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ABSTRACT
According to the Ten Leading Causes of Death Statistics Report by the Ministry of
Health andWelfare in 2021, cancer ranks as the leading cause ofmortality. Among them,
pleomorphic glioblastoma is a common type of brain cancer. Brain cancer often occurs
in the brain with unclear boundaries from normal brain tissue, necessitating assistance
from experienced doctors to distinguish brain tumors before surgical resection to
avoid damaging critical neural structures. In recent years, with the advancement of
deep learning (DL) technology, artificial intelligence (AI) plays a vital role in disease
diagnosis, especially in the field of image segmentation. This technology can aid doctors
in locating and measuring brain tumors, while significantly reducing manpower and
time costs. Currently, U-Net is one of the primary image segmentation techniques.
It utilizes skip connections to combine high-level and low-level feature information,
leading to significant improvements in segmentation accuracy. To further enhance
the model’s performance, this study explores the feasibility of using EfficientNetV2 as
an encoder in combination with U-net. Experimental results indicate that employing
EfficientNetV2 as an encoder together with U-net can improve the segmentation
model’s Dice score (loss = 0.0866, accuracy = 0.9977, and Dice similarity coefficient
(DSC) = 0.9133).

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Artificial Intelligence, Com-
puter Vision, Neural Networks
Keywords Pleomorphic Glioblastoma, Deep learning (DL), Artificial intelligence (AI), U-Net,
EfficientNetV2

INTRODUCTION
According to the Ten Leading Causes of Death Statistics Report by the Ministry of
Health and Welfare in 2021 (Chiu et al., 2021), cancer ranks as the leading cause of death
nationwide. Among them, pleomorphic glioblastoma, also known as multiple morphologic
glioblastoma, is a common brain cancer. This tumor can be categorized into lower-grade
glioma and higher-grade glioma. Lower-grade gliomas have a lower risk, whereas higher-
grade gliomas are malignant tumors, characterized by fast growth and invasive properties.

Currently, the diagnosis of brain tumors heavily relies on magnetic resonance imaging
(MRI), providing crucial brain images for analysis. Nevertheless, the process of manually
locating and measuring these tumors demands a high level of expertise from doctors
and significantly consumes both human resources and time. This presents a significant
challenge in the healthcare system. Therefore, automated or semi-automated methods
are crucial to facilitate locating and measuring the tumors. Several methods have been
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proposed for tumor segmentation (Aboelenein et al., 2020; Zhang et al., 2020), which
utilize advanced image segmentation and deep learning techniques. These methodologies
significantly reduce the labor-intensive aspects of manual segmentation and analysis,
saving considerable time and effort for medical professionals. By effectively addressing
these challenges, these methods not only enhance diagnostic accuracy but also expedite the
process, allowing doctors to redirect their focus toward patient treatment and care, thus
amplifying the efficiency of healthcare processes.

Image segmentation plays a crucial role in various medical applications, allowing for
the precise identification and delineation of structures in medical images. In this context,
U-Net (Ronneberger, Fischer & Brox, 2015) stands as a noteworthy deep learning network
architecture introduced by Ronneberger, Fischer & Brox (2015). Its significance lies in its
specialization for image segmentation tasks and its capability to achieve accurate and
efficient segmentation. The name ‘‘U-Net’’ is derived from its characteristic U-shaped
architecture, composed of two key components: the front-end encoder and the back-end
decoder. The encoder’s role is to down-sample the input image and extract essential
features using multiple convolutional and pooling layers. This process captures high-level
features while progressively reducing the image size. On the other hand, the decoder is
responsible for up-sampling and restoring the image to its original size, aiming to recover
fine details and local information. What makes U-Net particularly powerful is its use of
skip connections, which connect encoder feature maps to their corresponding maps in the
decoder. These connections preserve detailed information and significantly enhance the
model’s segmentation performance.

In summary, U-Net is well-suited for medical image segmentation (Du et al., 2020;
Siddique et al., 2021), and its encoder, decoder, and skip connections enable accurate
image segmentation, leading to successful results in various medical image segmentation
tasks. However, it is important to note that while U-Net is a widely utilized and powerful
model for image segmentation, it does have certain limitations (Hu & Yang, 2020; Wei et
al., 2021; Woo & Lee, 2021). One notable concern is its susceptibility to overfitting when
dealing with limited sample sizes, resulting in reduced generalization ability when applied
to new test data. Moreover, in segmentation tasks where ’class imbalance’ refers to a
situation where certain classes have significantly fewer instances than others, U-Net may
struggle to adequately segment these underrepresented classes, leading to potential impacts
on the overall segmentation accuracy. Furthermore, due to its deep architecture, U-Net
tends to yield larger model sizes which are computationally expansive, which can present
challenges in scenarios with limited computational resources. To address these limitations,
an alternative approach involves the introduction of EfficientNet (Abedalla et al., 2021;
Wang et al., 2021) as an encoder in the image segmentation model. EfficientNet (Koonce
& Koonce, 2021) is recognized for its efficient network structure and exceptional feature
extraction capabilities, allowing it to achieve comparable accuracy to larger models while
maintaining a smaller model size and computational cost.

Wang et al. (2021) introduced an enhanced method based on the U-Net framework,
which leverages EfficientNetB4 as the encoder to facilitate more comprehensive feature
extraction during the encoding stage. They also introduced an attention gate in the skip
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connection to selectively focus on relevant features for the specific segmentation task.
To address the challenge of gradient vanishing, the authors replaced the conventional
decoder convolution with a residual block, leading to a notable improvement in
segmentation accuracy. In the Sliver07 evaluation, the proposed method demonstrates
superior segmentation performance across all five-standard metrics. Similarly, in the
LiTS17 assessment, it achieves the best performance, with only a slight difference in RVD.
Furthermore, their participation in theMICCAI-LiTS17 challenge resulted in an impressive
Dice per case score of 0.952.

Abedalla et al. (2021) presented a novel end-to-end semantic segmentation model
named Ens4B-UNet for medical images. This model combined four U-Net architectures
with pre-trained backbone networks, leveraging powerful convolutional neural networks
(CNNs) as backbones for U-Net’s encoders and utilizing nearest-neighbor up-sampling
in the decoders. Ens4B-UNet was designed based on the weighted average ensemble of
four encoder–decoder segmentation models. All the backbone networks of the ensembled
models were pre-trained on the ImageNet dataset to exploit the benefits of transfer learning.
To improve theirmodels, the authors applied several techniques for training and predicting,
including stochastic weight averaging (SWA), data augmentation, test-time augmentation
(TTA), and different types of optimal thresholds. They evaluated and tested their models
on the 2019 Pneumothorax Challenge dataset, which contained 12,047 training images
with 12,954 masks and 3,205 test images. The proposed segmentation network achieved a
mean Dice similarity coefficient (DSC) of 0.8608 on the test set, ranking among the top
one-percent systems in the Kaggle competition.

