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ABSTRACT
This article presents a novel parallel path detection algorithm for identifying
suspicious fraudulent accounts in large-scale banking transaction graphs. The
proposed algorithm is based on a three-step approach that involves constructing a
directed graph, shrinking strongly connected components, and using a parallel
depth-first search algorithm to mark potentially fraudulent accounts. The algorithm
is designed to fully exploit CPU resources and handle large-scale graphs with
exponential growth. The performance of the algorithm is evaluated on various
datasets and compared with serial time baselines. The results demonstrate that our
approach achieves high performance and scalability on multi-core processors,
making it a promising solution for detecting suspicious accounts and preventing
money laundering schemes in the banking industry. Overall, our work contributes to
the ongoing efforts to combat financial fraud and promote financial stability in the
banking sector.

Subjects Algorithms andAnalysis of Algorithms, Distributed and Parallel Computing, Security and
Privacy
Keywords Depth-first search, Parallel path detection algorithm, Big data in banking, Fraudulent
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INTRODUCTION
In the financial sector, digitalization has swept the banking industry. For decades, banks
have upgraded their infrastructure and services. Presently, customers can monitor and
control their financial tasks in real time through a considerable number of tools provided
by banks (Schmidt, Drews & Schirmer, 2017; Indriasari et al., 2022). However, as a service
provider, banks are able to collect data about financial activities of customers, including the
flow of funds between accounts (Oral et al., 2020). With the help of the extracted
information, banks can offer personalized products, improve the quality of service and the
profit of banking system, or can even detect and prevent illegal fraud activities of
individuals or companies (Cheng & Feng, 2021). For the banking technology department,
the biggest challenge is the extraction of the key information from massive activity data.

Based on past fraud activities and money laundering cases, there are some common
features that some customers and other customers may have frequent large amount of
money transactions or unusually complex transfer paths between customers and
customers (Isa et al., 2015). In this research we focus on the transaction paths between two
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accounts and introduce a method for path detection based on parallel depth-first
algorithm. Different fraud techniques can be connected to the transaction path such as if
an account flows through multiple paths to another account, there may be a transfer of
black money. The accuracy of financial regulation on bank accounts can be improved by
risk-labeling anomalous accounts in transaction paths (Hilal, Gadsden & Yawney, 2022).

In real-world banking scenarios, graphs can be very large and grow exponentially over
time, posing significant challenges for graph analysis and processing (Shabbir et al., 2022).
For example, detecting paths between accounts in a transaction graph can help identify
fraudulent activities and prevent money laundering. However, such path detection tasks
require substantial memory and computational resources, which cannot be efficiently
utilized by single-threaded algorithms. Therefore, there is a need for parallel algorithms
that can fully exploit CPU resources and handle large-scale graphs with exponential
growth (Lucas & Sackrowit, 1989). In this article, we present a novel parallel path detection
algorithm based on depth-first search (DFS), which can achieve high performance and
scalability on multi-core processors.

We present a novel three-step approach to detect suspicious fraudulent accounts in
banks based on graph analysis. First, we construct a directed graph from the bank’s
transaction records. We use the multi-core on-the-fly strongly connected component
(SCC) algorithm, which is a parallel and linear-time algorithm for finding all strongly
connected components (SCCs) (Bloemen, Laarman & van de Pol, 2016; Bloemen & van de
Po, 2016; Bloemen, 2015). Second, we shrink each SCC into a single vertex and remove any
self-loops, obtaining a new directed graph that is acyclic. Third, we use a parallel depth-
first search algorithm to mark all vertices that lie on any path from an Outflow accounts to
inflow accounts. These marked vertices correspond to potential fraudulent accounts that
are involved in money laundering schemes.

