (W-LDA) (Nan et
al., 2019), and (4) Wasserstein autoencoders with Gaussian Mixture prior (WTM-GMM)
(https://zll17.github.io/2020/11/17/Introduction-to-Neural-Topic-Models/#WTM-GMM).
Moreover, we propose and test a new topic model called a granulated topic model with
word embeddings (GLDAW). To test the models, we consider three labeled test datasets
and two levels of their pre-processing. Also, we investigate the influence of six different
word embeddings (three in Russian and three in English) on ETM and GLDAW models.
To estimate the different features of the models, we calculate three measures: coherence,
stability, and Renyi entropy.

To simplify the structure of this work, an overview of topic models with elements
of neural networks is provided in Appendix A. An overview of different types of word
embeddings is presented in Appendix B. Let us note that word embeddings have become
an important tool in the field of natural language processing (NLP) allowing translation of
text data into numeric vectors that can be further processed by various algorithms.

The rest of our work consists of the following parts. ‘Measures in the field of topic
modeling’ describes measures that we use to estimate models under study. ‘Granulated
topic model with word embeddings’ describes the new proposed granulated model with
word embeddings. Thismodel is an extension of the ‘granulated topicmodel’ (Koltcov et al.,
2016a), which additionally incorporates a semantic context contained in word embeddings.
‘Computational experiments’ contains the description of the datasets and types of used
word embeddings and outlines the design of our computer experiments for each of the
considered models. ‘Results’ describes the results of computer experiments for each model
in terms of the chosen quality measures. ‘Discussion’ compares the obtained results for
each model. ‘Conclusions’ summarizes our findings.

MEASURES IN THE FIELD OF TOPIC MODELING
To estimate considered topic models, we focus on three measures that reflect different
model properties: coherence, stability, and Renyi entropy. An extensive overview of
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different quality measures in the field of topic modeling can be found in works Rüdiger et
al. (2022) and Chauhan & Shah (2021). Below, each of the chosen measures is described in
more detail.

Coherence
Coherence allows one to evaluate the consistency of the model, i.e., how often the most
probable words of a topic co-occur in the documents. In other words, it evaluates how
strongly the words in the topic are related to each other. Thus, coherence reflects the
interpretability of the inferred topics. We have used the ‘‘u_mass’’ version of the coherence
measure. This measure can be expressed as follows (Mimno et al., 2011):

C(t ,W (t ))=
M∑

m=2

m−1∑
l=1

log(
D(v tm,v

t
l )+1

D(v tl )
),

W (t )= (v t1,...,v
t
M ) is a list of M most probable words in topic t , D(v) is the number of

documents containing word v , andD(v,v ′) is the number of documents where words v and
v ′ co-occur. Thus, coherence is the sum of logs of the ratio of the number of documents
with two co-occurring words to the total number of documents with one of the two
evaluated words. In other words, if there are highly probabilistic words in a topic, that have
a high co-occurrence in highly probabilistic documents, coherence is large, and the topic is
well interpretable. In our numerical experiments, we use Gensim library for the calculation
of coherence (Rehurek & Sojka, 2010).

Stability
Prior to defining the stability of a topic model, it is necessary to define the similarity
of two topics. We use the definition proposed in Koltcov, Koltsova & Nikolenko (2014).
The computation of similarity is based on the normalized Kullback–Leibler divergence:
Kn= (1− K

Max ) ·100%, where Max is the maximum value of symmetric Kullback–Leibler
divergence, K is symmetric Kullback–Leibler divergence, which is expressed as K (t1,t2)=
1
2

(∑
wφwt1 ln(φwt1)−

∑
wφwt1 ln(φwt2)

)
+

1
2

(∑
wφwt2 ln(φwt2)−

∑
wφwt2 ln(φwt1)

)
for topics

t1 and t2, φ·t1 is the probability distribution of words in the first topic, φ·t2 is the probability
distribution of words in the second topic. As demonstrated inKoltcov, Koltsova & Nikolenko
(2014), two topics can be considered semantically similar if Kn> 90%, meaning that the
most probable 50–100 words of these topics are the same. In our work, a topic is considered
stable if it is reproduced in three runs of the model with the same number of topics and
normalized Kullback–Leibler divergence is not less than 90%. Then, the number of such
stable topics is counted. This number depends on the model architecture, the total number
of topics, which is a model parameter, and the type of used word embeddings. Therefore,
in our experiments, we varied these factors.

Renyi entropy
The complete derivation of Renyi entropy can be found in Koltcov (2017) and Koltcov
(2018). In this article, we give the basic idea behind the deformed Renyi entropy for
determining the optimal number of topics. The matrix of distribution of words in topics

Koltcov et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1758 3/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1758


is one of the results of topic modeling. In practice, researchers work with the most
probable words in every topic. These highly probabilistic words can be used to compute
the following quantities: (1) Density-of-states function, ρ =N/(WT ), where N is the
number of words with high probabilities, W is the number of words in the vocabulary,
and T is the number of topics. We define ‘‘high probability’’ as a probability larger than
1/W . (2) Energy of the system E =−T · lnP̃ =−T · ln( 1T

∑
w,t (φwt ·1{φwt>1/W })), where

the summation is over all highly probabilistic words and all topics. Renyi entropy can
be expressed as follows: SRq =

qln(P̃)+ln(ρ)
q−1 , where the deformation parameter q= 1/T is

the inverse number of topics (Koltcov, 2018). Since entropy can be expressed in terms
of information of the statical system (S = -I (Beck, 2009)), a large value of deformed
entropy corresponds to a small amount of information and vice versa. Due to the fact that
the set of highly probabilistic words in different topic solutions changes with a variation
in the total number of topics and other model hyperparameters, Koltcov, Ignatenko &
Koltsova (2019) and Koltcov et al. (2020) discovered the following. First, a small number of
topics leads to a very large Renyi entropy, meaning that such a model is poor in terms of
information. Second, a significant increase in the number of topics leads to a large entropy
as well because topic modeling generates solutions with almost uniform distributions, i.e.,
topics are indistinguishable. Therefore, the information of such a system is small as well.
Experiments have shown that Renyi entropy has a minimum at a certain number of topics,
which depends on the particular dataset. Moreover, experiments on labeled datasets have
shown that this minimum corresponds to the number of topics obtained with manual
labeling. Thus, Renyi entropy can be used to determine the optimal number of topics. It
should be noted that this approach is suitable for the datasets with a ‘‘flat topic structure’’
and for the datasets with a hierarchical structure (Koltcov et al., 2021).

GRANULATED TOPIC MODEL WITH WORD EMBEDDINGS
Before describing our proposed topic model, it is necessary to introduce basic notations
and assumptions. Let D be a collection of documents, and let W̃ be the set of all words
(vocabulary). Each document d is represented as a set of words w1,...wnd , wi ∈ W̃ . The
key assumption of probabilistic topic models is that each word w in a document d is
associated with some topic t ∈ T̃ , and the set of such topics T̃ is finite. Further, the set of
documents is treated as a collection of random independent samples (wi,di,zi),i = 1 ..n,
from a discrete distribution p(w,d,z) on the finite probability space W̃ ×D× T̃ . Words
and documents are observable variables, and the topic z ∈ T̃ of every word occurrence is a
hidden variable. In topic models, documents are represented as bags of words, disregarding
the order of words in a document and the order of documents in the collection. The
basic assumption here is that specific words occurring in a document depend only on the
corresponding topic occurrences and not on the document itself. Thus, it is supposed that
p(w|d) can be represented as p(w|d)= p(w|t )p(t |d)= φwtθtd , where φwt = p(w|t ) is the
distribution of words by topics and θtd = p(t |d) is the distribution of topics by documents.
Therefore, to train a topic model on a set of documents means to find the set of topics T̃ ,
and more precisely, to find the distributions φwt ,t ∈ T̃ and θtd,d ∈D. Let us denote by
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matrix 8= {φwt } the set of distributions of words by topics and by matrix 2= {θtd} the
set of distributions of topics in the documents. There are two major approaches to finding
8 and 2. The first approach is based on an algorithm with expectation–maximization
inference. The second approach is based on an algorithm that calculates probabilities via
the Monte-Carlo method. A detailed description of the models and types of inferences can
be found in the recent reviews of topic models (Helan & Sultani, 2023; Chauhan & Shah,
2021).

Granulated latent Dirichlet allocation model
The granulated topic model is based on the following ideas. First, there is a dependency
between a pair of unique words, but unlike the convolved Dirichlet regularizer
model (Newman, Bonilla & Buntine, 2011), this dependency is not presented as a predefined
matrix. Instead, it is assumed that a topic consists of words that are not only described
by a Dirichlet distribution but also often occur together; that is, we assume that words
that are characteristic for the same topic are often collocated inside some relatively small
window (Koltcov et al., 2016a). That means all words inside a window belong to one topic
or a small set of topics. As previously described in Koltcov et al. (2016a), each document
can be treated as a grain surface consisting of granules, which, in turn, are represented as
sequences of subsequent words of some fixed length. The idea is that neighboring words
usually are associated with the same topic, which means that topics in a document are not
distributed independently but rather as grains of words belonging to the same topic.

In general, the Gibbs sampling algorithm for local density of the distribution of words
in topics can be formulated as follows:

• Matrices 2 and 8 are initialized.
• Loop on the number of iterations

– For each document d ∈D repeat |d| times:

* sample an anchor word wj ∈ d uniformly at random
* sample its topic t as in Gibbs sampling (Griffiths & Steyvers, 2004)
* set ti= t for all i such that |i− j| ≤ l , where l is a predefined window size.

In the last part of the modeling, after the end of sampling, the matrices 8 and 2 are
computed from the values of the counters. Thus, the local density function of words
in topics and the size of the window work as a regularization. The main advantage
of this model is that it has very high stability and outperforms other models such as
ARTM (Vorontsov, 2014), LDA (E-M algorithm) (Blei, Ng & Jordan, 2003), LDA with
Gibbs sampling algorithm (Griffiths & Steyvers, 2004) and pLSA (Hofmann, 1999) in terms
of stability (Koltcov et al., 2016b).