By integrating EfficientNet as an encoder, the image segmentation model gains the
capacity to capture crucial features of brain tumors, leading to improved segmentation
accuracy and efficiency. Furthermore, EfficientNet’s feature extraction ability plays a vital
role in mitigating overfitting concerns, enhancing the model’s generalization to new test
data, and facilitating its application in diverse real-world scenarios. Additionally, this
feature extraction capability helps tackle class imbalance issues, ensuring appropriate
segmentation for each class. In conclusion, the integration of EfficientNet as an encoder
effectively addresses U-Net’s limitations and significantly enhances the performance of
the image segmentation model in brain tumor segmentation tasks. This advancement
contributes to a more efficient and robust solution for medical image segmentation.

EfficientNetV2 (Tan & Le, 2021), developed by Google in 2021, is an optimized
convolutional neural network architecture that builds upon the original EfficientNet.
It combines the strengths of MBConv and Fused-MBConv to enhance performance while
managing parameters efficiently, achieving a balance between computational efficiency and
accuracy. As a result, the primary objective of this study is to explore the incorporation of
EfficientNetV2 as an encoder in brain tumor segmentation, leveraging its superior feature
extraction capabilities to enhance the performance of the image segmentation model while
maintaining a relatively smaller model size and computational cost, achieving exceptional
accuracy. Compared to traditional manual segmentation methods, the approach of
combining EfficientNetV2 as an encoder with U-net enables automatic identification and
segmentation of brain tumor regions, reducing the workload for medical professionals.
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Figure 1 Example of magnetic resonance imaging (MRI) data (Bakas et al., 2017a; Bakas et al., 2017b;
Bakas et al., 2018; Clark et al., 2013;Menze et al., 2014), CC0: Public Domain). (A) FLAIR, (B) T1ce,
(C) T1, (D) T2, and (E) Ground truth.

Full-size DOI: 10.7717/peerjcs.1754/fig-1

Furthermore, this method improves segmentation accuracy and efficiency, facilitating
quicker diagnosis and formulation of appropriate treatment plans. The main focus of this
research is to evaluate the performance of the EfficientNetV2 encoder combined with
U-net in brain tumor image segmentation and investigate its impact on model accuracy
and efficiency. Through this approach, the aim is to achieve superior results in brain
tumor segmentation, enabling early detection and diagnosis of malignant brain tumors
like pleomorphic glioblastoma. This, in turn, will enhance treatment accuracy, reduce
patient risks, and provide medical professionals with advanced tools for brain tumor image
analysis.

METHODS
The ‘Methods’ section of this study encompasses the specific procedures employed to
achieve image standardization of brain magnetic resonance images (MRI) through
preprocessing. The study will first explore various preprocessing methods ensuring
consistency in image data, including adjustments for size and resolution. Subsequently, the
approach for arranging and combining preprocessed images as input for model training
will be detailed. Lastly, the implementation of a majority voting mechanism to combine
trained models for an automated brain tumor segmentation system will be elucidated.
Together, these sequential steps offer a comprehensive solution to augment the efficiency
of brain MRI processing and analysis.

Datasets
This study utilized the Brats 2019 dataset provided by the Medical Image Computing
and Computer Assisted Intervention Society (MICCAI) (Bakas et al., 2017a; Bakas et al.,
2017b; Bakas et al., 2018; Clark et al., 2013; Menze et al., 2014) (https://www.kaggle.com/
datasets/aryashah2k/brain-tumor-segmentation-brats-2019/data, CC0: Public Domain)
for training, validation, and testing of the model. The dataset comprises 335 cases, each
containing four types of magnetic resonance imaging (MRI) modalities (each MRI image
size is 240× 240× 155, as shown in Fig. 1), including FLAIR, T1ce, T1, and T2 and Ground
truth.
1. Fluid-attenuated inversion recovery (FLAIR) utilizes specialized pulse sequences and

inversion recovery techniques to suppress the signal from cerebrospinal fluid (CSF)
and detect water content in brain tissues.
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Table 1 Area of defective MRI images.

FLAIR T1ce T1 T2

Area 9245.5 14609 14617 14625.5

2. T1-weighted imaging (T1) generates high contrast images of brain structures by using
the high signal from fatty tissues and low signal from fluid tissues.

3. T1-weighted post-contrast enhancement (T1ce) involves the use of a contrast agent
after T1-Weighted Imaging, allowing the detection of brain hemorrhages as the contrast
agent enters the brain through blood circulation.

4. T2-weighted imaging (T2) uses the high signal from fluid tissues to detect water content
in brain structures.

5. Ground truth: The actual annotated regions of brain tumors.
These magnetic resonance imaging (MRI) techniques provide various information and

play a crucial role in comprehensively understanding brain structures and abnormalities,
contributing significantly to brain tumor segmentation tasks.

Image prepressing
If the data specifications are not standardized, it can pose challenges during model training.
Such data inconsistencies may result in a time-consuming training process as the model
needs to handle images of varying resolutions. Moreover, irrelevant features might be
absorbed by the trained model, leading to negative impacts on its efficiency and accuracy.
Therefore, performing appropriate preprocessing is a crucial step to address this issue.
By unifying the image specifications, we can ensure that the model processes consistent
data during training and focuses only on essential features, thus enhancing its efficiency
and performance. This study proposes four preprocessing steps for brain tumor magnetic
resonance images includes defective image removal, brightness normalization, image
resizing and cropping, and data normalization, as illustrated in Fig. 2. The following
sections will provide detailed explanations for each preprocessing method.

Defective image removal
Due to the operation of the scanner, there may be slight defects in the acquiredMRI images.
As shown in Fig. 3, the FLAIR image (Fig. 3A) is incomplete compared to the FLAIR image
in Fig. 1A. These defects can significantly impact the model training and ultimately lead
to a decrease in model performance. To prevent this performance degradation, we utilize
OpenCV algorithms to calculate the image area and automatically filter out data with
defects using the Dixon’s Q-test.

First, the OpenCV algorithm’s threshold() method is used to convert the image into a
binary image (Bradski, 2000; Bradski & Kaehler, 2000), as shown in Figs. 3E–3H. After the
binary processing, the cv2.contourArea() function is utilized to calculate the area of the
image, as shown in Table 1.

Finally, Dixon’s test (Saleem, Aslam & Shaukat, 2021) is applied to screen the data for
the presence of outliers. The Dixon’s test calculates the Q-statistic value of the data and
confirms whether it is an outlier based on the critical value of the significance level. The
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Figure 2 The preprocessing flowchart.
Full-size DOI: 10.7717/peerjcs.1754/fig-2

Q-statistic value is calculated using formula (1).

Q=
x(2)−x(1)
x(n)−x(1)

(1)

The area data in Table 1 is sorted in ascending order, and the Q-statistic value is
computed using formula (1), i.e., (14609–9245)/(14625.5–9245.5) = 0.9969. Then, it is
compared with the critical value in Table 2, where the significance level (α) in this study is
set to 0.001, resulting in a critical value (N) of 0.964. As the Q-statistic value is greater than
the critical value, it indicates the presence of an outlier in the data, suggesting that one of
the four images has a significantly lower area compared to the other three images. Due to
the varying sizes of regions in the images, it may lead to a decline in model performance.
Therefore, in Brats 2019, the four problematic cases will be automatically removed, leaving
a total of 331 cases for further research and validation.
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Figure 3 Defective MRI images (Bakas et al., 2017a; Bakas et al., 2017b; Bakas et al., 2018; Clark et al.,
2013;Menze et al., 2014, CC0: Public Domain). (A) FLAIR, (B) T1ce, (C) T1 and (D) T2) and Defective
MRI images after binary processing ((E) FLAIR, (F) T1ce, (G) T1 and (H) T2.