The structure of the article is the following. After the ‘Introduction’ first we give an
overview of ‘Related Work’, then we declare some basic concepts and definitions that are
essential for understanding our approach in the ‘Preliminaries’ section. In ‘Preliminaries’,
we outline the ‘General Idea of Our Algorithm’ and explain how it differs from existing
methods. In the ‘Implementation of Our Algorithm’ section, we describe our algorithm in
detail and analyze its complexity and correctness. We then evaluate our algorithm on
various datasets and compare it with serial time baselines in the ‘Evaluation’ section.
Finally, we summarize our contributions and discuss future directions in the ‘Conclusion’
section.

RELATED WORK
Fraud detection in the banking sector is a critically important task aimed at safeguarding
the financial assets of both banks and customers from fraudulent activities. In recent years,
a multitude of methods have emerged for detecting fraudulent accounts in banks, and we
have summarized the primary approaches in Table 1.

In the banking sector, machine learning (Lv et al., 2019; Hashemi, Mirtaheri & Shamsi,
2021; Patil, Nemade & Soni, 2018) has emerged as a potent tool for detecting fraudulent
accounts. Notably, graph neural networks (Zeng & Tang, 2021; Xiang et al., 2023) excel in
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terms of detection accuracy, thanks to their ability to uncover intricate relationships and
patterns within vast transaction datasets. Graph attention networks (Sheu & Li, 2021),
excel at capturing account relationships in social networks and dependencies among nodes
in transaction graphs. However, it is inevitable that machine learning methods require
more data and feature engineering to effectively capture anomalous patterns within
network structures, necessitating additional computational resources and time for training
and implementation (Bao, Hilary & Ke, 2021; Erdogan et al., 2020). In banking transaction
data, fraudsters may engage in fraudulent activities with specific patterns or social
connections. Community detection algorithms (Sarma et al., 2023) aid in identifying these
latent patterns, enhancing the precision of fraud detection. But these algorithms prove
sensitive to noise in sparse graphs. Big data-driven approaches (Kian & Obaid, 2022;
Bănărescu, 2015) find numerous applications in fraud detection, often delivering rapid
results, but they necessitate high-quality data. Decision trees (Khare & Viswanathan, 2020)
are employed in fraud detection as well. These methods exhibit high responsiveness but
can pose challenges when it comes to analyzing extensive data and complex issues.

The relationships between bank accounts typically resemble those of graph nodes.
While graph algorithms provide a more direct means of capturing relationships within
graph networks, they often face challenges when dealing with large-scale graphs. In recent
years, numerous parallel graph algorithms have emerged, and a distributed search
approach (Hao, Yuan & Zhang, 2021) based on graph partitioning has introduced a novel

Table 1 Summary of related work.

Technical solution Advantages Limitations

Residual layered CARE-
GNN (RLC-GNN)

This algorithm achieves state-of-the-art results in fraud
detection tasks by addressing relation camouflages and
feature camouflages.

Deep RLC-GNN models may face overfitting issues.

Semi-supervised graph
neural network for fraud
detection (GTAN)

This method captures associations between temporal
transactions and learns representations of transactions,
aiding in identifying fraud patterns, even with very few
labeled data.

Building temporal transaction graphs and handling large-
scale transaction data may require extensive data
engineering.

Community detection
algorithm

This algorithm helps identify patterns that may lead to
fraudulent events, enhancing the accuracy of fraud
detection.

Community detection algorithms are often sensitive to
noise, necessitating data preprocessing to reduce noise.

Big data clustering technique
and customer behavior
indicators

This approach detects and prevents potential fraudulent
activities in customer banking transactions in the fastest
possible time.

This method requires a large volume of high-quality data
to perform optimally.

Graph attention network
(GAT)

This tool employs a graph attention network, combined
with social network metrics as node features, to better
capture the roles and patterns of accounts in money
laundering activities, resulting in more accurate money
laundering detection.

Graph attention networks are relatively complex and
require more computational resources and time for
training and usage.

Decision tree-based fraud
detection mechanism by
analyzing uncertain data

By selecting features and using decision tree algorithms,
this aids banks in better identifying potential fraudulent
transactions. Decision trees can facilitate fraud detection
in scenarios that require rapid responses, reducing
processing delays.