Granulated latent Dirichlet allocation with word embeddings
A significant disadvantage of the GLDA model is that the Renyi entropy approach for
determining the number of topics is not accurate for this model (Koltcov, 2018). In this
work, we propose a new granulatedmodel (GLDAW),which takes into account information
from word embeddings. The GLDAW model is realized with Gibbs sampling algorithm

Koltcov et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1758 5/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1758


as follows. There are three stages of the algorithm. In the first stage, we form a matrix
of the nearest words by given word embeddings. At this stage, the algorithm checks if
the vocabularies of the dataset and word embeddings match. If a word from the given
set of word embeddings is missing from the dataset’s vocabulary, then its embedding is
deleted. This procedure reduces the size of the set of word embeddings and speeds up
the computation at the second stage. Then, the matrix of the nearest words in terms of
their embedding vectors is built. The number of the nearest words is set manually by the
‘‘window’’ parameter. In fact, this parameter is analogous to the ‘‘window’’ parameter in
GLDA.

In the second stage, the computation is similar to Granulated LDA Gibbs sampling with
the choice of an anchor word from the text and the attachment of this word to a topic.
The topic is computed based on the counters. However, unlike the granulated version,
where the counters of the nearest words (to the current anchor word) in the text were
increased, this algorithm increases the counters of the words corresponding to the nearest
embeddings. Thus, running through all the documents and all the words, we create the
matrix of the counters of words taking into account their embeddings.

In the third stage, the resulting matrix of counters is used to compute the probabilities
of all words as in the standard LDA Gibbs sampling: φwt =

nwt+β
nt+βW

, θtd = ntd+α
nd+αT

, where
nwt equals how many times word w appeared in topic t , nt is the total number of words
assigned to topic t , ntd equals how many times topic t appeared in document d . Thus, this
procedure of sampling resembles the standard LDA Gibbs sampling, for which the Renyi
entropy approach works accurately, but it also has the features of granulated sampling
leading to the high stability of the model. It should be noted that the proposed sampling
does not have any artificial assumptions about the distribution of topics, as in ‘Embedded
topic model’ (Dieng, Ruiz & Blei, 2020), for example, where the topics are sampled from
a categorical distribution with parameters equal to the dot product of the word and topic
vectors. The proposed sampling procedure uses only information about the closeness of
word embeddings.

COMPUTATIONAL EXPERIMENTS
A short description of the models (ETM, GSM, W-LDA, WTM-GMM, and GLDAW) used
in computational experiments is given in Table 1. For a more detailed description of the
models, we refer the reader to Appendix A.

To test the above models, the following datasets were used:

• The ‘Lenta’ dataset is a set of 8,630 news documents in Russian language with 23,297
unique words. The documents are manually marked up into 10 classes. However, some
of the topics are close to each other and, therefore, this dataset can be described by 7–10
topics.
• The ‘20 Newsgroups’ dataset is a collection of 15,425 news articles in English language
with 50,965 uniquewords. The documents aremarkedup into 20 topic groups. According
to Basu, Davidson & Wagstaff (2008), 14–20 topics can describe the documents of this
dataset, since some of the topics can be merged.
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Table 1 Summary of the models used in numerical experiments.

Model Short description Word embeddings

ETM A log-linear model that takes the inner product of the
word embedding matrix (ρ) and the topic embedding (αk):
proportions of topics θd ∼ LN (0,I ) (LN means logistic-
normal distribution), topics zdn ∼ Cat (θd) (Cat means
categorical distribution), words wdn∼ softmax(ρTαzdn ). The
architecture of the model is a variational autoencoder.

yes

GSM Proportions of topics (θd) are set with Gaussian softmax,
topics zdn ∼Multi(θd) (Multi refers to the multinomial
distribution), words wdn ∼ Multi(βzdn ) (βzdn is the
distribution of words in topic zdn.) The architecture of
the model is a variational autoencoder.

no

W-LDA The prior distribution of the latent vectors z is set as
Dirichlet distribution, while the variational distribution is
regulated under the Wasserstein distance. The architecture
is a Wasserstein autoencoder.

no

WTM-GMM An improved model of the original W-LDA. The prior
distribution is set as Gaussian mixture distribution. The
architecture is a Wasserstein autoencoder.

no

GLDAW It is assumed that words in a topic not only follow Dirichlet
distribution but also that the words with near embeddings
often co-occur together. The inference is based on Gibbs
sampling.

yes

• The ‘WoS’ dataset is a class-balanced dataset, which contains 11,967 abstracts of
published papers available from the Web of Science. The vocabulary of the dataset
contains 36,488 unique words. This dataset has a hierarchical markup, where the first
level contains seven categories, and the second level consists of 33 areas.

The datasets with lemmatized texts used in our experiments are available at
https://doi.org/10.5281/zenodo.8407610. For experiments with Lenta dataset we have used
the following Russian-language embeddings: (1) Navec are compact Russian embeddings
(the part of ‘‘Natasha project’’ https://github.com/natasha/navec), (2) 300_wiki embeddings
are fastText embeddings for Russian language(https://fasttext.cc/docs/en/pretrained-
vectors.html, Bojanowski et al., 2017), (3) Rus_vectors embeddings (RusVectores project)
are available at https://rusvectores.org/en/. For experiments with 20 Newsgroups and WoS
datasets, we have used the following English-language embeddings: (1) Crawl-300d-2M
(fastText technology), available at https://fasttext.cc/docs/en/english-vectors.html (Mikolov
et al., 2018), (2) Enwiki_20180420_win10_100d are word2vec embeddings(https://pypi.
org/project/wikipedia2vec/0.2/, version 0.2) (Yamada et al., 2016) (3) wiki_news_300d-1M
are fastText embeddings (https://fasttext.cc/docs/en/english-vectors.html (Mikolov et al.,
2018)).

Numerical experiments were carried out as follows. Every dataset has gone through two
levels of pre-processing. At the first level, the words consisting of three or fewer letters were
removed. At the second level, additionally, the words that appear less than five times were
removed. Thus, the size of Lenta dataset after the first stage of pre-processing is 17,555
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unique words and after the second stage of pre-processing is 11,225 unique words. The size
of 20 Newsgroups dataset is 41,165 and 40,749 unique words, correspondingly. The size of
WoS dataset is 31,725 and 14,526 unique words for two levels of pre-processing. For two
types of pre-processing, the experiments have been carried out separately.

For the ETM and GLDAW models, three Russian-language and three English-language
word embeddings were used. In the ETM model, pre-trained word embeddings can be
trained additionally during the process of modeling. Therefore, this model was tested with
and without additional training of word embeddings. The window size for GLDAWmodel
was varied as follows: 10, 50, and 100 for Lenta and 20 Newsgroups datasets; 10, 30, and
50 for WoS dataset.

The number of topics was varied in the range [2; 50] in increments of one topic
for all models. All three chosen measures were calculated as a mean of three runs
of each model. Source codes of our computational experiments are available at
https://doi.org/10.5281/zenodo.8410811.

RESULTS
Numerical results are described according to the chosen measures. So, in the first part, we
describe the results of all five models in terms of coherence. The second part analyzes the
stability of the models. In the third part, we assess the possibility of determining the true
number of topics. Finally, in the fourth part, we present the computational speed of each
model on an example of WoS dataset.

Results on coherence
As discussed, the ETM model was trained according to two schemes: (1) with pre-trained
word embeddings and (2) with additionally trained embeddings. Figure 1 demonstrates
the results of ETM model with different types of word embeddings in terms of coherence
measure. Let us note that for some numbers of topics, there is no coherence value for
pre-trained embeddings on the first level of pre-processing for WoS dataset, which means
that the model performs poorly with these settings.

Based on our results (Fig. 1), one can conclude the following. First, training embeddings
during the model learning leads to better coherence for all three datasets. Moreover, in this
case, the coherence values are almost identical for different types of embeddings for each
dataset. Second, ETM model performs poorly on a small dataset (11–12 thousand words)
with strong pre-processing (Fig. 1B). Therefore, larger datasets should be used for ETM
model to get better quality. Third, the behavior of the coherence measure does not allow
us to estimate the optimal number of topics for this model.

Let us note that the GSM, W-LDA and WTM-GMM models do not use word
embeddings. The results for these three topic models are given in Fig. 2. Overall, our
results demonstrate that the dataset pre-processing does not strongly influence the output
of the above models. The GSM model performs worse than the other models, while
WTM-GMM shows the best results. However, the fluctuation of coherence is larger for all
these models than for ETM model.

Koltcov et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1758 8/41

https://peerj.com
https://doi.org/10.5281/zenodo.8410811
http://dx.doi.org/10.7717/peerj-cs.1758


Figure 1 Dependence of coherence on the number of topics (ETMmodel). (A) Lenta dataset: first level
of pre-proccessing. (B) Lenta dataset: second level of pre-proccessing. (C) 20 Newsgroups dataset: first
level of pre-processing. (D) 20 Newsgroups dataset: second level of pre-processing. (E) WoS dataset: first
level of pre-processing. (F) WoS dataset: second level of pre-processing.