Full-size DOI: 10.7717/peerjcs.1754/fig-3

Table 2 Critical value distribution of area table.

α 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2
N 0.964 0.949 0.921 0.889 0.847 0.766 0.679 0.561

Notes.
α: Significance level.

Brightness normalization
Due to the inherent magnetic field inhomogeneity of the magnetic resonance imaging
(MRI) equipment, brightness non-uniformity is a common issue in MRI images. In this
study, we employed the N4ITK (Non-Local Means-based Bias Field Correction) bias
correction method (Tustison et al., 2010). This method utilizes a non-local means filter to
locally smooth the images, reducing brightness non-uniformity and intensity variations, as
shown in Fig. 4. Through this correction method, a more uniform brightness distribution
is achieved, enhancing the comparability and interpretability of the images, and improving
the accuracy of the model. This step helps eliminate biases in the imaging process, leading
to a more stable and reliable training and analysis process.

Image resizing and cropping
Due to the limited resources in the Google Colab environment used in this study, and in
order to save model parameters, the 240 × 240 × 155 three-dimensional data was scaled
down to 128× 128×155. This helps to improve the training efficiency of the model within
the constrained resources.

Furthermore, to utilize a two-dimensional model instead of a three-dimensional model,
the study sliced the three-dimensional data into three orthogonal planes: coronal, axial,
and sagittal, as shown in Fig. 5. This processing approach allows the study to handle the
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Figure 4 The N4ITK bias correction method is applied, where (A) represents the original uncorrected
image (Bakas et al., 2017a; Bakas et al., 2017b; Bakas et al., 2018; Clark et al., 2013;Menze et al., 2014,
CC0: Public Domain), and (B) represents the corrected image.

Full-size DOI: 10.7717/peerjcs.1754/fig-4

Figure 5 (A) Three-dimensional data into three orthogonal planes (Bakas et al., 2017a; Bakas et al.,
2017b; Bakas et al., 2018; Clark et al., 2013;Menze et al., 2014, CC0: Public Domain): (B) coronal, (C)
axial and (D) sagittal.

Full-size DOI: 10.7717/peerjcs.1754/fig-5

data in a two-dimensional format, reducing the complexity and computational burden
of the model. It facilitates efficient training and prediction within the limited resources
available.
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Data normalization
Data normalization is a crucial step in model training as it enhances the model’s stability,
prevents the influence of extreme values, and accelerates the convergence speed. Without
data normalization, the model may suffer from low performance and issues like gradient
vanishing during training. Therefore, this study adopts Z -score normalization (Hou et al.,
2019), as shown in Eq. (2):

z′=
z−µ
δ

(2)

where z and z′ are the input image and the normalized image, respectively. µ represents the
mean value of the input image, and δ represents the standard deviation of the input image.
Through this method, we transform the data distribution into a standard distribution with
a mean of 0 and a standard deviation of 1. The benefit of this approach is that the model
can more easily learn the features of the data during training and reduces the impact of
biases in the data, thereby improving the stability and predictive capability of the model.

Proposed brain tumor segmentation method
In medical image segmentation, the U-Net architecture, introduced by Ronneberger, Fischer
& Brox (2015) has gained recognition. U-Net comprises an encoder and a decoder. The
encoder handles down-sampling and feature extraction, while the decoder is responsible
for up-sampling and feature fusion. The use of skip connections between the encoder
and decoder allows U-Net to retain intricate image details. Recent improvements in
U-Net include variations like ResUNet++ (Jha et al., 2019) for encoder enhancements and
Attention UNet++ (Li et al., 2020) for decoder improvements.

This study references the EAR-U-Net liver tumor segmentation architecture in 2021
(Wang et al., 2021). This study employs EfficientUNet, a modified U-Net version that
utilizes the EfficientNet architecture as its encoder. EfficientNet combines depth and feature
extraction capabilities with efficiency. It is known for maintaining excellent performance
while having fewer parameters and computations. To compare U-Net and EfficientUNet
for Brain Tumor Segmentation, separatemodules using each architecture were constructed.

U-Net
U-Net, designed by Ronneberger, Fischer & Brox (2015), is tailored for image segmentation.
It consists of an encoder for down-sampling and feature extraction and a decoder for
up-sampling. Skip connections connect feature maps between the encoder and decoder,
preserving intricate details for better segmentation performance.

The U-Net model used here, as illustrated in Fig. 6, consists of five convolutional blocks,
each with two convolutional layers. Batch normalization enhances convergence, and ReLU
is the activation function. The model has a total of 7,772,161 parameters, as shown in
Fig. 7.

EfficientUNet
EfficientNet (Tan & Le, 2019), introduced by Google in 2019, is a highly efficient
convolutional neural network architecture. It scales depth, width, and image size uniformly
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Figure 6 U-Net architecture in this study.
Full-size DOI: 10.7717/peerjcs.1754/fig-6

Figure 7 The number of parameters in U-Net.
Full-size DOI: 10.7717/peerjcs.1754/fig-7

for efficiency. In this study, we refer to EfficientNetV2S (Tan & Le, 2021) due to its higher
accuracy and shorter training time compared to EfficientNetB4.

EfficientUNet replaces the U-Net’s encoder with EfficientNetV2S and uses a
conventional convolutional decoder, as detailed in Table 3. The decoder contains five
convolutional blocks, each with two convolutional layers. Batch normalization and ReLU
activation are applied. The architecture of EfficientUNet is illustrated in Fig. 8. The
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Table 3 EfficientNetV2S architecture.

Stage Operator Channels

0 Conv3×3 24
1 Fused-MBConv1, k3×3 24
2 Fused-MBConv4, k3× 3 48
3 Fused-MBConv4, k3× 3 64
4 MBConv4, k3× 3, SE0.25 128
5 MBConv6, k3× 3, SE0.25 160
6 MBConv6, k3×3, SE0.25 256
7 Conv 1×1&Pooling&FC 1,280

Figure 8 EfficientUNet in this study.
Full-size DOI: 10.7717/peerjcs.1754/fig-8

EfficientUNet model uses 30,900,097 parameters for feature extraction and segmentation,
as presented in Fig. 9.

Applying the U-Net and EfficientUNet to brain tumor segmentation
prediction system
The workflow of the U-Net prediction system in this study is shown in Fig. 10. Initially,
the dataset is sliced into three orthogonal two-dimensional planes: axial, sagittal, and
coronal. Each plane is then fed into the U-Net for prediction separately. Finally, the results
from the three planes are combined using a majority voting method (Van Erp, Vuurpijl &
Schomaker, 2002) to obtain the final predicted segmentation map.
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Figure 9 The number of parameters in EfficientUNet.
Full-size DOI: 10.7717/peerjcs.1754/fig-9

Figure 10 Application of the U-Net for brain tumor segmentation workflow.Original dataset (Bakas
et al., 2017a; Bakas et al., 2017b; Bakas et al., 2018; Clark et al., 2013;Menze et al., 2014, CC0: Public Do-
main).

