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ABSTRACT
Liver occupying lesions can profoundly impact an individual’s health and well-being.
To assist physicians in the diagnosis and treatment of abnormal areas in the liver, we
propose a novel network named SEU2-Net by introducing the channel attention mech-
anism into U2-Net for accurate and automatic liver occupying lesion segmentation.We
design the Residual U-block with Squeeze-and-Excitation (SE-RSU), which is to add
the Squeeze-and-Excitation (SE) attention mechanism at the residual connections of
the Residual U-blocks (RSU, the component unit of U2-Net). SEU2-Net not only retains
the advantages of U2-Net in capturing contextual information at multiple scales, but
can also adaptively recalibrate channel feature responses to emphasize useful feature
information according to the channel attention mechanism. In addition, we present
a new abdominal CT dataset for liver occupying lesion segmentation from Peking
University First Hospital’s clinical data (PUFH dataset). We evaluate the proposed
method and compare it with eight deep learning networks on the PUFH and the Liver
Tumor Segmentation Challenge (LiTS) datasets. The experimental results show that
SEU2-Net has state-of-the-art performance and good robustness in liver occupying
lesions segmentation.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision
Keywords Deep learning, Liver occupying lesion segmentation, CT, SE attention, U2-Net

INTRODUCTION
Liver occupying lesion segmentation is a significant research focus in the field of medical
image analysis (Xue et al., 2021). It not only assists doctors in achieving more accurate
analysis, diagnosis, and treatment for liver tumors (Li et al., 2018; Peng et al., 2022) but
also fosters scientific research and technological innovation in the field of medical imaging
(Li & Ma, 2022). The liver occupying lesion refer to various abnormal structures, tissues,
or diseases that appear within the liver tissues, including liver tumors, liver cysts, liver
abscesses, and so on. Most research on liver occupying lesion segmentation focus primarily
on liver tumor segmentation. The process of liver tumor segmentation is divided into
three methods based on gray scale segmentation algorithms, machine learning, and deep

How to cite this article Liu L, Wu K, Wang K, Han Z, Qiu J, Zhan Q, Wu T, Xu J, Zeng Z. 2024. SEU2-Net: multi-scale U2-Net with SE
attention mechanism for liver occupying lesion CT image segmentation. PeerJ Comput. Sci. 10:e1751 http://doi.org/10.7717/peerj-cs.1751

https://peerj.com/computer-science
mailto:hanzq@sari.ac.cn
mailto:zeng@bjmu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1751
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1751


learning. Based on gray scale segmentation algorithm, Qi et al. (2008) proposed a semi-
automatic segmentation method of CT liver tumor based on Bayesian rule 3D seed region
growing (SRG). In the iterative updating process of region growing, Bayesian decision
rules and model matching metrics are used as the growth criteria. This method had a good
segmentation effect when the intensity difference between the tumor and normal tissue
is large, however, errors are easily introduced when the difference between the tissues is
less obvious.Wong et al. (2008) proposed a 2D region growing semi-automatic liver tumor
segmentation method based on knowledge constraints. The segmentation effect was poor
when the occupying lesion tissue and normal liver tissue had low contrast.

For segmentation algorithm based on machine learning, Das & Sabut (2016) used the
adaptive threshold,morphological processing, and kernel fuzzy C-mean (KFCM) clustering
algorithm together with spatial information to segment liver tumors. The segmented liver
tumor image of this method had high peak signal-to-noise ratio and low uniform error
value. Rela, Nagaraja & Ramana (2020) proposed superpixel-based fast fuzzy C-means
clustering algorithm (SFFCM) for liver tumor image segmentation to achieve an accuracy
of 99.5%. Anter, Bhattacharyya & Zhang (2020) presented an optimization method named
CALOFCM, which is built upon Fast FCM, chaos theory, and the bio-inspired Ant Lion
Optimizer (ALO), to achieve automated localization and segmentation of the liver and
liver lesions in CT scans. Anter & Hassenian (2019) presented an enhanced segmentation
approach for CT liver tumor segmentation, utilizing the watershed algorithm, neutrosophic
sets (NS), and the fast fuzzy c-mean clustering algorithm (FFCM). The segmentation
algorithms based on machine learning can only achieve good segmentation results on a
single dataset but have no transfer ability.

The method based on deep learning realizes automatic liver tumor segmentation, which
overcomes the shortcomings of poor segmentation results when the contrast between tumor
and normal liver tissue is low in traditional segmentation algorithms. The method based on
deep learning has the transfer learning capabilities. Dataset creation is difficult and there are
relatively few datasets available for liver tumor image segmentation based on deep learning.
However, the proposal of U-Net (Ronneberger, Fischer & Brox, 2015) solves the problem
of fast training in a small number of data sets. Many improved models based on U-Net
have achieved good results in liver tumor segmentation. Liu et al. (2019) further improved
U-Net by increasing the depth of U-Net and only copying pooling layer features during
the skip-connection. Graph segmentation was then used to optimize the segmentation
results. This method smoothed the upper boundary of liver tumor segmentation. Xu et
al. (2020) improved UNet++ and added the residual structure in convolution blocks to
avoid the problem of gradient disappearing, which made the Dice coefficient 93.36%. Seo
et al. (2019) improved the skip connection part of U-Net by adding the residual path
with deconvolution layer and activation operation. This method solved the repetition of
low-resolution feature information and had a good effect on the segmentation of liver
tumor edge and small structure. Li et al. (2020b) added an attention mechanism module to
the convolution block of UNet++. This method achieved good segmentation results in the
LiTS dataset. However, the complex structure led to slow training and prediction speed.
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The deep learning methods discussed above have two main problems. some traditional
deep learning models such as UNet and SegNet. Badrinarayanan, Kendall & Cipolla (2017)
only used single-scale feature maps for segmentation, which cannot effectively capture
information at different scales. However, when dealing with complex tumor contours and
small tumors, the effect is not perfect. Other models often have problems such as boundary
blur and excessive smoothing, whichmake it difficult to accurately segment complex tumor
contours and small tumors. Based on these considerations, we choose U2-Net (Qin et al.,
2020) with multi-scale feature fusion and SE blocks with channel attention mechanism.