Full-size DOI: 10.7717/peerjcs.1758/fig-1

Figure 3 demonstrates the results of GLDAW model. Figures 3A and 3B show that
pre-processing of Lenta dataset does not have a strong influence on the performance of
this model. Besides that, the coherence values do not depend on the type of embeddings.
The fluctuation for different embeddings is about 0.1, while for W-LDA, WTM-GMM,
and GSM models, the fluctuation is about 1. The fluctuation of the coherence value of
ETM model for trained embeddings is also about 0.1. The values of coherence for the 20
Newsgroups dataset are given in Figs. 3C and 3D. The fluctuation of coherence values for
all types of embeddings is about 0.4 on the first level of pre-processing and about 0.3 on
the second level of pre-processing. For the WoS dataset (Figs. 3E, 3F), the fluctuation of
coherence for all types of embeddings is about 0.3 for T < 25 and about 0.5 for T > 25
on the first level of pre-processing. On the second level of pre-processing, the fluctuation
of coherence does not exceed 0.3. Thus, the GLDAW model has a smaller fluctuation of
coherence in comparison to considered neural topic models. Also, the quality almost does
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Figure 2 Dependence of coherence on the number of topics (W-LDA,WTM-GMM, and GSMmodels).
(A) Lenta dataset. (B) 20 Newsgroups dataset. (C) WoS dataset.

Full-size DOI: 10.7717/peerjcs.1758/fig-2

not depend on the size of the window. The ETMmodel has a similar fluctuation value, but
it does not perform well for the deeply pre-processed small datasets, while the GLDAW
performance is good for both levels of pre-processing.

To compare all five models, Fig. 4A demonstrates the best coherence values for Lenta
dataset. ETM model shows the best quality with Navec embeddings at the first level
of pre-processing. However, this model does not perform well on the second level of
pre-processing (Fig. 1C). The GLDAWmodel has the second-best result with values of 0.1
less than ETM but performs well on the second level of pre-processing. Besides that, the
GLDAW model does not require the additional training of embeddings, unlike the ETM
model.

The best models in terms of coherence for 20 Newsgroups dataset are presented in
Fig. 4B. The best result is achieved by ETM as well. The GLDAW model outperforms
W-LDA in the range of 2–20 topics, while W-LDA outperforms GLDAW in the range
of 30–50 topics. It should be noted that the optimal number of topics is 14–20 for this
dataset, according to human judgment. Figure 4C demonstrates the best results for the
WoS dataset. GLDAW outperforms other models in terms of coherence, while the ETM
model has the second-best results for this dataset.

Results on stability
Let us remind that stability was computed based on the three runs of every model with the
same settings. The topic is considered stable if it is reproduced in all runs with a normalized
Kullback–Leibler divergence above 90%. Otherwise, the topic is considered unstable. The
number of stable topics was calculated for topic solutions with a fixed total number of

Koltcov et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1758 10/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1758/fig-2
http://dx.doi.org/10.7717/peerj-cs.1758


Figure 3 Dependence of coherence on the number of topics (GLDAWmodel). (A) Lenta dataset: first
level of pre-proccessing. (B) Lenta dataset: second level of pre-proccessing. (C) 20 Newsgroups dataset:
first level of pre-processing. (D) 20 Newsgroups dataset: second level of pre-processing. (E) WoS dataset:
first level of pre-processing. (F) WoS dataset: second level of pre-processing.

Full-size DOI: 10.7717/peerjcs.1758/fig-3

topics. Figures 5–7 demonstrate the number of stable topics vs. the total number of topics
in topic solutions. Since the calculation of stability is a very time-consuming procedure,
we considered only T = 10,20,30 for WoS dataset.

Figures 5A and 5B demonstrate the results on the number of stable topics for Lenta
dataset. One can see that additional training of word embeddings significantly improves
the model stability for a large number of topics. However, for a small number of topics,
the difference is insignificant. On average, ‘‘rus_vectors’’ embeddings demonstrate the best
result. Let us note that the stability measure based on Kullback–Leibler divergence does
not allow us to determine the optimal number of topics for Lenta dataset.

Figures 5C and 5D demonstrate the results on stability for the 20 Newsgroups dataset.
One can see that the application of pre-trained embeddings leads to less stable models
as well as for the Lenta dataset. For example, the models with wiki-news-300d-1 M and
enwiki_20180420 embeddings are stable only in the range of 10–20 topics on the first level
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Figure 4 Dependence of the best coherence values on the number of topics. (A) Lenta dataset. (B) 20
Newsgroups dataset. (C) WoS dataset.

Full-size DOI: 10.7717/peerjcs.1758/fig-4

of pre-processing. The second level of pre-processing increases stability, and the fluctuation
of stability reduces. Also, it should be noted that these curves do not allow us to evaluate the
optimal number of topics for 20 Newsgroups dataset. Altogether, we obtain the following
results for the above two datasets: for Lenta dataset, ETM model is stable in the range
of 1–4 topics, while this dataset has 7–10 topics according to human judgment; for 20
Newsgroups dataset, ETMmodel is stable in the range of 8–15 topics while this dataset has
14–20 topics according to human judgment.

Figures 5E and 5F demonstrate the results on stability for the WoS dataset. Again,
one can see that additional training of embeddings increases the stability of the model.
Moreover, one can see that the ETMmodel is sensitive to the type of word embeddings and
may produce a relatively large number of stable topics that are not present in the dataset
according to human judgment.

Figure 6 demonstrates the results on stability for the W-LDA, WTM-GMM and GSM
models. The level of pre-processing does not affect the stability of these models. However,
the stability level of the GSM, W-LDA, and WTM-GMMmodels is 3–4 times less than the
stability of ETM. The GSM model demonstrates the worst results in terms of stability for
the 20 Newsgroups dataset. It starts to produce stable solutions only beginning with 10
topics, and in general, it has 3–6 times worse stability than the WTM-GMM and W-LDA
models. Let us note that for the WoS dataset, we obtained zero stable topics for most cases.
On the whole, all models are stable in the range of 1–3 topics for Lenta dataset and in
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Figure 5 Dependence of the number of stable topics on the total number of topics (ETMmodel).
(A) Lenta dataset: first level of pre-proccessing. (B) Lenta dataset: second level of pre-proccessing.
(C) 20 Newsgroups dataset: first level of pre-processing. (D) 20 Newsgroups dataset: second level
of pre-processing. (E) WoS dataset: first level of pre-proccessing. (F) WoS dataset: second level of
pre-proccessing.

Full-size DOI: 10.7717/peerjcs.1758/fig-5

the range of 9–15 topics for the 20 Newsgroups dataset. However, for the WoS dataset we
obtained the worst results without stable topics for the GSM and W-LDA models.

Figures 7A and 7B demonstrate results on stability for GLDAWmodel on Lenta dataset.
The levels of pre-processing almost do not influence the results. The number of stable
topics is about 6–8 topics for solutions on 7–10 topics for both levels of pre-processing.
The further increase in the number of topics leads to a small increase in the number of
stable topics up to 16 topics. Figures 7C and 7D show the results for the 20 Newsgroups
dataset. These curves show that the levels of pre-processing do not influence the stability
either. Moreover, the fluctuation of stability is significantly smaller in the region of the
optimal number of topics than in the region of a large number of topics. Furthermore, the
largest number of stable topics that the GLDAW model produces is about 27 topics when
increasing the number of topics. Thus, the GLDAW model does not prone to produce
redundant topics, while the ETM model with 50 topics produces 35 stable topics meaning
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Figure 6 Dependence of the number of stable topics on the total number of topics (W-LDA,WTM-
GMM and GSMmodels). (A) Lenta dataset. (B) 20 Newsgroups dataset. (C) WoS dataset.

Full-size DOI: 10.7717/peerjcs.1758/fig-6

that it finds redundant topics (since the real number of topics is 14–20). At the same
time, the GLDAW model produces 14–18 stable topics in this range. Figures 7E and 7F
demonstrate the results on stability for WoS dataset. The number of stable topics varies
in the range of 4–11 topics, which is close to the number of topics on the first level of
markup. On the whole, the GLDAW model demonstrates the best result in terms of
stability among all considered models and for all three datasets. Since this model does not
depend significantly on the type of embeddings and is not sensitive to the window size, we
recommend using a window size equal to ten in order to speed up the calculation time.

Results on Renyi entropy
Various studies of topic models (Koltcov, 2018; Koltcov et al., 2020; Koltcov et al., 2021)
have shown that the number of topics corresponding to the minimal Renyi entropy equals
the optimal number of topics, i.e., the number of topics according to human judgment.
There can be several minimal points in the case of hierarchical structure (Koltcov et al.,
2021). However, in this work, we focus on labeled datasets with a flat structure leading to
a single Renyi entropy minimum, and for hierarchical WoS dataset, we consider only the
markup on the first level containing categories.

Figures 8A and 8B demonstrate Renyi entropy curves for ETM model on Lenta dataset.
First, the figures show that applying pre-trained embeddings results in a minimum
occurring at a small number of topics, about 4–6 topics, that does not match the human
labeling. Second, additionally trained embeddings shift the minimum in the range of
9–10 topics. Besides that, the difference between models with different embeddings is
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Figure 7 Dependence of the number of stable topics on the total number of topics (GLDAWmodel).
(A) Lenta dataset: first level of pre-proccessing. (B) Lenta dataset: second level of pre-proccessing.
(C) 20 Newsgroups dataset: first level of pre-processing. (D) 20 Newsgroups dataset: second level
of pre-processing. (E) WoS dataset: first level of pre-proccessing. (F) WoS dataset: second level of
pre-proccessing.

Full-size DOI: 10.7717/peerjcs.1758/fig-7

insignificant. Third, the pre-processing almost does not influence the curves for models
with additionally trained embeddings.

Renyi entropy curves for ETMmodel on the 20 Newsgroups dataset are given in Figs. 8C
and 8D. These figures show that it is necessary to train embeddings. There is no significant
difference between models with different embeddings. The minimum of Renyi entropy is
at 11 topics, which does not match the human mark-up.

Figures 8E and 8F demonstrate Renyi entropy curves for the ETM model on the WoS
dataset. The curves corresponding to pre-trained embeddings have minimum points not
matching the mark-up (2–3 topics for the first level of pre-processing and 3–6 topics for the
second level of pre-processing). The minimum of Renyi entropy for additionally trained
embeddings corresponds to 8–12 topics. Let us note that this number is the same for both
pre-processing levels and all three datasets, meaning that sampling from the categorical
distribution parameterized by the dot product of the word and topic embeddings works as
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Figure 8 Dependence of Renyi entropy on the number of topics (ETMmodel). (A) Lenta dataset: first
level of pre-proccessing. (B) Lenta dataset: second level of pre-proccessing. (C) 20 Newsgroups dataset:
first level of pre-processing. (D) 20 Newsgroups dataset: second level of pre-processing. (E) WoS dataset:
first level of pre-processing. (F) WoS dataset: second level of pre-processing.