Full-size DOI: 10.7717/peerjcs.1754/fig-10

The workflow of the EfficientUNet prediction system in this study is illustrated in Fig. 11.
Firstly, the dataset is preprocessed and sliced into three 2D data orientations, namely axial,
sagittal, and coronal. Next, the original four-channel data is arranged and combined into
four sets of three-channel data, which are (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), (T2,
T1ce, T1), and (FLAIR, T1, T2). Each of these three-channel data sets is individually input
into the EfficientUNet model for prediction. For each orientation, the best prediction is
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Figure 11 Application of the EfficientUNet for brain tumor segmentation workflow.Original dataset
(Bakas et al., 2017a; Bakas et al., 2017b; Bakas et al., 2018; Clark et al., 2013;Menze et al., 2014, CC0: Public
Domain).

Full-size DOI: 10.7717/peerjcs.1754/fig-11

selected from these four sets of predictions. Finally, the best predictions from the three
orientations are combined using majority voting method (Van Erp, Vuurpijl & Schomaker,
2002) to obtain the final predicted segmentation map.

Performance evaluation metrics
This study adopts accuracy (Farajzadeh, Sadeghzadeh & Hashemzadeh, 2023), the
generalized Dice loss (GDL) (Wang et al., 2021), and the Dice similarity coefficient (DSC)
(Eelbode et al., 2020) for model evaluation.

Accuracy is a common evaluation metric used in machine learning and deep
learning tasks (Farajzadeh, Sadeghzadeh & Hashemzadeh, 2023). It measures the overall
performance of a model by calculating the ratio of correctly predicted samples to the total
number of samples in the dataset, as shown in Eq. (3):

accuracy =
Number of True Positives (TP)+Number of True Negatives (TN )

Total Number of Samples
(3)

where TP represents the cases where the model correctly predicts the positive class,
and TN represents the cases where the model correctly predicts the negative class. The
accuracy metric provides an overall measure of the model’s ability to correctly classify both
positive and negative samples. However, in the context of medical image segmentation
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tasks, accuracy may not be the most suitable evaluation metric, especially when dealing
with highly imbalanced datasets. Instead, evaluation metrics like the GDL and DSC are
commonly used to assess the performance of segmentation models.

In the context of MRI brain tumor segmentation, a significant class imbalance poses a
major challenge, with 98.46% of the regions belonging to healthy tissue and only 1.54% to
brain tumors. To tackle this class imbalance issue, GDL (Wang et al., 2021) is employed as
the loss function, as shown in Eq. (4):

GDL= 1−2∗

(∑L
i wi

∑i
igikpik

)
(∑L

i wi
∑i

igik+pik
) (4)

where the total number of labels is denoted as L, and the batch size is represented by
k. The weight wi is set to 1/(

∑i
kgik), where gik and pik correspond to the ground truth

and predicted images, respectively. GDL is a widely used loss function to address class
imbalance, as it measures the similarity between predictions and ground truth labels using
the Dice coefficient. A Dice coefficient closer to 1 indicates higher consistency between
predicted and ground truth results. By employing GDL as the training loss function, the
model can better capture the features of brain tumor regions, leading to improved detection
and segmentation capabilities for brain tumors. Moreover, this approach is not influenced
by data imbalance issues, effectively narrowing the gap between training samples and
evaluation metrics.

Additionally, DSC (Eelbode et al., 2020) is used for model evaluation, which is a
commonly used metric in brain tumor segmentation. The formula for DSC is as follows:

DSC=
2TP

FN+FP+2TP
(5)

where TP represents true positives, FP denotes false positives, and FN corresponds to false
negatives. True positives indicate cases where both the true label and the predicted label
are 1, while false positives represent instances where the true label is 1, but the predicted
label is 0. Conversely, false negatives indicate situations where the true label is 0, but the
predicted label is 1. DSC primarily measures the overlapping area between the predicted
lesion region and the actual ground truth region. The Dice similarity coefficient ranges
from 0 to 1, where 0 indicates no similarity, and 1 indicates a perfect match. Higher values
of the Dice similarity coefficient signify a higher level of consistency between the predicted
segmentation result and the true segmentation result.

RESULTS
The development environment used in this study is Google Colab, which utilizes the
Python programming language along with the TensorFlow deep learning framework for
development. Within the Google Colab environment, the GPU used is NVIDIA T4, which
has a memory capacity of 16 GB GDDR6. This GPU provides additional computational
resources, aiding in accelerating the model training and inference processes.

In this section, a comprehensive analysis and comparison of the performance of the
EfficientUNet and U-Net models proposed in the ‘Methods’ section are conducted.
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Table 4 Hyperparameter settings in this study.

Parameters value

Learning rate 0.0001
Optimizer Adam
Activation function Sigmoid
Epochs 30

Additionally, the impact of using EfficientNetB4 and EfficientNetV2S as U-Net encoders is
explored to investigate their influence on model performance. Furthermore, the prediction
systems of EfficientUNet and U-Net are tested. The dataset is sliced into axial, sagittal,
and coronal planes, and these slices serve as inputs for prediction. For EfficientUNet,
different channel combinations of data are experimented with, and the best results are
selected. Ultimately, a majority voting approach is utilized to obtain the final predicted
segmentation map. Through these in-depth analyses and tests, the goal of this study is to
gain a comprehensive understanding of the performance differences between EfficientUNet
and U-Net. Additionally, the study aims to assess how the choice between EfficientNetB4
and EfficientNetV2S as U-Net encoders impacts model performance. This will help in
selecting the most suitable model configuration for brain tumor segmentation tasks.

Implementation details and hyperparameter settings in this study
In this study, a total of 331 labeled cases were randomly divided into training, validation,
and test sets in an approximate ratio of 7:1.5:1.5, as described in the Datasets subsection.
Specifically, 233 samples were used for training, 49 samples for validation, and 49 samples
for testing. The hyperparameter settings in this study are presented in Table 4. To conserve
training resources, the Adam optimizer, known for its faster convergence, was chosen
as the optimization algorithm. The Sigmoid activation function was selected for binary
classification. The learning rate was set to 0.0001, and the training process spanned 30
epochs.

Comparison between U-Net and EfficientUNet
This section aims to compare the performance of U-Net and EfficientUNet on the
axial, coronal, and sagittal planes. In this study, the encoder used in EfficientUNet is
EfficientNetV2S. Firstly, the dataset is sliced into two-dimensional data for each of these
three planes, and both U-Net and EfficientUNet are utilized for prediction. Through this
comparison, the performance of the two models on different planes can be evaluated.
Additionally, the predicted results from the axial, coronal, and sagittal planes are integrated
using a majority voting approach to further enhance prediction accuracy. By employing
this integration method, we can combine the predictions from multiple planes to obtain
a more reliable and accurate final result. Such analysis and integration will help assess the
performance differences between U-Net and EfficientUNet on different planes and provide
an effective way to achieve more precise brain tumor segmentation results.
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Table 5 Training results of axial, coronal and sagittal planes.