We apply U2-Net to the process of liver occupying lesion segmentation, which is a new
attempt of U2-Net in the field of medical image processing. In order to better segment small
occupying lesion and complex occupying lesion contours, the Squeeze-and-Excitation (SE)
module is introduced into the U2-Net architecture (Li et al., 2020a; Gong et al., 2022). The
SE block (Hu, Shen & Sun, 2018) is a channel attention mechanism, which can selectively
emphasize informative features and suppress less useful ones by explicitly modeling the
interdependencies between their convolutional feature channels. Therefore, our model is
termed SEU2-Net. We propose an abdominal CT image dataset for liver occupying lesion
segmentation from Peking University First Hospital’s clinical data (PUFH dataset). The
PUFH dataset and Liver Tumor Segmentation Challenge (LiTS) datasets are to train the
SEU2-Net model. By testing on the PUFH and LiTS datasets, we prove the superiority of
the SEU2-Net model in liver occupying lesion segmentation when compared with different
models. SEU2-Net obtains IoU 90.55%, Acc 99.70%, Kappa coefficient 94.89%, Dice
coefficient 95.04% on the PUFH dataset and IoU 83.37 %, Acc 99.86%, Kappa coefficient
90.86%, Dice coefficient 90.93% on the LiTS dataset.

In this study, our primary contributions can be summarized as follows:
(1) We introduce a channel attention mechanism into U2-Net, creating a novel network

called SEU2-Net, which aims to achieve precise and automated segmentation of liver
occupying lesions.

(2) We propose the Peking University First Hospital (PUFH) dataset, comprising
abdominal CT images, which are specifically curated for the segmentation of liver occupying
lesions in our study.

(3) Our approach utilizes a hybrid of CrossEntropy and Dice as loss functions, with Dice
focusing on enhancing prediction precision and robustness and CrossEntropy contributing
to the overall model optimization.

RELATED WORK
Multi-scale feature extraction
Multi-scale feature extraction has emerged as a pivotal technique in the field of computer
vision and image analysis. This approach recognizes the inherent complexity and diversity
of visual information present in images, and addresses it by extracting features at varying
scales. The utilization of multi-scale feature extraction enables the model to capture
intricate details, from fine-grained textures to larger contextual structures, thus facilitating
robust and comprehensive understanding of the input data.
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Over the years, a multitude of methods have been proposed to integrate multi-
scale information, ranging from pyramidal structures to more advanced deep learning
architectures that dynamically learn features at different resolutions. For pyramid in
multi-scale feature extraction, Lin et al. (2017) introduced the concept of Feature Pyramid
Networks (FPN), revolutionizing multi-scale feature extraction in object detection. FPN
establishes lateral connections between feature maps from different layers, combining
high-resolution details from lower layers with high-level semantics from upper layers.
Subsequently, Zhao & Zhang (2021) discussed the Enhanced Multi-scale Feature Fusion
Pyramid Network for object detection, which emphasizes more effective fusion of multi-
scale features, leading to heightened precision in object detection. Dong, Zhang & Qu
(2021) presented the Multi-path and Multi-scale Feature Pyramid Network (MM-FPN)
for object detection. This network likely explores multi-path feature extraction while
integrating multi-scale representation within the pyramid structure. Lastly, Jiao & Qin
(2023) proposed the Adaptively Weighted Balanced Feature Pyramid for object detection.
This approach potentially introduces adaptive weighting within the pyramid structure to
balance feature contributions and enhance object detection.

U-Net and its variants have achieved tremendous success in biomedical image
segmentation, closely tied to their multi-scale feature extraction architecture. The U-Net’s
encoder–decoder structure allows feature extraction at different scales. The contracting
path captures high-level semantics, while the expansive path restores spatial details. This
combination excels in delineating objects of varying sizes, making U-Net suitable for
tasks like liver lesion segmentation. The Nested U-Net architecture extends U-Net by
nesting multiple U-Net blocks within each other. This nested design further enhances
multi-scale feature extraction by enabling the network to capture features at various levels
of abstraction, improving the model’s capability to distinguish objects of diverse sizes and
complexities. Gudhe et al. (2021) introduces a novel multi-level dilated residual neural
network. By incorporating multi-level dilated residual blocks and non-linear residual
blocks into skip connections, the network achieves enhanced multi-scale feature extraction
capability, leading to improved performance in biomedical image segmentation. Dense
U-Net (Cheng et al., 2021; Aldoj et al., 2020; Cao et al., 2020) introduces dense connections
in the decoder, linking each layer to all preceding layers, enhancing feature propagation.
This architecture aids in capturing multi-scale features and improving the identification of
edges and details.