Full-size DOI: 10.7717/peerjcs.1758/fig-8

a too strong regularization. It leads to the fact that different datasets’ results do not differ
much. Therefore, Renyi entropy cannot be used to determine the optimal number of topics
for ETM model.

Renyi entropy curves for the neural topic models trained on Lenta dataset are given in
Fig. 9A. The results show that Renyi entropy forW-LDA and GSMmodels does not depend
on the level of pre-processing. The entropy minima for GSM and W-LDA models do not
correspond to the optimal number of topics. However, Renyi entropyminimum (six topics)
for the WTM-GMM model on the second level of pre-processing almost corresponds to
the true number of topics. The results on Renyi entropy for the 20 Newsgroups dataset are
given in Fig. 9B. This figure shows that the levels of pre-processing do not influence the
entropy values. The minimum for GSMmodel is at eight topics; for W-LDA is at 12 topics;
and for WTM-GMM is at 42 topics. Figure 9C demonstrates corresponding results for the
WoS dataset. One can see that again, the pre-processing levels do not significantly influence
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Figure 9 Dependence of Renyi entropy on the number of topics (W-LDA,WTM-GMM and GSMmod-
els). (A) Lenta dataset. (B) 20 Newsgroups dataset. (C) WoS dataset.

Full-size DOI: 10.7717/peerjcs.1758/fig-9

the entropy values. The minimum for the GSM model is at 12-16 topics; for W-LDA is
at 4-6 topics; and for WTM-GMM is at six topics. Thus, Renyi entropy minimum for
WTM-GMM model is very close to the true number of topics. However, for GSM and
W-LDA, the entropy minima do not correspond to the optimal number of topics. Thus,
we can conclude that Renyi entropy cannot be used to determine the optimal number of
topics for these models.

The Renyi entropy curves for the GLDAWmodel trained on Lenta dataset are presented
in Figs. 10A and 10B. The computations show that the GLDAW model has Renyi entropy
minimum in the range of 7–9 topics, and different types of embeddings do not change
positions of the minimum. This result matches the number of topics according to the
human mark-up. Figures 10C and 10D demonstrate Renyi entropy curves for the 20
Newsgroups dataset. The minimum of Renyi entropy is located in the range of 15-17
topics, which also matches human judgment. Figures 10E and 10F demonstrate Renyi
entropy curves for the WoS dataset. The Renyi entropy minimum is achieved in the range
of 11–13 topics, and different types of embeddings do not change the position of the
minimum. This result is close to the number of topics achieved according to the human
mark-up.

Thus, we can conclude that, first, the GLDAW model almost does not depend on
the embedding type and window size for both Russian-language and English-language
embeddings. Second, this model allows us to correctly determine the approximation of the
optimal number of topics for all three datasets.
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Figure 10 Dependence of Renyi entropy on the number of topics (GLDAWmodel). (A) Lenta dataset:
first level of pre-proccessing. (B) Lenta dataset: second level of pre-proccessing. (C) 20 Newsgroups
dataset: first level of pre-processing. (D) 20 Newsgroups dataset: second level of pre-processing. (E) WoS
dataset: first level of pre-processing. (F) WoS dataset: second level of pre-processing.

Full-size DOI: 10.7717/peerjcs.1758/fig-10

Computational speed
Table 2 demonstrates the computational speed of the considered models on an example of
WoS dataset with the second level of pre-processing for different values of the total number
of topics, namely, for T = 10, 20, 30. The number of epochs for W-LDA, WTM-GMM,
GSM, and ETM was fixed at 300, and the number of iterations for GLDAW model was
also fixed at 300. All calculations were performed on the following equipment: computer
with Intel Core i7-12700H 2.7 GHz, Ram 16 Gb, operation system: Windows 10 (64 bits),
graphics card: NVIDIA GeForce RTX 3060. Let us note that the W-LDA, WTM-GMM,
GSM, and ETM models were computed with the application of CUDA while the GLDAW
model was not optimized for parallel computing.

Based on the presented time costs, one can see that the proposed GLDAW model is the
fastest model among the considered ones and, thus, can be recommended for practical
use.
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Table 2 Computational speed of the models forWoS dataset.

Model Number of topics Calculation time

ETM with pre-trained embeddings (enwiki) 10 248.25 sec
ETM with pre-trained embeddings (enwiki) 20 257.62 sec
ETM with pre-trained embeddings (enwiki) 30 260.32 sec
ETM with additionally trained embeddings (enwiki) 10 250.60 s
ETM with additionally trained embeddings (enwiki) 20 261.80 sec
ETM with additionally trained embeddings (enwiki) 30 266.94 sec
GSM 10 5422.5 sec
GSM 20 6696.0 sec
GSM 30 6717.0 sec
W-LDA 10 6640.0 sec
W-LDA 20 6760.6 sec
W-LDA 30 6905.9 sec
WTM-GMM 10 8299.7 sec
WTM-GMM 20 9340.5 sec
WTM-GMM 30 9340.8 sec
GLDAW with enwiki embeddings, window size 50 10 41.49 sec
GLDAW with enwiki embeddings, window size 50 20 47.23 sec
GLDAW with enwiki embeddings, window size 50 30 53.44 sec

DISCUSSION
Comparison of models in terms of coherence
Our calculations demonstrated that ETM model has both positive and negative properties
in terms of coherence. First, it is necessary to train embeddings for both Russian-language
and English-language embeddings to obtain good quality for this model. The procedure
of additional training of embeddings is time-consuming, but, in this case, the coherence
value is the largest among all considered models for the Lenta and 20 Newsgroups datasets.
Second, ETMmodel performs poorly on datasets with 11,000 words or less. This means that
this model is not suitable for small datasets. Moreover, additional training of embeddings
does not improve the coherence of the topic model for small datasets.

The GLDAWmodel has slightly worse results than the ETMmodel in terms of coherence
for the Lenta and 20 Newsgroups datasets; however, it demonstrates the best result for
WoS dataset. In addition, this model does not require additional training of embeddings
and does not depend on the window size. Moreover, the GLDAWmodel performs well on
small and large datasets, meaning that this model can be used in a wide range of tasks.

The GSM, WTM-GMM, and W-LDA models perform worse than ETM with trained
embeddings and GLDAW in terms of coherence. Moreover, these models have significant
fluctuations of the coherence measure under variation of the number of topics. The GSM
model demonstrates the worst results in terms of coherence for all three datasets.

Stability of topic models
The best result of the ETM model with trained embeddings in terms of stability for Lenta
dataset is about 4–5 topics for topic solutions on 10 topics. For topic solutions on 50 topics,
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this model has about 27–30 stable topics. The ETM model with untrained embeddings
has only 5–7 stable topics for solutions on 50 topics. Therefore, additional training of
word embeddings is required for this model. For the 20 Newsgroups dataset, the results on
stability are as follows. The ETMmodel with untrained embedding demonstrates a limited
level of stability for some types of embeddings. For example, for wiki-news-300d-1M and
enwiki_20180420 embeddings, the model has stable topics only in the region of 10–20
topics; in other cases, most topics were not reproduced in all three runs. The models with
trained embeddings perform better in terms of stability. There are 27–37 stable topics for
solutions on 50 topics and 12–15 stable topics (depending on the type of embeddings) for
solutions on 20 topics. For the WoS dataset, we can also observe that ETM model with
additionally trained embeddings produces a larger number of stable topics, namely, 5–7
stable topics for T = 10, 6–11 stable topics for T = 20, and 12–17 stable topics for T = 30
for both levels of pre-processing.

For the Lenta dataset, the GLDAW model has 7–8 stable topics for solutions on 10
topics outperforming the ETM model. Moreover, it has 8–16 stable topics for solutions on
50 topics, meaning that it is less prone to see redundant topics in this dataset than ETM
model, which produces about 30 stable topics. For the 20 Newsgroups dataset, GLDAW
model demonstrates the best result in the range of 15–19 topics, which is slightly better
than the ETM model with trained embeddings. For topic solutions on 50 topics, GLDAW
model has 22–25 stable topics. For WoS dataset, the GLDAWmodel has 4–11 stable topics
for the considered values of T , which is close to the human markup. Thus, the GLDAW
model outperforms all other models in terms of stability, showing the best stability for
the number of topics close to the optimal one, while for the ETM model, the number of
stable topics increases as the number of topics increases; what does not match the human
mark-up.

The stability of GSM,W-LDA, andWTM-GMM isworse than that of ETMandGLDAW.
WTM-GMM shows the best results (among the neural topic models), producing three
stable topics for solutions on 10 topics for the Lenta dataset, 13 stable topics for solutions
on 20 topics for the 20 Newsgroups dataset, and five stable topics for solutions on 10 topics
for the WoS dataset. GSM model demonstrates the worst result in terms of stability.

Determining the optimal number of topics
ETM model with trained embeddings has a minimum Renyi entropy at 10–11 topics
for the Russian-language dataset as well as for the English-language datasets. Thus, the
Renyi entropy approach does not allow us to differentiate between datasets for this model
and, therefore, to find the optimal number of topics. It happens due to the procedure
of sampling. The sampling is made from a categorical distribution parametrized by
embeddings, meaning that embeddings have a greater impact on topic solutions than the
dataset itself.