Model\plane Axial Coronal Sagittal

Loss Accuracy DSC Loss Accuracy DSC Loss Accuracy DSC

U-net 0.0537 0.9983 0.9452 0.0568 0.9982 0.9420 0.0546 0.9982 0.9442
EfficientUNet (FLAIR, T1ce, T1) 0.0429 0.9986 0.9563 0.0435 0.9986 0.9558 0.0429 0.9986 0.9565
EfficientUNet (FLAIR, T1ce, T2) 0.0428 0.9986 0.9566 0.0440 0.9986 0.9549 0.0433 0.9986 0.9560
EfficientUNet (FLAIR, T1, T2) 0.0447 0.9985 0.9542 0.0442 0.9986 0.9547 0.0427 0.9986 0.9562
EfficientUNet (T2, T1ce, T1) 0.0531 0.9983 0.9448 0.0516 0.9983 0.9473 0.0508 0.9984 0.9475

Table 6 Validation results of axial, coronal and sagittal planes.

Model\plane Axial Coronal Sagittal

Loss Accuracy DSC Loss Accuracy DSC Loss Accuracy DSC

U-net 0.1088 0.9974 0.8902 0.1299 0.9971 0.8692 0.1197 0.9973 0.8791
EfficientUNet (FLAIR, T1ce, T1) 0.1056 0.9974 0.8937 0.1020 0.9974 0.8971 0.1067 0.9974 0.8925
EfficientUNet (FLAIR, T1ce, T2) 0.0926 0.9975 0.9168 0.1077 0.9973 0.8917 0.1002 0.9975 0.8991
EfficientUNet (FLAIR, T1, T2) 0.1140 0.9973 0.8849 0.1059 0.9974 0.8931 0.1135 0.9972 0.8852
EfficientUNet (T2, T1ce, T1) 0.1749 0.9963 0.8231 0.1878 0.9959 0.8101 0.1821 0.9948 0.8155

Training, validation and testing results on axial plane
According to the results in Table 5, for the training results on the axial plane, EfficientUNet
with combinations of (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), and (FLAIR, T1, T2)
outperforms U-Net. In particular, the EfficientUNet model with the combination of
(FLAIR, T1ce, T2) demonstrates the best performance. In terms of the validation results
on the axial plane, according to the results in Table 6, EfficientUNet with combinations of
(FLAIR, T1ce, T1), (FLAIR, T1ce, T2) outperforms U-Net. Specifically, the EfficientUNet
model with the combination of (FLAIR, T1ce, T2) demonstrates the best performance.In
this study, loss curve plots were generated based on the model’s training and validation
results on axial plane. Figures 12A, 12D display the loss curves during the training process
and on the validation set, respectively. From the results in Fig. 12A, it can be observed that
both U-Net and EfficientUNet exhibit relatively smooth loss curves during training on the
axial plane. However, according to the results in Fig. 12D, the EfficientUNet model with
the combination (T2, T1ce, T1) performs poorly on the validation set in the axial plane,
while the U-Net model shows significant fluctuations in the validation loss curve on the
axial plane. Considering the above observations, it can be concluded that EfficientUNet
with combinations such as (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), and (FLAIR, T1ce, T1)
outperforms the original U-Net on the validation set in the axial plane. According to the
testing results on the axial plane in Table 7, EfficientUNet with combinations such as
(FLAIR, T1ce, T1) and (FLAIR, T1ce, T2) outperforms the original U-Net. Among them,
EfficientUNet with the combination (FLAIR, T1ce, T1) achieves the best performance.
In this study, two test cases, Case A and Case B, were used as axial plane prediction
data (Fig. 13A). They were fed into five different models: U-Net, EfficientUNet with
combinations (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), (FLAIR, T1ce, T2), and (FLAIR, T1,

Lin and Lin (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1754 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1754


Figure 12 (A–F) Loss curves during the training process and on the validation set on three plans.
Full-size DOI: 10.7717/peerjcs.1754/fig-12

Table 7 Testing results of axial, coronal and sagittal planes.

Model\plane Axial Coronal Sagittal

Loss Accuracy DSC Loss Accuracy DSC Loss Accuracy DSC

U-net 0.1022 0.9973 0.8966 0.1037 0.9973 0.8952 0.1066 0.9973 0.8924
EfficientUNet (FLAIR, T1ce, T1) 0.0946 0.9975 0.9046 0.1015 0.9973 0.8968 0.1064 0.9974 0.8927
EfficientUNet (FLAIR, T1ce, T2) 0.0962 0.9975 0.9033 0.0960 0.9972 0.9035 0.1046 0.9974 0.8948
EfficientUNet (FLAIR, T1, T2) 0.1035 0.9973 0.8955 0.1077 0.9974 0.8912 0.1111 0.9973 0.8879
EfficientUNet (T2, T1ce, T1) 0.1461 0.9963 0.8519 0.1479 0.9961 0.8505 0.1540 0.9948 0.8440

T2) for segmentation prediction. Figure 13B illustrates the segmentation results of these
five models, where white represents correctly segmented regions, and orange indicates
incorrectly segmented regions. Based on the observation of Case A, it can be seen that
the EfficientUNet (FLAIR, T1ce, T2) model performs the best, achieving the highest
Dice similarity coefficient of 0.9684. In contrast, for Case B, the EfficientUNet (T2, T1ce,
T1) model predicts more inaccuracies compared to other models, with the lowest Dice
similarity coefficient of 0.8886. The EfficientUNet (FLAIR, T1ce, T1) model exhibits the
best performance in Case B, achieving the highest Dice similarity coefficient of 0.9772.

Training, validation and testing results on coronal plane
The training results of U-Net and EfficientUNet on the coronal plane are shown in Table 5.
According to the data in the table, EfficientUNet in combination with (FLAIR, T1ce,
T1), (FLAIR, T1ce, T2), (FLAIR, T1, T2), and (T2, T1ce, T1) outperforms the original
U-Net on the coronal plane. Among these combinations, EfficientUNet with (FLAIR,
T1ce, T1) exhibits the best performance. The validation results of U-Net and EfficientUNet
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Figure 13 The brain tumor segmentation results of five different models on two sample cases, Case A
and Case B.Original Dataset (Bakas et al., 2017a; Bakas et al., 2017b; Bakas et al., 2018; Clark et al., 2013;
Menze et al., 2014, CC0: Public Domain). (A) and (B) depict the prediction data and segmentation results
of these five models on the axial plane. (C) and (D) display the prediction data and segmentation results
on the coronal plane, while (E) and (F) exhibit the prediction data and segmentation results on the sagittal
plane.