Attention mechanism
In recent years, attention mechanisms have gained significant prominence across various
deep learning tasks, including image segmentation. These mechanisms enhance the
network’s ability to focus on relevant regions within feature maps, thereby improving both
accuracy and interpretability. We introduce self-attention mechanism with both spatial
attention and channel attention. The self-attention mechanism can establish relationships
between all positions in the input sequence, regardless of a fixed window size and employ
multiple heads to simultaneously capture features fromdifferent attention perspectives. The
Transformer (Vaswani et al., 2017) and its variants (Zhang et al., 2019; Mor &Winquist,
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2002; Liu et al., 2021; Fu et al., 2019) utilize the self-attention mechanism, whicn can be
modeled for use in sequence-to-sequence tasks. It employs a multi-head self-attention
mechanism to capture relationships between different positions within input sequences,
thereby enabling modeling of long sequences. The spatial attention mechanism focuses
on selectively weighting different spatial positions within an image. By calculating the
similarity of each position, it adaptively assigns weights to different spatial locations,
enabling the model to emphasize target boundaries and details. In contrast, the channel
attention mechanism directs its focus towards different channels within a feature map.
By recalibrating the relationships between channels, the channel attention mechanism
adaptively emphasizes channels that are more important for the task, while reducing
reliance on irrelevant channels. For example, Bottleneck Attention Module (BAM) and
Convolutional Block Attention Module (CBAM) incorporate both spatial and channel
attention mechanisms. The Squeeze-and-Excitation (SE) block introduces a channel
attention mechanism to adaptively recalibrate feature maps.

Liver occupying lesion CT image segmentation
Numerous techniques have been utilized for liver occupying lesion segmentation (Anter
& Abualigah, 2023), with a specific emphasis on liver tumor segmentation. As outlined
in the Introduction section, the segmentation of liver-occupying lesions can be classified
into three main approaches, which rely on grayscale segmentation algorithms, machine
learning, and deep learning. Table 1 summarizes the machine learning and deep learning
methods applied to liver occupying lesion segmentation.

MATERIALS AND METHODS
In this section, we design the architecture of SEU2-Net for liver occupying lesion
segmentation to test on the PUFH and LiTS dataset. The Biomedical Research Ethics
Committee of Peking University First Hospital approved the study of the PUFH dataset
(Ethical Review No. 2020 Scientific Research 101 Amendments). The PUFH dataset did
not require consent from study participants. Figure 1 shows that the encoder–decoder
U-shaped structure of the SEU2-Net consists of 11 SE-RSU structures with different stages,
including six encoder stages and five decoder stages. The saliency map fusion module
occurs after the decoder levels and the last encoder level. The SE-RSU is still a U-shaped
encoder–decoder structure and when compared to the architecture of U2-Net, our SE-RSU
adds the channel attention mechanism SE block at the residual connection of RSU. In
SEU2-Net, a mix of CrossEntropy and Dice loss functions is used instead of the standard
binary cross-entropy loss function used in the U2-Net paper. The hybrid utilization of
these two loss functions can enhance the prediction accuracy and model robustness in liver
occupying lesion segmentation.

SEU2-Net has attention mechanism and multi-scale feature fusion strategy. For the
attention mechanism: SEU2-Net employs an attention mechanism using SE blocks to
adaptively weight the channel features, allowing the model to focus on important feature
information.The SE block mainly includes the global pooling and sigmod activation
functions. Then, the two operations of scale and residual are used to emphasize the
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Table 1 Summary table of liver occupying lesion segmentationmethods.

Author Method Result Dataset Year

Das & Sabut (2016) adaptive threshold, morphological processing and kernel
fuzzy C-mean (KFCM) clustering algorithm

PSNR= 8.5299 MICCAI 2008 2016

Rela, Nagaraja & Ramana
(2020)

superpixel-based fast fuzzy C-means clustering algorithm Dice= 0.9154 20 CT images 2020

Anter, Bhattacharyya &
Zhang (2020)

an optimization method named CALOFCM based on fast-
FCM, chaos theory, and bio-inspired ant lion optimizer

Dice= 0.773 27 CT images 2020

Anter & Hassenian (2019) utilizing the watershed algorithm, neutrosophic sets (NS),
and the fast fuzzy c-mean clustering algorithm

Dice= 0.9288 30 CT images 2019

Liu et al. (2019) increasing the depth of U-Net and only copying pooling
layer features during skip-connection and use graph
segmentation to optimize the results

Dice= 0.9505 codalab 2019

Xu et al. (2020) improved UNet++ and added the residual 68 structure
in convolution blocks to avoid the problem of gradient
disappearing.

Dice= 0.9336 from 15 patients 2020

Seo et al. (2019) improved the skip connection part of U-Net by adding 70
the residual path with deconvolution layer and activation
operation

Dice= 0.8972 LiTS 2019

Li et al. (2020a) added an attention mechanism module to the convolution
block 73 of UNet++

Dice= 0.9815 LiTS 2020

Ahmad et al. (2019a) training the deep belief network through unsupervised
pretraining and supervised fine-tuning

Dice= 0.9480
Dice= 0.9183

Sliver07 3Dircadb01 2019

Ahmad et al. (2022) a very lightweight convolutional neural network and
Gaussian distribution for weight initialization

Dice= 0.95
Dice= 0.929
Dice= 0.9731

Sliver07 3Dircadb01 LiTS 2022

Ahmad et al. (2019b) a new approach called CNN-LivSeg Dice= 0.9541 Sliver07 2019

occupying lesion information in liver occupying lesion segmentation, especially the small
occupying lesion and complex occupying lesion contour.

For multi-scale feature fusion strategy: Firstly, the SEU2-Net model adopts multi-scale
images input in the encoder. Specifically, it scales the original image to different scales by
a certain proportion, and inputs the scaled image into the model for feature extraction
and segmentation prediction, whose advantage is that the image features at different scales
can be effectively extracted, and the cross-layer fusion between the features at different
scales can be performed to further improve the accuracy and robustness of the model.
SEU2-Net will obtain the feature map of the corresponding scale from the encoder for each
decoder layer, and fuse it into the feature map of the current layer through upsampling
and deconvolution operations. The feature information of different scales can be used to
improve the detection and segmentation ability of the model for objects.