The GLDAW model has a minimum Renyi entropy at 7–9 topics for the Lenta dataset,
15–17 topics for the 20 Newsgroups dataset, and 11–13 topics for the WoS dataset, which
is close to the human labeling results. Besides that, our computations show that the type
of embeddings does not influence the entropy curve behavior for this model. Finally, the
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GSM, WTM-GMM, and W-LDA models have a minimum entropy for 4–6 topics for the
Russian-language dataset, and a fluctuating minimum at 14–42 topics for 20 Newsgroups
dataset. For the WoS dataset, the WTM-GMM model has a minimum for 6 topics, GSM
model demonstrates a minimum for 12–16 topics, and W-LDA has a minimum for 4–6
topics.

Thus, according to our results, we can conclude the following. The GLDAW model is
the best among all considered models based on the combination of three measures. It has
a slightly smaller coherence value than the ETM model for two of three datasets but the
largest stability in the region of the optimal number of topics. Moreover, this granulated
model allows us to determine the optimal number of topics more accurately than the other
models. In addition, this model is the fastest in terms of computational cost among the
considered ones.

CONCLUSIONS
In this work, we have investigated five topic models (ETM, GLDAW, GSM, WTM-GMM,
and W-LDA) with elements of neural networks. One of these models, namely the GLDAW
model, is new and is based on the granulated procedure of sampling, where a set of nearest
words is found according to word embeddings. For the first time, all models were evaluated
simultaneously in terms of three measures: coherence, stability, and Renyi entropy. We
used three datasets with two levels of pre-processing as benchmarks: the Russian-language
dataset ‘Lenta’, the English-language ‘20 Newsgroups’ and ‘WoS’ datasets. The experiments
demonstrate that the ETM model is the best model in terms of coherence for two of three
datasets, while the GLDAW model takes second place for those two datasets and first
place for the third dataset. At the same time, the GLDAW model has higher stability than
the ETM model. Besides that, it is possible to determine the optimal number of topics
in datasets for the GLDAW model, while the ETM model is unable for that. In addition,
the GLDAW model demonstrates the smallest computational cost among the considered
models. The GSM, WTM-GMM, and W-LDA models demonstrate worse results than the
ETM and GLDAW models in terms of all three measures. Thus, the proposed GLDAW
model outperforms ETM, WTM-GMM, GSM, and W-LDA in terms of the combination
of three quality measures and in terms of computational cost.
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APPENDIX A
A lot of topic models with elements of neural networks, which include network architecture
directly as well as application of word embeddings, have been proposed over the past 7
years. In this section, we briefly describe some of these models.
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In the Gaussian LDA model (Das, Zaheer & Dyer, 2015), documents are represented
as sequences of word embeddings obtained with word2vec, while topics are described
as multivariate normal distributions in embedding space (in contrast to classical topic
model representation, where topics are discrete distributions over the dictionary).
Correspondingly, every such distribution is characterized by its mean and variance.
The distribution of topics by documents is set as a Dirichlet distribution analogous
to the LDA model. Modeling word embeddings, not the words itself, is the distinctive
peculiarity of this approach. Different types of word embeddings can be used with this
model. Model inference is based on Gibbs sampling. It should be noted that there are
a lot of hyperparameters, including the number of topics, which require careful tuning.
Also, only the Euclidean distance is used as a proximity measure of embeddings, while
the standard approach is to use the cosine measure. This weakness is discussed in Li
et al. (2016c). The algorithm implementation of Gaussian LDA model can be found at
https://github.com/rajarshd/Gaussian_LDA.

Nguyen et al. (2015) incorporate word embeddings into two topic models: LDA and
one-topic-per-document DMM model (analogue to LDA, where every document has
only one topic) and obtain two new models LF-LDA and LF-DMM, correspondingly.
The main purpose of their work is to improve the quality of topic modeling for short
texts and small corpuses. The authors use two variants of pre-trained word embeddings:
‘GloVe and word2vec. Inference is based on Gibbs sampling. In the framework of htis
model, each topic has its representation in the embedding space. The generation of words
is as follows. The so-called ‘‘unfair coin’’ (with lambda parameter being responsible for
success probability) is tossed for every word. Then, word is generated from standard LDA
topic in case of failure. Otherwise, the word embedding generated from the component
of the topic vector is taken instead of the word itself. Thus, it is a mixed model, where
the word is generated either from the component of the topic, which corresponds to the
Dirichlet LDA topic, or from the latent feature component represented as a vector. The
representations of topic vectors as well as matrices8 and2 (similar to LDA) are estimated
during the model inference. It is shown that the best PMI-score is given by models with
lambda equal to 1 meaning that topics are represented only by their embeddings. The
peculiarity of this model is that every topic is a combination of the Dirichlet topic (inferred
with LDA) and a vector representation, which can have different top words, however
the authors don’t mention how to handle it. The model implementation can be found
at https://github.com/datquocnguyen/LFTM. However, the algorithm is rather slow and
cannot be used for large corpora (Li et al., 2016a).

In 2016, a spherical topic model was proposed (Batmanghelich et al., 2016), which is an
extension of the HDP (Hierarchical Dirichlet Process) model (Blei & Jordan, 2006). Since
the model is nonparametric, the number of topics is generated automatically. In spherical
HDP, every topic (sHDP) is a von Mises-Fisher distribution in normalized embeddings’
space (unit sphere). The distribution of topics in documents (proportions) are inferred
with HDP. Word embeddings are learned with word2vec. The authors state that the model
allows to get more coherent topics than Gaussian LDA and HDP. The implementation of
this model can be found at https://github.com/Ardavans/sHDP.
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Xun et al. (2016) use the additional information from word embeddings to get better
topic models for short texts. They use word2vec embeddings trained on the Wiki dataset.
Similar to Gaussian LDA model, it is assumed that every topic has a normal distribution
in word embeddings space. In addition, it is supposed that every short text has only one
topic. Also, the authors suppose that every word either belongs to a Gaussian topic or is
one of the background words which are generated from LDA topics. An unfair coin is
tossed for every word and in case of failure the word is generated from the background
topic (as in LDAmodel). Otherwise, the word embedding is considered instead of the word
and assumed that this word embedding is generated from the Gaussian topic. Inference
algorithm is based on Gibbs sampling.

In Li et al. (2016c), a new model called mix-vMF is proposed. The main idea is similar
to the Gaussian LDA, but with von Mises-Fisher distributions used instead of normal
distributions, meaning that every topic is a mix of von Mises-Fisher distributions in the
space of normalized vectors on the unit sphere. The distributions of topics by documenst
are Dirichlet distributions (similar to LDA), while the distributions of word embeddings
by topics are used instead of the distribution of words by topics. The authors claim
that von Mises-Fisher distribution can reflect the vectors’ similarity in terms of cosine
distance more efficiently, while a mix of such distributions is able to attribute heterogenous
word embeddings to the same topic. Thus, a collection of documents is represented as a
collection of word embeddings. Inference is based on Gibbs sampling. The authors use
word embeddings from the GloVemodel. The implementation of this model is not publicly
available.

Li et al. (2016b) propose TopicVec model. The model creates topic embeddings for
topics that implies that topic is a point in the space of word embeddings. The model
takes into consideration a certain number of context words (parameter l) in front of every
word and a topic, when assigning a probability to this word. The distribution of topics by
documents is Dirichlet distribution (as in LDA). Thus, a generative model for documents
is obtained. This model uses pre-trained word embeddings from PSDVec (Li, Zhu & Miao,
2017). The top words for every topic are found as the nearest words according to weighted
cosine measure between topic embedding and word embeddings. There is a matrix of the
distribution of topics by documents, however there is nomatrix of the distribution of words
by topics. Inference is based on variational E-M algorithm. The main advantage of the
model is the rejection of the bag-of-words hypothesis and consideration of words’ order.
The implementation of this model can be found at https://github.com/askerlee/topicvec.

In 2017, a correlated Gaussian topic model was proposed by Xun et al. (2017b). The
approach is based on correlated topic model, where words are represented by their
embeddings, while topics are multivariate normal distributions in the space of word
embeddings. The main goal is modeling of topics and correlations between topics in the
word embedding space. Word embeddings are trained separately on a large corpus with
word2vec prior to topic modeling. This approach is very similar to the Gaussian LDA
model with the difference that the distributions of topics for documents is log-normal, not
Dirichlet. It allows to find the covariance between topics. The model inference is based on
Gibbs sampling. The implementation of the model is not publicly available.
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Zhao, Du & Buntine (2017) propose a newmodel, which is calledWEI-FTM. This model
is aimed to improve topic modeling quality for short texts. This model is a ‘‘focused topic
model’’, meaning that each topic is focused on some set of words, which implies that the
topic is a distribution not over the whole dictionary, but over its subset. Similar to LDA,
each document is generated by K topics, the distribution of words by topic is a Dirichlet
distribution for a certain subset of words, while φwt equals zero for the rest of the words.
The procedure of focus words selection is carried out as follows. A coin with success
probability equal to function of the dot product between the word and the topic vector is
tossed. The word is included in subset of words of the current topic in case of success, and
not included in case of failure. The model is rather similar to LDA, namely, distribution
of topics by documents is Dirichlet distribution and distribution of words by topics is
Dirichlet distribution but only over a certain subset for every topic. Word embeddings are
used only to extract focus words for every topic and are trained separately with GloVe.
Model inference is based on Gibbs sampling. There are two ways to choose top words in
this model. One can either use the traditional matrix 8 or consider the dot product of the
word and the topic vector representation. The authors use both approaches and calculate
topic coherence separately. There is no implementation of this model in the public domain.

The authors of Collaborative Language Model (CLM) (Xun et al., 2017a) model topics
using the global context and train word embeddings using the local context simultaneously.
In the framework of the model, topic embeddings are trained, and the dot product of the
topic and the word embedding is used to evaluate the word’s contribution into topic. The
authors suggest not using pre-trained embeddings, because there are not so much open
data in some fields. Thus, word embeddings use information only from a given dataset.
This model is not generative and not stochastic but is solving the non-negative matrix
factorization optimization task, where the target function consists of decomposition of
words’ co-occurrence matrix(to get word embeddings), decomposition of topic matrix
(to get vector representations for topics) and norm restrictions (regularization) for every
matrix. Inference is based on equalizing of target function derivatives to zero and iterative
calculation of respective matrix decompositions. The authors demonstrate that their model
produces coherent topics and good vector representations of words (pairs of words are
sorted according to a cosine measure, then a correlation between the sorted pairs and
word similarity human-made rates is calculated). The implementation of the model can be
found at: https://github.com/XunGuangxu/2in1.