Decision trees may be limiting when dealing with large
datasets and complex problems, especially when
handling numeric data that could lead to the generation
of extensive trees that are challenging to analyze.
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solution for parallel searching. Previously, it was considered difficult to parallelize
dictionary or ordered DFS (Reif, 1985). However, parallel randomized depth-first search
(DFS) (Bloemen, Laarman & van de Pol, 2016; Evangelista, Petrucci & Youcef, 2011) has
offered a fresh perspective. Significant progress has been made in the parallelization of
directed acyclic graphs (Naumov, Vrielink & Garland, 2017), and parallel approaches to
finding SCCs have demonstrated promising results in model checking (Bloemen & van de
Po, 2016; Laarman, 2014). In terms of practical applications, parallel DFS has already been
employed in train rescheduling (Josyula, Krasemann & Lundberg, 2021).

PRELIMINARIES
Let G = (V,E) denote a unweighted directed graph, where VðGÞ is the set of vertices and
EðGÞ is a set of directed edges. For a vertex v 2 VðGÞ, we define NðvÞ as the set of
neighbors of v and NnextðvÞ as a next neighbor of v. We transform G into a directed acyclic
graph by collapsing each strongly connected component (SCC) into a single node w. We
denote by FðvÞ the node representing the SCC that contains v (FðvÞ ¼ w), by SðwÞ the set
of vertices in the SCC, by NrandomðwÞ a random representative neighbor of w. Our goal is to
identify all possible accounts that may participate in the transfer of funds between an
outflow account and an inflow account. We call the outflow account the start node and the
inflow account the target node.

Problem statement
Given a directed graph, a start node s and a target node t, enumerate all nodes that are
possibly traversed between s and t.

Graph storage
We used an adjacency list as the data structure for the directed graph in this article. In
order to minimize memory usage, we implemented a node deduplication strategy for
graph nodes, ensuring that each node occupies only one storage space. Additionally, we
employed a layered storage strategy, allocating new storage layers only when the capacity is
insufficient. Each storage layer consists of an array of node pointers, and nodes are located
within this array using both the storage layer and an internal offset. During the
construction of the adjacency list, we extended this optimization to the neighboring nodes
of each node. We only stored node pointers for neighboring nodes, thereby avoiding
redundant storage of a node’s data in memory. This approach effectively prevented
memory waste resulting from multiple copies of the same node when accessed by different
threads during parallelization.

A sequential DFS algorithm
To introduce our algorithm, we first review the conventional serial algorithm that uses
depth-first search to enumerate all nodes between s and t. The sequential DFS algorithm
explores each branch of the graph as far as possible from the start node until it reaches a
dead end, then backtracks to another branch (Grossi, Marino & Versari, 2018; Peng et al.,
2019; Rizzi, Sacomoto & Sagot, 2014). When one of the neighbours of the current node can
reach the target node, all nodes within the same SCC are marked as pathnodes. Non-
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recursive DFS has the same functionality and applications as recursive DFS, but it avoids
the risk of stack overflow caused by deep recursion. Let’s take a look at the implementation
of the idea we’ve described in Algorithm 1 (non-recursive):

We begin by initializing some variables in lines 1–4: a visited array with only the start
node set to true and the rest to false; a pathnodes array with only the target node; and a
recursive stack with only the start node. We then perform DFS while the stack is non-
empty. In lines 8–12, when we have explored all neighbours of node v, we backtrack and
examine whether any of them belongs to pathnodes. If yes, it implies that node v can reach
the target node, as can all nodes in its SCC. Hence, we add all nodes in the current SCC to
pathnodes. After this check, we pop node v from the stack and mark it as unvisited. In Line
14, we take the next neighbour of node v as node u. To avoid infinite loops due to cycles in
the graph, we verify whether node u has been visited in line 15. If not, we proceed with DFS
from node u.