Residual U-block with squeeze-and-excitation
Residual U-block with Squeeze-and-Excitation (SE-RSU) is a new structure introduced in
U2-Net as shown in Fig. 1, which incorporates the SE mechanism into the RSU of U2-Net.
The SE-RSU terms that the SE block is added to the position of the residual connection
in the RSU. The SE block is an attention mechanism used to enhance the model’s feature
representation capability by adaptively learning the correlations between feature channels
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Figure 1 The architecture of SEU2-Net. SEU2-Net features a symmetrical structure comprising eight SE-
RSU blocks and three RSU blocks. Each block represents an encoder–decoder structure and is annotated
with its respective name. The numerical labels ‘‘7’’, ‘‘6’’, ‘‘5’’, and ‘‘4’’ correspond to the number of layers
in the encoder of each block. Progressing from ‘‘7’’ to ‘‘4’’, the encoder undergoes a reduction of one en-
coding layer, characterized by Conv+BN+Relu+Downsample. The term ‘‘SE’’ signifies the integration of
the SE attention mechanism within the block. Additionally, the letter ‘‘F’’ denotes the substitution of pool-
ing and upsampling operations with dilated convolutions, ensuring that all intermediate feature maps of
RSU-4F maintain the same resolution as their input feature map. The input image is a 512× 512 abdom-
inal CT slice, and the output image is a 512× 512 segmented liver occupying lesion image. (Image source
credit: LiTs dataset, CC BY NC-ND 4.0).

Full-size DOI: 10.7717/peerjcs.1751/fig-1

to better capture important feature information, as shown in Fig. 2. The purpose of adding
SE after the first convolutional block of SE-RSU is coarse-grained context detection in the
initial layer network and fine-grained context detection in the deep network as SE-RSU
goes deeper in the SEU2-Net network.

Figure 2 shows that the SE block is implemented by passing the output of the convolution
operation through a global pooling layer, two fully-connected layers (FC) and and activation
function operations in SE-RSU. Firstly, global spatial information compression into channel
descriptors is achieved by using global average pooling to generate channel statistics. i.e., the
size H×W ×C feature is compressed to 1×1×C . The role of the fully connected layers is
to restrict model complexity, promote generalization, and perform linear transformations
to facilitate the activation function in capturing inter-channel correlations more effectively.
Then, the ReLU and sigmoid activation function is used to learn nonlinear interactions
between channels to capture channel dependencies. The output of sigmod function is
channel-multiplied with the original feature to highlight the useful feature information
and ignore the less useful ones. Finally, residual connection in the SE block is used to avoid
gradient vanishing. Equation (1) shows that W1 and W2 represent the weights of two FC
layers, and ReLU (x) is defined as max(0,x).σ represents the sigmoid activation function.
The H , W and C stand for the height, width, and depth (number of channels) of the
feature map respectively, and Xc(i,j) denotes the value of the feature map at position (i,j)
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Figure 2 The SE block includes global pooling and sigmod activation operations, which is added to the
residual connection of the SE-RSU.

Full-size DOI: 10.7717/peerjcs.1751/fig-2

of the cth channel.

SE = σ

W2 ·max

0,W1 ·
1

H×W

H∑
i=1

W∑
j=1

Xc(i,j)

�Xc(i,j)+Xc(i,j). (1)

Loss functions
The standard binary cross-entropy loss function is used to describe U2-Net, however,
we use a combination of CrossEntropy and Dice Loss functions in our approach. The
Dice Loss function is primarily used to optimize the model’s prediction accuracy and
robustness, particularly for enhancing the prediction precision and robustness of the
model. The CrossEntropy Loss function is renowned for its ability to measure pixel-level
class probability discrepancies. By using these two loss functions together, the model
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can find a balance between accuracy and precision and has better generalization ability.
However, the binary cross entropy loss function is sensitive to pixel class distribution
imbalance, which can cause the model’s prediction results to be biased towards regions
with more pixel classes, and can result in misclassification in regions with fewer pixel
classes. Additionally, the binary cross entropy loss function cannot handle the problem
of target boundaries well, which can lead to prediction results with breaks or blur at the
boundaries, affecting the segmentation performance of the model. Therefore, the binary
cross entropy loss function is not effective for small or complex occupying lesion contours
in liver occupying lesion segmentation.

Choose to use a mix of CrossEntropy and Dice loss functions with corresponding
weights of 0.7 and 0.3. Equation (2) is the loss function expression of CrossEntropy Loss.
N represents the number of samples, C represents the number of classes, yij represents the
jth label of ith sample, and pij represents the predicted probability of the jth class for ith
sample. The cross-entropy loss function measures how close the predicted value is to the
ground truth.

CrossEntropyLoss=−
1
N

N∑
i=1

C∑
j=1

yij ∗ log (pij). (2)

Equation (3) is the expression of the loss function for Dice Loss, where Dice is given by
Eq. (7). The Dice Loss function is used when the background area is much larger than the
target area. Because the liver occupying lesion area is smaller than the liver background
area, the Dice loss function will have a better effect.

DiceLoss= 1−
|A∩B|
|A|+|B|

. (3)

Evaluation metrics
IoU refers to the ratio between the intersection and union of the true value and the predicted
value in a class. The formula is as shown in Eq. (4). Here, TP represents the intersection of
the predicted liver occupying lesion and labeled occupying lesion. TP+FP+FN represents
the union of the predicted liver occupying lesion and labeled occupying lesion.

IoU =
TP

TP+FP+FN
. (4)

Accuracy (Acc) is the overall classification accuracy, which is the probability of predicting
the correct number of samples over the total number of samples. Acc is expressed in Eq. (5)
using confusion matrices. The intersect_area represents the intersection area of prediction
and ground truth on all classes. All classes in the experiment refers to the liver space-
occupying lesion and background. pred_area represents the prediction area on all classes.