In Zhao et al. (2017), the MetaLDA model is proposed. This model allows to use
meta-information of document (e.g., author or label) and words (e.g., word embeddings).
It is supposed that meta-information improves the quality of topic modeling for short
texts. Meta-information for both words and documents is encoded in binary vectors.
It is assumed that the distribution of words by topics is a Dirichlet distribution with V
hyperparameters (having different values for different topics), where V is the size of the
dictionary, and the distribution of topics by documents is a Dirichlet distribution with
T hyperparameters (different for every document), where T is the number of topics.
The binary vectors of meta-information are used to determine hyper-parameters for the
Dirichlet distributions. If two words (w1 and w2) have similar meta-information, then the
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values of hyperparameters for the distribution of topic over these words will be similar as
well as their math expectations of 8w1,k and 8w2,k . The implementation of the model can
be found at https://github.com/ethanhezhao/MetaLDA/.

Miao, Grefenstette & Blunsom (2017) suggest several topic models based on neural
variational inference (python code is available at https://github.com/zll17/Neural_Topic_
Models). Neural networks is capable of approximating various functions and learning
complicated non-linear distributions for unsupervised models. That is why the authors
suggest using an alternative neural approach to topic modelling based on parameterized
distributions over topics, which can be trained with backpropagation in the framework
of neural variational inference. Neural variational inference approximates a posterior
distribution of a generative model by means of variational distribution parameterized by a
neural network. The authors propose three different models. The generative process of the
models is as follows:

• Proportions of topics θd for each document d ∈D are distributed as G(µ0,σ
2
0 ), where

G(µ0,σ
2
0 ) consists of neural network θ = g (x) sampling from normal distribution

x ∈N (µ0,σ
2
0 ).

• Topic zn has a multinomial distribution zn∼Multi(θd) for each observed word wn,n
=1 ,...,Nd .
• Each word wn∼Multi(βzn), n= 1,...,Nd , where βzn is the distribution of words in topic
zn

Let t ∈RK×L be vector representations of topics and v ∈RV×L be vector representations
of words, then distribution of words in topic k is βk = softmax(v · tTk ). The first proposed
model is GSM (Gaussian Softmax distribution). It has the finite number of topics K .
Proportions of topics in documents distributions are set with gaussian softmax (Miao,
Grefenstette & Blunsom, 2017):

• x ∈N (µ0,σ
2
0 ),

• θ = softmax(W T
1 x), whereW1 is linear transformation.

The second proposed model is GSB (Gaussian Stick Breaking distribution). It has the
finite number of topics K as well. Proportions of topics in documents are set with Gaussian
stick breaking process:

• x ∈N (µ0,σ
2
0 ),

• η= sigmoid(W T
2 x) gives stick breaking proportions,

• θd = fSB(η), where fSB(η) is stick breaking construction. For example, for K = 3,
fSB(η1,η2) = (η1,η2 · (1− η1),(1− η2) · (1− η1)). For K = 4, fSB(η1,η2,η3) =
(η1,η2 · (1−η1),η3 · (1−η2) · (1−η1),(1−η3) · (1−η2) · (1−η1)). Thus, for any K ,∑

kθkd = 1.

In the third model, the Recurrent Stick Breaking process (RSB), the number of topics
is unbounded, and the distribution of topics in documents is set with the Recurrent Stick
Breaking process (Miao, Grefenstette & Blunsom, 2017):

• x ∈N (µ0,σ
2
0 ),
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• η= fRNN (x), where fRNN (x) is decomposed as hk =RNNSB(hk−1),ηk = sigmoid(hTk−1x).
RNN denotes a recurrent neural network. Thus, the proportions for Recurrent Stick
Breaking are generated sequentially by RNN.
• θd = fSB(η), where fSB(η) is the same function as in the previous model.

Lower variational estimate of likelihood is used for the model inference. Variational
parametersµ(d),σ (d) (for the document d) are generated with an inference network based
on multilayer perceptron. Generative parameters (such as t ,v and parameters of g (x)) as
well as variational parameters (such as µ(d),σ (d) are updated with stochastic gradient
backpropagation algorithm. The authors demonstrate that the first two models perform
better than the standard LDA model in terms of perplexity, while the third one preforms
better than the HDP model.

Bunk & Krestel (2018) suggest a new model WELDA (Word Embedding Latent
Dirichlet Allocation), which combines LDA with word embeddings. Pre-trained skip-gram
word2vec embeddings are used. This model merges the classical Dirichlet distributions
and multivariate normal distributions in word embeddings space. The main idea is to
find vector representations for words, train standard LDA until convergence and find
the parameters of normal distribution for each topic according to its top words (more
precisely, according to their word embeddings). After that, additional iterations of Gibbs
sampling are run, where an unfair coin is tossed for every word (with lambda probability
of success, giving Bernoulli distribution) in the following way. Let word w be assigned to
topic t , then in case of success, a vector from the embeddings space of this topic is sampled
(i.e., from multivariate normal distribution of the topic in embeddings space), the nearest
word embedding to this sampled vector is found and the corresponding word is labeled
with topic t , and all counters are recalculated after that. Model implementation can be
found at https://github.com/AmFamMLTeam/hltm_welda (not original implementation).

Dieng, Ruiz & Blei (2020) suggested a new topic model called embedded topic model
(ETM). This model is generative and probabilistic: every document is a mixture of topics,
and every word is attributed to a specific topic. At the same time, every word has a vector
representation (word embedding), and topics are the vectors in the same space as well.
One of the main goals of this model is enrichment of topic models with the usage of the
similarity of words according to their vector representations. Let us consider this model in
more detail since it is used in our experiments. Let ρ denote the matrix of words’ vector
representations for the dictionary of a given collection. This matrix has L×V size, where
L is the size of vector representations of words and V is the number of unique words. Each
column of ρ is a vector representation of a word. Also, let αk ∈mRL denote the vector
representation of topic k. Then, the generative process for document d can be described as
follows:
1. Proportions of topics for given document, θd , are sampled from the logit-normal

distribution LN(0,I).
2. For each position n in the document, a topic zdn is sampled from a categorical

distribution Cat (θd) and the word is sampled according to wdn∼ softmax(ρTαzdn).
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Thus, the words are generated from a categorical distribution with a parameter equal to
the dot product of vector representations of the word and the topic. The matrix 8 of the
distribution of words by topics can be calculated asφvk = softmax(ρTαk)|v .Model inference
is based on maximization of the log-likelihood of documents collection. However direct
computation is not possible, that is why variational inference is used. A family of additional
multivariate normal distributions is used in inference, whose parameters (vector of means
and covariance matrix) are evaluated with a neural network, which takes documents as
inputs and outputs the parameters (µd , 6d) for every document. Thus, the evaluation of
the parameters of auxiliary distributions in variational inference is carried out by a special
neural network. Inference algorithm can be described as follows:
1. Initialize model and variational parameters νµ,ν6
2. Iterative steps:

(a) Compute φ·k = softmax(ρTalphak) for every topic k
(b) Choose a minibatch of documents (B)
(c) For every document d ∈B:

• Construct normalized bag-of-words representation of document (xd)
• Compute µd =NN (xd,νµ)
• Compute 6d =NN (xd,ν6)
• Sample θd ∼ LN (µd ,6d)
• For each word wdn in the document d : Compute p(wdn|θd)= θTd φwdn

(d) Compute variational lower bound (ELBO) and its gradient
(e) Update values of α1:K
(f) Update values of variational parameters νµ,ν6
The authors propose two options for the model: (1) with pre-trained embeddings; (2)

learning the embeddings as part of the fitting procedure. The numerical experiments of
the authors demonstrate that the model with pre-trained embeddings gives slightly better
quality on average in terms of topics’ interpretability and predictive ability compared to
the alternative. Also, ETM significantly improves the quality measures such as semantic
coherence and predictive ability in comparison to LDA. It should be noted, that skip-gramm
pre-trained embeddings are used in this work; however, the authors admit the possibility
to use other types of word embeddings. Also, the number of topics is set manually in this
model leaving the problem of selecting the number of topics open.

Further development of ETM model was proposed in Harandizadeh, Priniski &
Morstatter (2022). The new proposed model (keywords assisted ETM) incorporates user
knowledge in the form of informative topic-level priors over the vocabulary. Namely, the
user specifies a set of seed word lists associated with topics of interest, that, in turn, guides
statistical inference.

At the end of 2019, the W-LDA model was proposed (Nan et al., 2019). This is a
neural topic model based on Wasserstein autoencoder with Dirichlet prior on the latent
document-topic vectors. The encoder consists of a multi-layer perceptronmapping bag-of-
words representation of a document to an output layer of K units, then softmax is applied
to obtain the document-topic vector θ . Given θ , the decoder consists of a single layer
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neural network mapping θ to an output layer of V units, then softmax is applied to obtain
a probability distribution over the words in the vocabulary (ŵ). Thus, ŵi =

exp(hi)∑V
j=1exp(hj )

,

where h=βθ+b, β is the matrix of topic word vectors as in LDA and b is an offset vector.
The top words of each topic can be extracted based on the decoder matrix weights (i.e.,
top entries of βk sorted in descending order). The authors demonstrate that their model
produces significantly better topics compared to LDA, ProdLDA (Tolstikhin et al., 2018),
NTM-R (Ding, Nallapati & Xiang, 2018).