Full-size DOI: 10.7717/peerjcs.1754/fig-13
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on the coronal plane are shown in Table 6. EfficientUNet in combination with (FLAIR,
T1ce, T1), (FLAIR, T1ce, T2), and (FLAIR, T1, T2) outperforms U-Net in terms of
performance. Among these combinations, EfficientUNet with (FLAIR, T1ce, T1) exhibits
the best performance. Based on the model training and validation results on coronal
plane, the curves were organized and presented in Figs. 12B, 12E displaying the training
loss curve and validation loss curve. From the results shown in Fig. 12B, both U-Net and
EfficientUNet exhibit relatively smooth loss curves during training on the coronal plane.
However, according to the results in Fig. 12E, the EfficientUNet model with (T2, T1ce,
T1) combination performs poorly on the validation set for the coronal plane, while U-Net
shows larger fluctuations in the validation loss curve. Considering these observations, it
can be concluded that EfficientUNet in combination with (FLAIR, T1ce, T1), (FLAIR,
T1ce, T2), and (FLAIR, T1ce, T1) outperforms the original U-Net in terms of validation
performance on the coronal plane. The test results of U-Net and EfficientUNet on the
coronal plane are shown in Table 7. From Table 7, it can be observed that EfficientUNet
in combination with (FLAIR, T1ce, T1) and (FLAIR, T1ce, T2) outperforms the original
U-Net in the axial plane test. In particular, the combination of EfficientUNet with (FLAIR,
T1ce, T2) has proven to be the most outstanding model.

In this study, two sample cases, Case A and Case B, were used as coronal plane prediction
data (Fig. 13C). These cases were separately fed into U-Net and EfficientUNet with different
combinations: (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), (FLAIR, T1ce, T2), and (FLAIR, T1,
T2), resulting in a total of 5 models for segmentation prediction. Figure 13D illustrates the
segmentation results of U-Net and EfficientUNet with (FLAIR, T1ce, T1), (FLAIR, T1ce,
T2), (FLAIR, T1ce, T2), and (FLAIR, T1, T2) on the coronal plane. In Fig. 13, the white
regions represent correctly segmented parts, while the orange regions represent incorrectly
segmented parts. Upon analyzing Case A, it can be observed that the EfficientUNet model
with (FLAIR, T1ce, T1) yields the best performance, with a Dice similarity coefficient
of 0.9597. On the other hand, in Case B, the EfficientUNet model with (T2, T1ce, T1)
predicts more inaccurately, with the lowest Dice similarity coefficient of 0.8581, while the
EfficientUNet model with (FLAIR, T1, T2) achieves the highest Dice similarity coefficient
of 0.9469, outperforming other models. These results suggest that EfficientUNet with
combinations such as (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), and (FLAIR, T1, T2) performs
favorably in the segmentation results compared to the original U-Net on the coronal plane.

Training, validation and testing results on sagittal plane
The training results of U-Net and EfficientUNet on the sagittal plane are shown in Table 5.
According to the data in Table 7, EfficientUNet with combinations such as (FLAIR, T1ce,
T1), (FLAIR, T1ce, T2), (FLAIR, T1, T2), and (T2, T1ce, T1) outperform the original
U-Net in terms of training performance on the sagittal plane. Among these combinations,
EfficientUNetwith (FLAIR, T1, T2) stands out as the best-performingmodel. The validation
results of U-Net and EfficientUNet on the sagittal plane are presented in Table 6. According
to the data in Table 6, EfficientUNet with combinations such as (FLAIR, T1ce, T1), (FLAIR,
T1ce, T2), and (FLAIR, T1, T2) outperforms the original U-Net in terms of validation
performance on the sagittal plane. Among these combinations, EfficientUNet with (FLAIR,
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T1ce, T2) stands out as the best-performing model. The results of model training and
validation on on sagittal plane were summarized into line charts, including loss curves and
validation loss curves, as shown in Figs. 12C, 12F. According to the results in Fig. 12C,
both U-Net and EfficientUNet exhibit relatively smooth loss curves during sagittal plane
training. However, based on the results in Fig. 12F, it can be observed that EfficientUNet
with the combination (T2, T1ce, T1) shows less favorable performance on the sagittal plane
validation set, with more significant fluctuations in the validation loss curve compared to
other models and U-Net. In conclusion, EfficientUNet with combinations like (FLAIR,
T1ce, T1), (FLAIR, T1ce, T2), and (FLAIR, T1ce, T1) outperforms the original U-Net in
terms of sagittal plane validation performance. The test results of U-Net and EfficientUNet
on the sagittal plane are shown in Table 7. According to Table 7, EfficientUNet with
combinations like (FLAIR, T1ce, T2) and (FLAIR, T1ce, T1) outperforms the original
U-Net in terms of sagittal plane testing performance. In particular, the combination of
EfficientUNet with (FLAIR, T1ce, T2) has been proven to be the most outstanding model.

Using two sample cases, Case A and Case B, as sagittal plane prediction data (Fig. 13E),
they were separately input into U-Net and EfficientUNet with combinations such as
(FLAIR, T1ce, T1), (FLAIR, T1ce, T2), (FLAIR, T1ce, T2), and (FLAIR, T1, T2), to
perform segmentation prediction. Figure 13F shows the segmentation results of U-Net
and EfficientUNet with (FLAIR, T1ce, T1), (FLAIR, T1ce, T2), (FLAIR, T1ce, T2), and
(FLAIR, T1, 2), as well as the original U-Net. The white regions in Fig. 13 represent correct
segmentation, while the orange regions represent incorrect segmentation. In Case A, it
can be observed that all five models, U-Net and EfficientUNet with various combinations,
make accurate predictions. In Case B, it can be observed that EfficientUNet with (FLAIR,
T1, T2) performs the best, with the highest Dice similarity coefficient of 0.9747.

Based on the above model comparisons, it can be observed that EfficientUNet with
(FLAIR, T1ce, T2) performs the best in the axial plane dataset, EfficientUNet with (FLAIR,
T1ce, T1) performs the best in the coronal plane dataset, and EfficientUNet with (FLAIR,
T1, T2) performs the best in the sagittal plane dataset.

Comparison between EfficientNetB4 and EfficientNetV2S
This section compares the performance differences of EfficientNetB4 and EfficientNetV2S
as U-Net encoders on training and validation sets, as well as the performance differences
after adding attention gates and residual layers to the decoders on training and validation
sets. The relevant results are presented in Tables 8 and 9. In the case of EfficientNetB4
with the addition of attention gates in the decoder, this corresponds to the EAR-U-net
architecture proposed by Wang et al. (2021). The inclusion of ‘‘EfficientNetB4’’ and the
‘‘ag’’ label in Tables 8 and 9 indicates the presence of the EAR-U-net architecture.

In the training and validation dataset, based on different combinations of data sets
such as (FLAIR, T1, T2), (FLAIR, T1ce, T2), and (T2, T1ce, T1), EfficientNetV2S as the
U-Net encoder demonstrates lower loss functions, higher accuracy, and Dice coefficient
scores compared to EfficientNetB4. Furthermore, EfficientNetV2S also requires less time
for training steps when compared to EfficientNetB4. Only in the (FLAIR, T1ce, T1) dataset
combination, EfficientNetV2S performs equivalently in terms of loss functions, accuracy,
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Table 8 Comparison of EfficientNetB4 and EfficientNetV2S on the training set. f12 corresponds to the
(FLAIR, T1, T2) dataset combination, ft2 corresponds to the (FLAIR, T1ce, T2) dataset combination, ft1
corresponds to the (FLAIR, T1ce, T2) dataset combination, 2t1 corresponds to the (T2, T1ce, T1) dataset
combination, and EfficientNetB4 with the inclusion of ‘‘ag’’ label represents the EAR-U-net architecture
(Wang et al., 2021).