Acc =
intersect_area
pred_area

. (5)

The Kappa coefficient measures whether the predicted value is consistent with the actual
classification value. TheKappa coefficient compensates for the bias towards large categories
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in Acc caused by the gap in the number of categories. Equation (6) is the calculationmethod
of Kappa coefficient, where Pe represents the ratio of the product of the number of true
categories and the number of corresponding predicted categories to the square of the
total number of samples. A Kappa coefficient between 0.81 and 1 indicates almost perfect
agreement.

Kappa=
Acc−Pe
1−Pe

. (6)

The Dice coefficient represents the proportion of duplicate parts between the predicted
segmented image and the annotated image. Dice has a value between 0 and 1. In Eq. (7), A
represents the pixel value of the true image and B represents the pixel value of the predicted
image.

Dice=
|A∩B|
|A|+|B|

. (7)

Process of experiment
The datasets were divided into the training set, test set, and verification set in a ratio of 8:1:1,
respectively. The Cross Entropy and Dice Loss functions are combined. The momentum
optimizer which contains the Newtonian momentum flag can better eliminate the wobble
phenomenon in the process of updating the hyperparameter. We use cosine annealing
methods to dynamically adjust the learning rate as shown in Eq. (8).

ηt = η
i
min+

1
2
(ηimax−η

i
min)(1+cos

Tcurπ

Ti
) (8)

Let i denote the number of learning rate changes at the ith time. The initial learning rate
ηimax is 0.0015. The minimum learning rate ηimin is 0. Tcur is the current epoch. Ti is the
number of iterations in one learning rate cycle, which is set to 5400. The batch size is 4. The
model is saved every 900 training runs, for a total of 9,000 training runs. The experiments
are trained on an NVIDIA Tesla V100 GPU (32 GB).

RESULTS
PUFH dataset
Dataset setup
The PUFH dataset consisted of 200 3D abdominal CT images and corresponding labeled
images. The images ared labeled to highlight various types of liver occupying lesions such
as hepatic cysts, liver abscess, and hepatocellular carcinoma. The number of slices that can
be scanned at a time ranges from 39 to 107 depending on the information of each 3D image
when the dataset is sliced horizontally. The resolution of the slice images ranged from
(0.5839844, 0.5839844, 5.0) to (0.88671875, 0.88671875, 5.0) mm, and the image intensity
ranged from (−1024.0, 3071.0) to (−3024.0, 1210.0). The slice size is 512×512. Figure 3
shows the fusion slice image of a random abdominal CT image and its corresponding
annotated image in the PUFH dataset using ITK-Snap.
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Figure 3 A random fusion CT image from PUFH dataset, resulting from the merging of abdominal
CT images and their corresponding annotated images. The fused image comprises a total of 53 slices
with a volume voxel size of (0.6836,0.6836,5). (A), (B), and (D) represent the axial, sagittal, and coro-
nal planes of the fused images, respectively. (C) showcases a 3D image depicting the annotated regions of
liver-occupying lesions (Image source credit: LiTs dataset, CC BY NC-ND 4.0).

Full-size DOI: 10.7717/peerjcs.1751/fig-3

Dataset processing
The dataset is comprised of abdominal CT images containing multiple organs. In order
to ensure the accuracy of the model training, the slice data of the original image from the
beginning to the end of the liver is found according to the labeled image data. The Nii
format data containing only the liver region is converted into 2D data in PNG format, and
the size of the converted 2D data is 512×512.

Experimental results
We compared SEU2-Net, an improved model derived from U2-Net and a member of the
U-Net family, with U-Net, U2-Net, and its variants, including AttentionU-Net (Oktay et al.,
2018), UNet3Plus (Huang et al., 2020), and UNetPlusPlus (Zhou et al., 2020). Additionally,
to assess SEU2-Net’s superior performance, we compared it with other recent state-of-the-
art semantic segmentation techniques, including DDRNet _23 (Pan et al., 2022), DNLNet
(Yin et al., 2020), and GSCNN (Takikawa et al., 2019). Table 2 shows the evaluationmetrics
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Table 2 Evaluationmetrics table of PUFH dataset.

IoU (%) Acc (%) Kappa (%) Dice (%)

U-Net 86.85 99.54 92.72 92.96
AttentionU-Net 82.06 99.36 89.81 90.14
UNet3Plus 65.10 98.53 78.10 78.86
UNetPlusPlus 81.92 99.42 89.76 90.06
U2-Net 90.11 99.68 94.63 94.80
SEU2-Net (Ours) 90.55 99.70 94.89 95.04
DDRNet _23 83.90 99.49 90.98 91.24
DNLNet 83.99 99.48 91.03 91.30
GSCNN 84.22 99.49 91.17 91.43

Notes.
Bold styling indicates the maximum or highest values.

of PUFH dataset in nine models. SEU2-Net outperforms for liver CT image segmentation
in five methods, achieving the IoU ratio increased 0.44%, the Acc increased 0.02%, the
Kappa coefficient increased 0.26%, the Dice coefficient increased by 0.24% over U2-Net.
Compared with AttentionU-Net, which is the combination of attention mechanism and
UNet, SEU2-Net had the highest improvement, among which the IoU ratio increased by
8.49%, the Acc increased by 0.34%, the Kappa coefficient increased by 5.08% and the Dice
coefficient increased by 4.9%. When compared with DDRNet _23, DNLNet, and GSCNN,
it is evident that SEU2-Net consistently outperforms thesemodels by a considerablemargin.

Figure 4 shows that six 2D slices are randomly selected in the dataset to observe the
liver occupying lesion segmentation effect of the nine models. The effect of liver occupying
lesion segmentation depends on the location of segmentation, the overall contour and the
recognition of small liver occupying lesion. SEU2-Net is most similar to label in terms of
the location and size of liver occupying lesion. For example, the liver occupying lesions in
the fifth slice has complex contours and fine regions. Comparing the segmentation effects
of the six models in the fifth slice, SEU2-Net can identify very small liver occupying lesion
and complex edges (the mark of the red box), which greatly illustrates the importance
of SEU2-Net’s attention mechanism and its ability to capture feature information from
multiple scales perspectives.