WTM-GMM is an improved version of the original W-LDA https://zll17.github.
io/2020/11/17/Introduction-to-Neural-Topic-Models/#WTM-MMD. Gaussian mixture
distribution is considered as prior distribution. The authors propose two types of evolution
strategy: gmm-std and gmm-ctm. The gmm-std adopts Gaussian mixture distribution,
whose components have fixed means and variances. In contrast, the components of
Gassuian mixture distribution of the gmm-ctm are adjusted to fit the latent vectors
through the whole training process. The number of the components is usually set as the
number of topics. Empirically, theWTM-GMMmodel usually achieves better performance
than W-LDA in terms of topic coherence.

In the spring of 2020, the Bidirectional Adversarial Topic model (BAT) was proposed
(Wang et al., 2020). This model uses a Dirichlet distribution as a prior distribution of topics
(analogous to LDA). Moreover, an extension of this model, Gauusian BAT, which is able
to account the words similarity based on their vector representations, was also proposed.
In this work, bidirectional adversarial training is used for the first time in topic modelling.
The BAT and Gaussian-BATmodels use a Dirichlet prior for modelling topics. Let V be the
size of the dictionary and K be the number of topics. BATmodel consists of 3 components:
(1) The encoder which takes a V-dimensional document representation (

−→
dr ) as input and

transforms it into a K-dimensional distribution of topics in the document (
−→
θr ); (2) The

generator takes a random distribution of topics in the document as input (
−→
θf ), which

is sampled from the Dirichlet distribution, and generates an artificial V-dimensional
distribution of words (

−→
df ). (3) The discriminator takes a real pair of distributions

−→pr = [
−→
θr ,
−→
dr ] and an artificial pair of distributions −→pf = [

−→
θf ,
−→
df ] as input. After that,

it has to distinguish real distributions and the artificial ones. The output of discriminator is
used to train the encoder, generator and discriminator in adversarial training. The encoder
contains a V-dimensional layer of distribution of words in a document, an S-dimensional
layer of representations and a K-dimensional layer of distribution of topics in a document.
Each document d has its own representation (

−→
dr ) weighted with TF-IDF. Firstly, the

encoder projects
−→
dr into S-dimensional semantic space by means of the representation

layer as follows:
−→
hes =BN (W e

s
−→
dr +
−→
bes ),
−→
oes =max(

−→
hes ,leak ∗

−→
hes ), where W

e
s ∈R

S×K is the
weightmatrix of the representation layer, bes is the bias, h

e
s is the state vector normalized with

batch normalization, leak denotes the parameter of Leaky ReLu activation function, oes is
the output of the representation layer. Then, the encoder converts oes onto a K dimensional
topic space:

−→
θr = softmax(W e

t
−→
oes +
−→
bet ), where W

e
t ∈ R

K×S is the weight matrix of the
topic distribution layer,

−→
bet is the bias of this layer,

−→
θr denotes the topic distribution of

document
−→
dr , while θ kr is the proportion of topic k in this document. The generator
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projects the distribution of topics in documents onto the distribution of words in the
document in contrast to the encoder. Thus, the generator consists of a K-dimensional
layer of the distribution of topics in documents, an S-dimensional representation layer
and a V-dimensional layer of the distribution of words in a document. The distribution of
topics in documents

−→
θf (θ kf denotes the proportion of topic k in the document) is assumed

to be Dirichlet distribution with a K-dimensional parameter −→α . First, the generator
projects the distribution of topics in documents onto an S-dimensional representation

space:
−→
hgs = BN (W g

s
−→
θf +
−→
bgs ),
−→
ogs =max(

−→
hgs ,leak ∗

−→
hgs ), where W

g
s ∈RS××K is the weight

matrix of the representation layer,
−→
bgs is the bias,

−→
hgs is the state vector normalized with

batch normalization, leak denotes the parameter of Leaky ReLu activation function,
−→
ogs

is the output of the representation layer. Then
−→
ogs is transformed into the distribution of

words in a document by means of linear layer and softmax:
−→
df = softmax(W g

w
−→
ogs +
−→
bgw ),

where W g
w ∈RV×S is the weight matrix of the distribution of words,

−→
bgw is the bias of the

layer,
−→
df denotes the distribution of words corresponding to

−→
θf . For each word v , dvf is

the probability of this word in the artificial document
−→
df . The discriminator consists of

the 3 layers: a V +K -dimensional layer for joint distribution, an S-dimensional layer of
representations and an output layer. The main task of the discriminator is to distinguish
real input data −→pr = [

−→
θr ;
−→
dr ]] from artificial ones −→pf = [

−→
θf ;
−→
df ]. The output of the

discriminator isDout . LargeDout value indicates that the generator defines the input as real.
The authors also propose a modified Gaussian-BAT with a modified generator to consider
information about the relationship of words based on vector representations of words. The
multivariate normal distribution (N (−→µk,6k)) is used to model topic k, where −→µk and 6k

are the parameters learned during training. The probability of every word v is calculated
as follows: p(−→ev |topic = k)=N (−→ev ;−→µk,6k), φvk =

p(−→ev |topic=k)∑V
v=1

p(−→ev |topic = k), where −→ev
denotes the vector representation of the word v , φ·k is the normalized distribution of
words in the k-th topic. The artificial distribution

−→
df corresponding to a certain

−→
θf can be

computed as follows:
−→
df =

∑K
k=1
−→
φk ∗θ

k
f . The encoder and decoder are the same as in BAT.

Pairs of real distributions −→pr = [
−→
θr ;
−→
dr ]] and pairs of artificial distributions −→pf = [

−→
θf ;
−→
df ]

are considered as random samples from two (K+V) - dimensional joint distributions Pr
and Pf . The main task is to make Pf as close to Pr as possible. Wasserstein distance is used
as the proximity measure between Pr and Pf . A detailed algorithm of training is given
in Wang et al. (2020). The authors demonstrate that the proposed models perform better
than the standard LDA and GSM models in terms of the ‘topic coherence’ measure.

In Xu et al. (2022), a neural topic model with deep mutual information estimation
(NTM-DMIE) is proposed. This method maximizes the mutual information between the
input documents and their latent topic representation. The framework of NTM-DMIE
consists of two main components, namely, Document-Topic Encoder and Topic-Word
Decoder. The Document-Topic Encoder simulates the document-topic distribution
as in LDA and learns topic representations of documents. Moreover, in the encoder,
mutual information is estimated between the documents and their topic representations.
The Topic-Word Decoder learns the topic-word distribution as in LDA. The authors
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demonstrate that the proposed model outperforms state-of-the-art neural topic models in
terms of ’topic coherence’ and ’topic uniqueness’ metrics.

In Shao et al. (2022), the role of embeddings and their changes in embedding-based
neural topic models is studied. Moreover, the authors propose an embedding regularized
neural topic model (ERNTM), which applies the specially designed training constraints on
word embeddings and topic embeddings to reduce the optimization space of parameters.
The authors compare the proposed model with the baseline models, such as ETM, GSM,
NTM (Ding, Nallapati & Xiang, 2018) and demonstrate its competitiveness.

To increase the quality of topic modeling on short texts, a neural topic model integrating
SBERT and data augmentation was proposed in Cheng et al. (2023). The authors introduce
a data augmentation technique that uses random replacements, insertions, deletions, and
other operations to increase the robustness of text data and incorporate it with keyword
information obtained through the TextRank algorithm. Then, the augmented text data is
vectorized and used as input for a BiLSTM-Att module to obtain long-distance dependency
information and overcome the influence of noisy words. The authors also propose SBERT
model, which, in contrast to BERT, takes the entire sentence as a processing unit. The
information that was enhanced through data augmentation and processed through the
attention mechanism is merged with semantic feature information. The resulting feature
information is fed into a neural topic model based on ProdLDA model.

In general, topic modeling with the application of neural networks is actively developing.
One of the best reviews in this area isZhao et al. (2021), although this work is from2021. The
active development of transformer models has given rise to several new works using topic
modeling as an auxiliary tool. For example, in Giang, Song & Jo (2022), topic modeling was
used to improve the segmentation of high-level images as follows (TopicFM model). This
approach represents an image as a set of topics marked with different colors, i.e., encodes
high-level contextual information of images based on the topic modeling strategy in data
analysis. Each topic is an embedding fed into the ‘cross-attention layer’ input, characterized
by three matrices (queries, keys, values). Thus, a standard transformer scheme is used. At
the transformer’s output, probabilities characterizing the distance between the attribute Fi
and separate topics T are obtained. Further, one can obtain a similar matrix for different
images and then compare the images with each other. Thus, TopicFM provides reliable
and accurate feature-matching results even in complex scenes with large changes in scale
and viewpoint.

In Wang et al. (2023), large language models (LLMs) are considered implicit topic
models. The authors of this paper, relying on the fact that LLMs areMonte Carlo generative
models, propose to consider the generation process in dependence on the topic and the
topic-token matrix. With this point of view, topic modeling is reduced to a classification
procedure, that is, to obtaining a label for each document in the form of the probability
that this document belongs to a particular topic. This paper analyzed the following LLMs:
GPT2, GPT3, GPTS-instruct, GPT-J, OPT, and LLaMA. In their tests, the authors proposed
a two-stage algorithm that first extracts latent conceptual lexemes from a large language
model and then selects demonstrations from clues that are most likely to predict the
corresponding conceptual lexemes.
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The Zero Shot Classification technology (Brown et al., 2020) should also be noted. In
the framework of this technology, large language models are used to classify text data using
transfer learning. That is, the LLM-based classifier can output the probabilities that the
text belongs to different topics, and the user specifies the topics. Thus, it is possible to
construct a simple text clustering algorithm for a given set of topics. Further development
of this direction is demonstrated in Ding et al. (2022). In this paper, the authors propose
a topic classification system originally trained on Wikipedia. Thus, the trained classifier
can classify an external document on various topics with high accuracy. The proposed
framework is also based on zero-shot classification technology.