Model Loss Accuracy DSC Time
(1 step)

GPU ram

EfficientNetB4_f12 0.0461 0.9985 0.9528 737 ms 14.2 GB
EfficientNetB4_f12_ag 0.0445 0.9985 0.9545 796 ms 14.2 GB
EfficientNetV2S_f12 0.0447 0.9986 0.9542 530 ms 8.8 GB
EfficientNetV2S_f12_ag 0.0457 0.9985 0.9530 622 ms 8.8 GB
EfficientNetB4_ft2 0.0437 0.9985 0.9556 700 ms 14.2 GB
EfficientNetB4_ft2_ag 0.0455 0.9985 0.9533 796 ms 14.2 GB
EfficientNetV2S_ft2 0.0428 0.9986 0.9566 550 ms 8.8 GB
EfficientNetV2S_ft2_ag 0.0440 0.9985 0.9553 615 ms 8.8 GB
EfficientNetB4_ft1 0.0429 0.9986 0.9563 716 ms 14.2 GB
EfficientNetB4_ft1_ag 0.0417 0.9986 0.9572 796 ms 14.2 GB
EfficientNetV2S_ft1 0.0429 0.9986 0.9563 512 ms 8.8 GB
EfficientNetV2S_ft1_ag 0.0440 0.9985 0.9553 615 ms 8.8 GB
EfficientNetB4_2c1 0.0548 0.9982 0.9431 759 ms 14.2 GB
EfficientNetB4_2c1_ag 0.0534 0.9983 0.9437 802 ms 14.2 GB
EfficientNetV2S_2c1 0.0531 0.9983 0.9448 605 ms 8.8 GB
EfficientNetB4_2c1_ag 0.0511 0.9984 0.9463 623 ms 8.8 GB

and Dice coefficient scores to EfficientNetB4, but with a shorter required training time.
Additionally, duringmodel training, theGPUmemory usage for EfficientNetV2S is 14.2GB,
which is lower than the 17.3GB used by EfficientNetB4. After incorporating attention gates
and residual layers to the decoders, models such as EfficientNetB4 (FLAIR, T1, T2),
EfficientNetB4 (FLAIR, T1ce, T1), EfficientNetB4 (FLAIR, T1, T2), and EfficientNetV2S
(FLAIR, T1, T2) exhibit improved loss functions, accuracy, and Dice coefficient scores
during training compared to the original models without these additions. However, in
the validation set, the performance of all models with the addition of attention gates
and residual layers in the decoder was unsatisfactory. Furthermore, the incorporation of
attention gates and residual layers also led to an increase in model training time.

Based on the outcomes of model training and validation, the data has been synthesized
into graphical representations, including curve graphs and validation loss curve graphs,
presented in Fig. 14. Across all dataset combinations within the training set, EfficientNetB4
demonstrates swifter convergence, while EfficientNetV2S showcases superior final loss
function performance. Furthermore, when utilizing EfficientNetV2S as the encoder,
models featuring the inclusion of attention gates and residual layers in the decoder exhibit
accelerated convergence during training compared to their initial forms. Conversely, when
EfficientNetB4 serves as the encoder, models with added attention gates and residual layers
in the decoder tend to manifest a slower convergence rate during training. Notably, within
the (T2, T1ce, T1) dataset, EfficientNetB4 exhibits reduced stability during training. In the
context of the validation set, encompassing three dataset combinations: (FLAIR, T1, T2),
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Table 9 Comparison of EfficientNetB4 and EfficientNetV2S on the validation set. f12 corresponds
to the (FLAIR, T1, T2) dataset combination, ft2 corresponds to the (FLAIR, T1ce, T2) dataset combina-
tion, ft1 corresponds to the (FLAIR, T1ce, T2) dataset combination, 2t1 corresponds to the (T2, T1ce, T1)
dataset combination, and EfficientNetB4 with the inclusion of the ‘‘ag’’ label represents the EAR-U-net ar-
chitecture (Wang et al., 2021).

Model Loss Accuracy DSC Time
(1 step)

GPU ram

EfficientNetB4_f12 0.1151 0.9973 0.8837 737 ms 14.2 GB
EfficientNetB4_f12_ag 0.1155 0.9972 0.8830 796 ms 14.2 GB
EfficientNetV2S_f12_ 0.1140 0.9973 0.8849 530 ms 8.8 GB
EfficientNetV2S_f12_ag 0.1154 0.9973 0.8831 622 ms 8.8 GB
EfficientNetB4_ft2 0.1046 0.9974 0.8948 700 ms 14.2 GB
EfficientNetB4_ft2_ag 0.1172 0.9974 0.8802 796 ms 14.2 GB
EfficientNetV2S_ft2 0.0926 0.9975 0.9168 550 ms 8.8 GB
EfficientNetV2S_ft2_ag 0.1059 0.9973 0.8931 615 ms 8.8 GB
EfficientNetB4_ft1 0.1056 0.9973 0.8937 716 ms 14.2 GB
EfficientNetB4_ft1_ag 0.1399 0.9968 0.8483 796 ms 14.2 GB
EfficientNetV2S_ft1 0.1056 0.9973 0.8937 512 ms 8.8 GB
EfficientNetV2S_ft1_ag 0.1062 0.9973 0.8927 615 ms 8.8 GB
EfficientNetB4_2c1 0.1772 0.9964 0.8205 759 ms 14.2 GB
EfficientNetB4_2c1_ag 0.1782 0.9964 0.8195 802 ms 14.2 GB
EfficientNetV2S_2c1 0.1749 0.9965 0.8231 605 ms 8.8 GB
EfficientNetV2S_2c1_ag 0.1818 0.9963 0.8081 623 ms 8.8 GB

(FLAIR, T1ce, T1), and (FLAIR, T1ce, T2), EfficientNetV2S consistently displays swifter
convergence relative to EfficientNetB4, except in the case of the (FLAIR, T1ce, T2) dataset
combination where convergence is comparatively slower. Nonetheless, across all dataset
combinations, EfficientNetV2S consistently demonstrates a more favorable final loss
function performance compared to EfficientNetB4.Furthermore, when EfficientNetV2S
is employed as the encoder, models incorporating attention gates and residual layers in
the decoder exhibit hastened convergence during training, yet these models also show
a slightly reduced degree of stability during the training process. Conversely, when
EfficientNetB4 is the encoder, models augmented with attention gates and residual layers in
the decoder tend to experience a slower pace of convergence during training. Additionally,
within the (T2, T1ce, T1) dataset, EfficientNetB4 demonstrates signs of instability during
training. Considering all the aforementioned comparisons, EfficientNetV2S outperforms
EfficientNetB4 across various parameters, encompassing loss function, accuracy, Dice
coefficient score, training time, and GPU memory usage. Although the addition of
attention gates and residual layers in the decoder can lead to improved loss function,
accuracy, and Dice coefficient scores during training with specific dataset combinations,
it ultimately results in reduced performance in these aspects during validation across
all models. Furthermore, the inclusion of attention gates and residual layers leads to an
increase in model training time. Therefore, selecting EfficientNetV2S as the U-Net encoder
without the integration of attention gates and residual layers is a prudent choice, given its
lightweight and efficient performance characteristics.
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Figure 14 Comparison graphs of training and validation loss curves for EfficientNetB4 and Efficient-
NetV2S. (A, B) Training and validation curve comparison for EfficientUNet_f12, (C, D) Training and val-
idation curve comparison for EfficientUNet_ft1, (E, F) Training and validation curve comparison for Effi-
cientUNet_ft2, (G, H) Training and validation curve comparison for EfficientUNet_2t1.