LiTS dataset
Dataset setup and processing
Liver tumors are a type of liver lesion, therefore, the LiTS dataset of 131 contrast-enhanced
3D abdominal CT scans includes 70 scans for training and testing with corresponding
annotated images specifically focusing on liver occupying lesion segmentation. The number
of tumors varied from 0 to 75, and the size varied from 38 mm3 to 349 mm3. The layer
spacing (section thickness) is (0.45,6) mm. The number of slices that can be scanned at a
time ranges from 42 to 1,026 according to the different information of each 3D image. The
size of 2D slices is 512×512, where the planar resolution is (0.6 × 0.6, 1.0 × 1.0) mm.

For the processing of the LiTS dataset, only the tumor label is retained during liver
tumor segmentation because the dataset contained both liver and tumor labels. Then, the
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Figure 4 Liver occupying lesion segmentation of PUFH dataset. Column 1: Origin. Column 2: Label.
Column 3: U-Net. Column 4: AttentionU-Net. Column 5: UNet3Plus. Column 6: UNetPlusPlus. Column
7: U2-Net. Column 8: SEU2-Net. Column 9: DDRNet _23. Column 10: DNLNet. Column 11: GSCNN
(Image source credit: LiTs dataset, CC BY NC-ND 4.0).

Full-size DOI: 10.7717/peerjcs.1751/fig-4

processing of the dataset is the same as that of the PUFH dataset. Figure 5 shows the fusion
slice image of a random abdominal CT image and its corresponding annotated image in
the LiTS dataset.

Experimental results
The nine models trained on the PUFH dataset are used for training and testing in the
LiTS dataset. The evaluation metrics of LiTS dataset are shown in Table 3. Compared with
U2-Net, SEU2-Net has the IoU increased by 2.7%, Kappa coefficient increased by 1.65%,
and Dice coefficient increased by 1.63% in the evaluation metrics. UNet3Plus performs
the worst among the evaluation metrics. Compared with UNet3Plus, the IoU of SEU2-Net
is increased by 20.11%, Acc is increased by 0.23%, the Kappa coefficient is increased by
13.55%, and the Dice coefficient is increased by 13.44%. At the same time, the evaluation
metrics of SEU2-Net on LITS dataset are still higher than those of AttentionU-Net. When
comparing SEU2-Net against non-UNet variants within the LiTS dataset, its outstanding
performance is clearly demonstrated. Figure 6 shows six randomly selected 2D slices in the
LiTS dataset to observe the liver tumor segmentation effect of the nine models. Most of
liver tumors in these six pictures are small, and SEU2-Net is most similar to label in terms
of the location and size of liver tumors, which proves that SEU2-Net has advantages in the
segmentation of small tumors.

Model complexity
SEU2-Net exhibits outstanding performance on both datasets in terms of evaluation
metrics. However, in order to evaluate the model complexity, we conduct a comprehensive
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Figure 5 A random fusion CT image from LiTS dataset, resulting from the merging of abdominal
CT images and their corresponding annotated images. The fused image comprises a total of 55 slices
with a volume voxel size of (0.584,0.584,5). (A), (B), and (D) represent the axial, sagittal, and coronal
planes of the fused images, respectively. (C) showcases a 3D image depicting the annotated regions of
liver-occupying lesions. (Image source credit: LiTS - Liver Tumor Segmentation Challenge, CC BY NC-
ND 4.0).

Full-size DOI: 10.7717/peerjcs.1751/fig-5

analysis of this model. This crucial for gaining a more extensive understanding of the
model’s characteristics, as it encompasses two key components: computational cost,
typically quantified in floating point operations (FLOPs), and the number of model
parameters (Params). In this section, we delve into the model complexity of SEU2-Net and
compare it with several state-of-the-art semantic segmentation models, including UNet,
AttentionU-Net, UNet3Plus, UNetPlusPlus, U2-Net, DDRNet _23, DNLNet, and GSCNN.

Table 4 presents a comparison between SEU2-Net and eight other models in terms of
FLOPs and Params for network complexity.The maximum values in FLOPs and Params
are highlighted in bold in the table. It becomes evident that SEU2Net demonstrates a
comparatively higher level of computational complexity. This is primarily attributed
to the inherently greater complexity of the U2Net model itself. When comparing the
model complexities of SEU2-Net and U2-Net, it is evident that SEU2-Net’s computational
complexity is onlymarginally higher than that of U2-Net. Specifically, SEU2-Net exhibits an
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Table 3 Evaluationmetrics table of LiTS dataset.

IoU (%) Acc (%) Kappa (%) Dice (%)

U-Net 75.57 99.78 85.98 86.08
AttentionU-Net 75.98 99.78 86.24 86.35
UNet3Plus 63.26 99.63 77.31 77.49
UNetPlusPlus 73.46 99.75 84.57 84.70
U2-Net 80.67 99.83 89.21 89.30
SEU2-Net (Ours) 83.37 99.86 90.86 90.93
DDRNet _23 74.87 99.78 85.52 85.63
DNLNet 64.72 99.68 78.42 78.58
GSCNN 69.37 99.72 81.78 81.91

Notes.
Bold styling indicates the maximum or highest values.

Figure 6 Liver occupying lesion segmentation of LiTS dataset. Column 1: Origin. Column 2: Label.
Column 3: U-Net. Column 4: AttentionU-Net. Column 5: UNet3Plus. Column 6: UNetPlusPlus. Column
7: U2-Net. Column 8: SEU2-Net. Column 9: DDRNet _23. Column 10:DNLNet. Column 11: GSCNN.
(Image source credit: LiTS - Liver Tumor Segmentation Challenge, CC BY NC-ND 4.0).