We would also like to mention some other applications in the field of NLP where topic
modeling is used as an auxiliary tool. Joshi et al. (2023) proposes the ‘DeepSumm’ method
for text summarization. In the framework of this approach, each sentence is encoded with
two different recurrent neural networks based on the probability distributions of the topics
and embeddings. Then a sequence-to-sequence network is applied to the encoding of each
sentence. The outputs of the encoder and decoder in the sequence-to-sequence networks
are combined after weighting by an attention mechanism and converted into an estimate
by a multilayer perceptron network. Accordingly, several scores are obtained for each
sentence, namely the score obtained using the Sentence Topic Score (STS) topic model,
and the score obtained using embeddings: Sentence Content Score (SCS). In addition, the
authors offer Sentence Novelty Score (SNS) and Sentence Position Score (SPS). Based on
these four scores, a Final Sentence Score (FSS) is calculated. Accordingly, all sentences are
ranked according to the final score, and a brief summary of the text is the set of sentences
that received the maximum value.

In conclusion, we would like to note that in the last two years, there has been a change in
focus from the development of topic models to the use of models in conjunction with large
language models, or even to the replacement of topic sampling procedures for classification
with style transfer, that is, the widespread use of zero-shot technology. At the same time,
embeddings have become an integral part of transformers when working with various NLP
tasks.

APPENDIX B
In this section, we briefly describe the main models of word embeddings.

Word2vec model
The technology of word embeddings is based on the hypothesis of local co-occurrence of
words. In the framework of this hypothesis, it is assumed that words that often occur with
similar surrounding words have the same or similar semantic meaning. This hypothesis
was proposed by Mikolov et al. (2013). The probability of occurrence of word w0 with
surrounding words is expressed as follows: p(w0|Wc)=

exp(s(w0,wc ))∑
w∈V exp(s(wi,wc ))

, where w0 is a
vector representation of the target word, wc is the context vector, s(w0,wc) is a function
matching two vectors with a number, for example, a distance measure such as a cosine
measure.
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CBOW (continuous bag of words) is a model where the network is trained on a
continuous sequence of words. In the framework of this model, the order of words is
not important. In this model, a sequence of 2k+1 words is used, where the central word
is is the word under study, and the context vector is build based on the corresponding
surrounding words. Thus, each vector has a set of words, which often occur together. In
the CBOW model, the probability of words is based on minimization of Kullback–Leibler
divergence: KLB(p||q)=

∑
x∈V p(x)ln(

p(x)
q(x) ), where p(x) is the probability distribution of

words from the dataset, q(x) is the word distribution generated by the model. Skip-gram
model is a model of phrases with a gap. This model is similar to the previous model. The
principle of the CBOWmodel is a prediction of a word given context, and the principle of
skip-grammodel is a prediction of context given a word. In general, the word2vec model is
optimized based on negative sampling procedure (Mikolov et al., 2013). Negative sampling
is a way to create negative examples for model learning (i.e, to show pairs of words that are
not neighboring in the context).

GloVemodel
The main idea of the GloVe model is to extract semantic relations between words using
the matrix of co-occurrence of words. This model minimizes the difference between the
product of word vectors and the logarithm of the probability of their co-occurrence using
stochastic gradient descent (Pennington, Socher & Manning, 2014). In this case, it is possible
to connect satellites of one planet or the city’s postal code with its name, that could not be
done using the Word2vec model.

FastText model
The FastText model is an extension of the Word2vec model. In the FastText model,
skip-gram, negative sampling, and model of symbolic n-grams are used (Joulin et al.,
2017). Each word is presented as a composition of several sequences of symbols of a certain
length. In this approach, word embedding is the sum of these n-grams. Parts of words are
also likely to occur in other words, making it possible to produce vector representations
for rare words.

Doc2vec model
The Doc2vec model allows one to map an entire document into a numeric vector (Le &
Mikolov, 2014). The developers of the concept proposed the following algorithm. Each
paragraph is represented as vector of words, where each word is represented as a numeric
vector, characterizing the proximity of words to each word in a paragraph. Paragraph
vectors and vectors of words are averaged to improve word prediction. In general, this
approach is analogous to the word2vec model, with the only difference being that the
window slides over the document’s paragraphs. Moreover, in the framework of this model,
the algorithm of the stochastic gradient is used for the optimization of the softmax function.
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ElMomodel
In Peters et al. (2018), the authors proposed an approach where word vectors are trainable
functions of inner states of a deep bidirectional language model (biLM), which was
previously trained on a large corpus of texts. The authors used deep network ’bidirectional
LSTM’ with several normalization layers. This approach uses a character-by-character data
representation strategy, so ElMo (Embeddings from Language Models) provides three
layers of representations for each input token, including those that are outside the training
set due to pure character input. In contrast to this approach, traditional word embedding
methods only provide one level of representation for lexemes from a fixed vocabulary.

Further development of algorithms for building embeddings went through using large
languagemodels; namely, embeddings began to be used as an input to transformers that deal
with various NLP tasks, such as translation, text summarization, sentiment analysis, and
others. In addition, the architecture of transformers began to be used to build embeddings.

Tuning of embeddings for ‘transfer learning’ tasks
In Cer et al. (2018), the authors propose two models for encoding sentences into
embeddings, which are specifically aimed at the transfer of learning. The proposed
variants of coding models make it possible to find a compromise between accuracy and
computational costs since training large language models is an extremely costly procedure,
both in terms of time and finances. The first model encodes sentences into embeddings
based on the ‘sub-graph of the transformer’ architecture (Vaswani et al., 2017). This sub-
graph uses attention to calculate context-sensitive representations of words in a sentence
taking into account the order and the identity of all other words. The context-aware word
representations are converted to a fixed-length sentence encoding vector by computing
the element-wise sum of the representations at each word position. The encoder takes as
input a string with PTB (Penn Treebank tokenization) tokens in lowercase and outputs a
512-dimensional vector as the sentence embedding.

The second encoding model is based on the Deep Averaging Network (DAN) (Iyyer et
al., 2015), in which the embeddings for words and bigrams are first averaged together and
then passed through a feedforward deep neural network (DNN) to obtain the final sentence
embeddings. Like the Transformer encoder, the DAN encoder takes a lowercase PTB token
string as input and produces a 512-dimensional sentence embedding. The authors have
shown that transfer learning based on the transformer-based embedding encoder performs
as well or better than learning based on the DAN encoder. Models in ‘transfer learning’
tasks that use sentence-level embeddings tend to perform better than models that only use
word-level transfers.

Electra model
In Clark et al. (2020), a new method for pretraining text encoders based on discriminators
is proposed. The proposed model (Electra: Efficiently Learning an Encoder that Classifies
Token Replacements Accurately) consists of two generator networks and a discriminator
(based on transformers). The idea of such a network is as follows: the learning mode based
on masking words is replaced by a masking model of lexemes taken from the generator
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network. Then, instead of training a model that predicts the original identity of the latent
lexemes, a discriminative model is trained that predicts whether each token in the latent
form has been replaced by a generator pattern or not. As the authors have shown in
their experiments, this architecture is superior to models such as BERT and GPT-2 and
is comparable to the RoBERTa and XLNet models with a lower amount of training data.
In addition, this paper shows the procedure for generating embeddings based on token
masking.

Acoustic word embeddings
Recently, works that construct embeddings not from text data but from images and
audio tracks have appeared. For example, in Jacobs & Kamper (2023), an algorithm for
constructing acoustic embeddings (AWE) is proposed, which are speech segments that
encode phonetic content so that different implementations of the same phonetic content
have the same embeddings. This model is based on a recurrent network for matching word
segments in embedding.

Recent applications of word embeddings
In general, the works of 2022-mid-2023 are not focused on developing new embedding
models but on creating new architectures for large language models, as well as on
forming various ways to use embeddings. For example, in Muennighoff (2022), the
author considers the SGPT (decoder-only transformers) model for semantic search
and extraction of meaningful embeddings based on prompt engineering and fine-
tuning. In addition, websites are being actively developed where users can either find
ready-made embeddings, as was done in the framework of this work, or sites that
contain ready pre-trained neural networks tailored for various NLP tasks, including
building embeddings. One such popular resource is the ‘Hugging Face’ repository
(https://huggingface.co/blog/getting-started-with-embeddings). The most recent review
(April 2023) of large language models is given in Yang et al. (2023). This paper discusses
the areas of application of transformers such as decoder-only, encoder-only, and encoder–
decoder architectures in the context of various NLP tasks. It should be noted that, by
definition, the architecture of the Transformers type uses an embedding layer as an input
layer. Hence, themain flow of scientific work in 2022–2023 is related to developing different
architectures that use the above embedding construction schemes.

In addition, we would like to mentionWang et al. (2019), in which the authors consider
the most popular models for building embeddings, such as Continuous-Bag-of-Words
(CBOW), Skip-Gram, a model based on Co-occurrence Matrix, FastText, N-gram Model,
Deep Contextualized Model, and other obsolete dictionary-based models. This work is
notable for the fact that the authors try to build quality metrics for embedding construction
models, regardless of the context of the NLP task. The authors of this paper have formulated
several characteristics that embedding algorithms must comply with. For example, the test
data on which it is recommended to test embedding construction models should be varied
with a good spread in the word space. Common and rare words should be included in
the estimation. The performance of embedding models should also have good statistical
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significance in order to be able to rank such models. The authors conducted many
interesting and useful experiments for the end users, in which they showed how the nature
of embeddings changes when they are built for such NLP tasks as (1) part-of-speech
(POS) tagging, (2) named entity recognition, (3) sentiment analysis, (4) neural machine
translation (NMT). The result of this work is a guide to the selection of appropriate
evaluation methods for various applications. The authors showed that there are many
factors that affect the quality of embeddings. In addition, the authors pointed out that,
until now, there are no ideal methods for evaluating testing a subspace of words for
the presence of linguistic relationships, since it is difficult to understand exactly how
embeddings encode linguistic relationships.
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