Full-size DOI: 10.7717/peerjcs.1754/fig-14

Applying majority voting method in U-net and EfficientUNet
This study will discuss the application of majority voting methods to both U-net and
EfficientUNet models, and compare the differences in segmentation effectiveness when
employing majority voting for the axial, coronal, and sagittal planes. Majority voting, as
the name implies, involves selecting the final result through a majority decision among
the predictions from 2n+1 models. This approach enhances model accuracy by combining
predictions from multiple models to achieve more reliable outcomes. Based on the
training results in Table 5, the optimal choices for the axial, coronal, and sagittal plane
models within the EfficientUNet majority voting approach are EfficientUNet (FLAIR,
T1ce, T2), EfficientUNet (FLAIR, T1ce, T1), and EfficientUNet (FLAIR, T1, T2). Table 10
demonstrates that using themajority votingmethod yields improved performance for axial,
coronal, and sagittal plane segmentation for U-net and EfficientUNet models compared to
the original models. Furthermore, the performance of EfficientUNet with majority voting
method surpasses that of U-net with majority voting method.

Moreover, using the predicted data from Fig. 13, predictions are made using majority
voting for both U-net and EfficientUNet, and these are compared against the original
models. Figure 15 presents the segmented outcomes of U-net and EfficientUNet with
majority voting method, juxtaposed with the original models in Fig. 13. White regions
represent correctly segmented portions, while orange areas indicate segmentation errors.
In cases A and B, both U-net and EfficientUNet demonstrate improved segmentation
compared to the original models when employing the majority voting method. Notably,
EfficientUNet with majority voting method outperforms U-net with majority voting
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Table 10 Area of defective MRI images.

Model Loss Accuracy DSC

U-net on axial plane 0.1022 0.9973 0.8966
U-net on coronal plane 0.1037 0.9973 0.8952
U-net on sagittal plane 0.1066 0.9973 0.8924
EfficientUNet on axial plane 0.0962 0.9975 0.9033
EfficientUNet on coronal plane 0.1015 0.9973 0.8968
EfficientUNet on sagittal plane 0.1111 0.9973 0.8879
U-net with majority voting method 0.0902 0.9976 0.9091
EfficientUNet with majority voting method 0.0866 0.9977 0.9128

method in terms of segmentation effectiveness. In summary, the findings of this study
indicate that utilizing majority voting methods can enhance model performance, with
EfficientUNet with majority voting method outperforming U-net with majority voting
method in terms of segmentation outcomes.

CONCLUSION
Through observation of experimental results, this study indeed found that the EfficientUNet
model exhibits better segmentation performance and more stable training compared to
the original U-net model. The Dice similarity coefficient of the EfficientUNet model is
improved by approximately 0.02% compared to U-net. Furthermore, during the prediction
phase, employing the majority voting method on the axial, coronal, and sagittal planes
enhances the overall accuracy and segmentation performance of the model. The accuracy
of the EfficientUNet model is increased from 0.9973 to 0.9976, and the Dice similarity
coefficient is elevated from 0.8966 to 0.9091. Similarly, the accuracy of the EfficientUNet
model is raised from 0.9975 to 0.9977, and the Dice similarity coefficient is enhanced from
0.9033 to 0.9128.

This technique can be applied in semi-automated medical diagnosis, where doctors
can obtain more accurate and reliable image segmentation results using the EfficientUNet
model and the majority voting method. This aids in reducing their workload and speeding
up the diagnostic process, preventing the loss of optimal treatment opportunities. By
improving the accuracy and efficiency of image segmentation, medical professionals can
swiftly identify and locate lesions, further enhancing diagnostic and treatment outcomes.
The development of this technology holds the potential to bring more convenience and
breakthroughs to the medical field, positively impacting the treatment processes for
patients. However, it’s important to note that this technique serves as an assistant tool for
doctors, and the final diagnostic and treatment decisions still requiremedical judgment and
expertise. Thus, when applying this technology, collaboration with doctors and cautious
usage are necessary to ensure accuracy and safety of the results.

While our study has made significant strides in advancing the development of efficient
and accurate machine learning approaches for AI-based brain tumor segmentation and
diagnosis, it is essential to acknowledge certain limitations. These limitations serve as
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Figure 15 The brain tumor segmentation outcomes of U-net and EfficientUNet with the majority vot-
ing method are presented for two sample cases, Case A and Case B. (A) The prediction data and segmen-
tation results on the axial plane are shown. (B) The display the prediction data and segmentation results
on the coronal plane. (C) The prediction data and segmentation results on the sagittal plane.

Full-size DOI: 10.7717/peerjcs.1754/fig-15

guiding beacons for future research efforts, as we address the following concerns: One
limitation of our current approach pertains to themethod used for aggregating information
from multiple experiments. In this study, we employed the majority voting technique,
known for its simplicity and interpretability. However, it may not comprehensively
capture the full spectrum of uncertainty in the results. The resource constraints associated
with our execution environment on Google Colab, along with the extensive model training
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requirements, hindered our ability to perform the required replications and run repeated
experiments to report average scores. Future work should explore alternative aggregation
methods, such as bootstrap, which can provide a more comprehensive assessment of
uncertainty and bolster the robustness of the automated brain tumor segmentation
system.Another limitation is associated with our use of a two-dimensional model for
brain tumor segmentation. This choice was driven by the need to optimize computational
efficiency and practicality, considering the limited resources available on Google Colab.
Nonetheless, it may not entirely encapsulate the inherent 3D spatial structure found
in medical images. Subsequent research endeavors should delve into the feasibility of
integrating three-dimensional models to enhance segmentation accuracy while addressing
the computational challenges that accompany 3D data.

In our pursuit of overcoming the identified limitations and propelling the field of
AI-based brain tumor segmentation forward, our future work will concentrate on the
following pivotal areas:

Alternative aggregationmethods: In forthcoming research, we plan to explore alternative
approaches for aggregating information from multiple experiments, considering the
resource constraints on Google Colab. This will include a thorough investigation of
statistical techniques, such as bootstrap, capable of delivering a more comprehensive
assessment of uncertainty and model performance. By refining the aggregation process and
overcoming resource limitations, our objective is to elevate the reliability and robustness
of the automated brain tumor segmentation system.

Three-dimensional models: To surmount the constraints linked to two-dimensional
models, especially concerning the representation of 3D spatial structures, our future
work will involve the seamless integration of three-dimensional models for brain
tumor segmentation. This endeavor will necessitate the development and evaluation
of methodologies designed to efficiently handle 3D medical image data, addressing the
computational challenges that have been a limitation in the current study. We will explore
techniques to make 3D models practical for clinical application while considering the
resource limitations of our execution environment. These prospective directions will
significantly contribute to the advancement of efficient and accurate AI-based brain tumor
segmentation and diagnosis, while effectively addressing the limitations identified in this
study.
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