Full-size DOI: 10.7717/peerjcs.1751/fig-6

increase of 1,152 FLOPs and 1,184 Params compared toU2-Net. Thismarginal increment in
complexity can be attributed to the incorporation of SE blocks into all eight SE-RSU blocks
within SEU2-Net, resulting in an additional computational load of 148 FLOPs and 144
Params for each SE block. Despite this slight increase in computational demand, SEU2-Net
achieves a noteworthy 1% enhancement in IoU on the LiTS dataset compared to U2-Net.
This emphasizes the effectiveness of SE blocks in boosting segmentation performance while
maintaining the model’s relative lightweight characteristics.
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Table 4 Table of model complexity comparison, Giga FLOPs represents one billion floating-point op-
erations per second.

Giga FLOPs Params

U-Net 124.30 13,404,354
AttentionU-Net 266.29 34,894,262
UNet3Plus 792.22 26,987,714
UNetPlusPlus 119.66 8,368,872
U2-Net 150.69 44,052,518
SEU2-Net (Ours) 150.69 44,053,702
DDRNet _23 17.93 20,184,130
DNLNet 209.67 50,069,093
GSCNN 192.68 39,460,763

Notes.
Bold styling indicates the maximum or highest values.

Table 5 The comparative table between theMixture, CrossEntropy, Dice, and BCE Loss functions us-
ing the PUFH dataset.

IoU (%) Acc (%) Kappa (%) Dice (%)

CrossEntropy loss 90.22 99.69 94.70 94.86
Dice loss 60.25 98.59 74.48 75.2
BCE loss 90.08 99.69 94.62 94.78
Mixture loss (ours) 90.55 99.70 94.89 95.04

Notes.
Bold styling indicates the maximum or highest values.

Loss function analysis
In the context of liver occupying lesion segmentation, the choice of an appropriate
loss function plays a crucial role in determining model performance. We employed a
combination of CrossEntropy and Dice Loss functions, denoted as mixture loss. Mixture
loss offers a synergistic advantage by promoting prediction precision and robustness
in segmentation tasks. To ascertain the superiority of our novel hybrid loss function
over each individual loss function, we conducted the loss function ablation experiment.
Additionally, we consider binary cross-entropy loss function (BCE Loss) suitable for binary
segmentation tasks, since it is adopted by the authors of U2-Net as the loss function. To
provide a comprehensive evaluation, we compared against CrossEntropy Loss, Dice Loss,
and BCE Loss individually in the PUFH and LiTS dataset. Detailed experimental results
can be found in Tables 5 and 6. The highest value in the evaluation metrics is highlighted
in bold.

It becomes evident that mixture loss outperforms all other loss functions, including
the CrossEntropy, Dice, and BCE Loss functions, across all evaluation metrics (IoU,
Acc, Kappa, Dice) for both the PUFH and LiTS datasets. This consistent superiority in
segmentation performance on both datasets demonstrates that Mixture Loss excels in
accurately capturing the characteristics and boundaries of liver occupying lesions. To
visualize the evolution of loss functions during model training, Figs. 7 and 8 illustrate the
changing curves of the four loss functions throughout the training process, accompanied by
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Table 6 The comparative table between theMixture, CrossEntropy, Dice, and BCE Loss functions us-
ing the LiTS dataset.

IoU (%) Acc (%) Kappa (%) Dice (%)

CrossEntropy loss 82.22 99.84 90.16 90.24
Dice loss 36.81 99.20 53.41 53.81
BCE loss 82.95 99.85 90.61 90.68
Mixture loss (ours) 83.37 99.86 90.86 90.93

Notes.
Bold styling indicates the maximum or highest values.

Figure 7 The loss function andmIoU variation curves for Mixture, CrossEntropy, Dice, and BCE Loss
functions on the PUFH dataset.

Full-size DOI: 10.7717/peerjcs.1751/fig-7

the corresponding fluctuations inmIoU on the validation dataset. Based on the two images,
we can observe that when Dice Loss is used independently, there is a phenomenon of loss
function non-convergence and a very poor performance in terms of evaluation metrics.
The use of CrossEntropy or BCE Loss functions individually leads to fewer oscillations in
the curves, it is evident that Mixture Loss outperforms all others in terms of all evaluation
metrics.

DISCUSSION
Automatic segmentation of liver occupying lesion plays an important role in the clinical
diagnosis and treatment of liver diseases. The ability to accurately determine the location
and size of the lesions greatly improves the efficiency of diagnosis. In this article, we propose
the SEU2-Net deep learning model, which adds the SE block with channel attention
mechanism to the U2-Net model that can capture context information from multiple
scales. In order to verify the robustness of SEU2-Net and its superior performance in liver
occupying lesion segmentation, we use SEU2-Net model to train and test on the PUFH
and LiTS datasets. Compared to U-Net, AttentionU-Net, UNet3Plus, UNetPlusPlus,
U2-Net, DDRNet_23, DNLNet and GSCNN, SEU2-Net achieved superior results in
terms of IoU , Acc , Kappa coefficient and Dice coefficient (Tables 1 and 2). Compared
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Figure 8 The loss function andmIoU variation curves for Mixture, CrossEntropy, Dice, and BCE Loss
functions on the LiTS dataset.

Full-size DOI: 10.7717/peerjcs.1751/fig-8

to other state-of-the-art liver tumor segmentation papers based on attention mechanism
deep learning models, Li et al. (2021) presented CC-DenseUNet, which incorporated
the criss-cross attention (CCA) module into the densely connected U-Net. The CCA
attention mechanism gathers contextual information from all pixels along its cross-path,
constituting a spatial attention mechanism. On the LiTS dataset, CC-DenseUNet achieved
a Dice coefficient of 0.741. Gong et al. (2022) proposed a two-tiered U-Net architecture,
where twoU-Nets are connected through a hard attentionmodule. This module enables the
network to automatically crop the input image and remove the corresponding liver region,
improving tumor segmentation accuracy. Additionally, spatial and channel attention
mechanisms are incorporated into the second UNet. This model achieved a Dice score
of 0.798 on the LiTS dataset. Fan et al. (2020) introduced the Multi-scale Attention Net
(MA-Net), which included the position-wise attention Block (PAB) for spatial attention
and the position-wise attention block (PAB) for channel attention.MA-Net achieved a Dice
coefficient of 0.749 on LiTS. Seo et al. (2020) prepented the modified U-Net (mU-Net),
which was composed of object-dependent upsampling, redesigned residual paths, and skip
connections to adapt to the segmentation requirements of objects with varying sizes and
features. mU-Net attained a Dice coefficient of 0.8972 on the LiTS dataset. In contrast
to these four deep learning models based on attention mechanisms, SEU2-Net achieves
a Dice coefficient of 0.9093 on LiTS, which indicates that SEU2-Net can more accurately
locate and segment liver lesions in the liver occupying lesion segmentation task, while
maintaining low error and misclassification rates.

Figures 4 and 6 show that SEU2-Net performs very well in segmenting small and complex
liver occupying lesions, which can be attributed to the powerful characteristics of the SE
block. The SE block can adaptively adjust the weights of each channel in the feature map
to better capture features at different levels. When segmenting small and complex liver
lesions, the model requires higher resolution and better feature expression ability, and
the introduction of the SE block can effectively improve the feature expression ability
of the model, thereby capturing these tiny yet important details. Therefore, SEU2-Net
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performs better in the segmentation of small and complex liver occupying lesion. At the
same time, by introducing the SE block, the model can better avoid overfitting, improve
its generalization ability, and make its performance more stable and reliable on different
datasets.

SEU2-Net performs differently on the two datasets. It shows excellent performance
on the PUFH dataset, achieving high IoU , Acc,Kappa coefficient, and Dice coefficient.
However, its performance on the LiTS dataset is relatively lower. This may be due to the
differences in characteristics and backgrounds between the two datasets. The PUFH dataset
includes various liver occupying lesion such as liver tumors, liver cysts, and liver abscesses,
which have relatively obvious shape and texture features, making them easier to capture
and distinguish by the model. On the other hand, the liver lesions in the LiTS dataset
only include liver tumors, some of which have very small volumes and may be affected by
randomness and noise interference, leading to a slight decrease in the model’s performance
on the LiTS dataset. Overall, SEU2-Net’s performance on the LiTS dataset is relatively poor,
indicating that there is still room for improvement in SEU2-Net’s generalization ability
when handling complex datasets.

Limitations and future work
Although SEU2-Net performs well, there are still some limitations in this study. One key
limitation lies in the relatively large number of parameters associated with SEU2-Net
when compared to other state-of-the-art methods. This parameter abundance can pose
challenges in resource-constrained environments, such as on mobile devices or embedded
systems. Future research should focus on optimizing the SEU2-Net architecture to reduce
its parameter count while preserving its essential multiscale and attention mechanisms.
This optimization aims to make SEU2-Net more adaptable for various medical image
segmentation tasks, especially in resource-limited settings. Furthermore, this study’s dataset
primarily concentrates on liver occupying lesions. Expanding the evaluation of SEU2-Net to
encompass larger and more diverse datasets is essential to ensure its generalizability across
a broader spectrum of medical image segmentation tasks. Extending the evaluation to
diverse datasets will enhance our understanding of SEU2-Net’s capabilities and limitations
in various medical imaging scenarios.

Future studies should focus on optimizing the SEU2-Net architecture to reduce
parameter count while preserving its key features is essential. We plan to study the effects of
different SE block configurations and compare themwith other attentionmechanisms such
as CBAM (Woo et al., 2018) and BAM (Park et al., 2018). Conducting extensive evaluations
on diverse datasets will further validate SEU2-Net’s applicability in various medical image
segmentation scenarios, enhancing its practical utility in the field.

CONCLUSIONS
We propose a network architecture called SEU2-Net based on improved U2-Net for
liver occupying lesion segmentation. SEU2-Net combines the SE block and U2-Net,
which retains the ability of U2-Net to capture context information at multiple scales.
This model emphasizes useful information and ignores useless information through the
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channel attention mechanism. We combine CrossEntropy and Dice Loss functions in the
design of our loss function, and test its superiority through ablation and comparative
experiments. In addition, we present a new liver occupying lesion CT dataset from Peking
University First Hospital’s clinical data (PUFH dataset). SEU2-Net is compared with
U-Net, AttentionU-Net, UNet3Plus, UNetPlusPlus, U2-Net, DDRNet_23, DNLNet, and
GSCNN for liver occupying lesion segmentation on LiTS and PUFH datasets. The IoU ,
Acc , Kappa coefficient, and Dice coefficient of SEU2-Net are 90.55%, 99.70%, 94.89%,
95.04% and 83.37%, 99.86%, 90.86 %, 90.93% on PUFH and LiTS datasets, respectively.
The experiment shows that SEU2-Net with attention mechanism outperforms AttentionU-
Net with attention mechanism. SEU2-Net can predict small liver occupying lesion and
complex contours from the liver occupying lesion segmentation images of the two datasets.
Compared with the other networks, the accuracy, repeatability and consistency between the
liver occupying lesion segmentation images predicted by SEU2-Net and the label images are
the most accurate. Our proposed method would make U2-Net a valuable resource in the
field of medical image processing. The superior performance of SEU2-Net with attention
mechanism in liver occupying lesion segmentation indicates that it has good development
potential in the field of medical image processing.
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