The main challenge for parallelizing single-threaded depth-first algorithms is the
sequential nature of forward exploration, which makes later nodes depend on previous
results. When one thread searches along a path, other parts of the graph remain

Algorithm 1 Finding all path nodes between two vertices in a directed graph.

Input: The Graph stored in an adjacency list G, The start node s, The target node t

Output: a list of path nodes from s to t

1 visited  {false};

2 pathNodes ftg;
3 stack.push(s);

4 visited½s�  true;

5 while stack is not empty do

6 v  stack:top;

7 If N(v) have all been traversed then

8 if NðvÞ \ pathNodes! ¼ NULL then

9 pathNodes.add(S(F(v)))

10 end

11 stack.pop;

12 visited[v�  false;

13 else

14 u NnextðvÞ;
15 if visited[u] = false then

16 stack.push(u);

17 visited[u] true;

18 end

19 end
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underutilized (Stone & Sipala, 1986; Zhang, 2010). Our solution is to use multiple threads
to explore different paths simultaneously, while sharing information among them.

GENERAL IDEA OF OUR ALGORITHM
Detecting suspicious fraudulent bank accounts requires a high degree of time sensitivity.
Rapidly assessing and identifying potentially fraudulent accounts can mitigate risks and
losses. Moreover, it enables the tracking of fund flow, as money laundering activities
typically involve complex fund transfers among multiple accounts. Timely identification of
suspicious accounts can assist in tracing and understanding the entire process of money
laundering, unveiling related criminal networks. Most importantly, a bank’s anti-money
laundering strategy is only effective when money laundering activities are promptly
recognized and halted. Delays in detecting suspicious accounts could provide money
launderers with the opportunity to complete their activities, thereby increasing potential
risks. Consequently, we have optimized the time required for detecting suspicious accounts
through parallelized DFS.

The presence of circles between accounts is regarded as sensitive information in the
financial domain, as detecting the existence of such circles can serve as an indicator of
potential money laundering activities. Money launderers often employ multiple transfers,
effectively cleansing funds by moving them through various accounts before eventually
returning them to their original source in an attempt to obfuscate the funds’ origin.
Additionally, cyber fraudsters may utilize frequent fund cycles and repeated transfers to
obscure their fraudulent activities. As a result, our algorithm not only focuses on tracking
the flow of funds between accounts but also places significant emphasis on identifying
circles within these pathways.

Based on the analysis in ‘Preliminaries’, we propose a novel concurrent data structure
that is tailored for enumerating path nodes in parallel. Our data structure aims to achieve
four objectives: (1) parallelism, it should exploit thread resources efficiently; (2) pruning
capability, it should avoid redundant visits to the same node by different threads, reducing
unnecessary computation and improving enumeration performance; (3) memory
consumption, it should minimize the memory usage per node; (4) load balancing, it should
distribute the workload evenly among threads and allow random access to neighboring
nodes.

We designed a concurrent shared data structure for our algorithm, as shown in Fig. 1.
The node data structure consists of three parts: an isDone flag, an isReachable flag and a
dynamic array of pointers to neighboring nodes. The isDone flag is crucial for ensuring the
parallelism and pruning ability of our algorithm. It indicates whether a thread has finished
traversing the neighbors of a node. If another thread encounters a node with an isDone flag
set to true, it will not visit it again. Otherwise, the thread will process the node. The
isReachable flag indicates whether the target node can be reached through the current
node. In the backtracking process, we use the isReachable values of the neighbors to
determine whether the current node is reachable. To reduce memory consumption, we use
an array of neighbor node pointers to store the addresses of each node in memory. The
dynamic array can adapt well to different numbers of neighbors for each node.

Chen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1749 6/24

http://dx.doi.org/10.7717/peerj-cs.1749
https://peerj.com/computer-science/


The purpose of designing this data structure is to enable multiple threads to cooperate
with each other and to distribute the paths explored by each thread evenly throughout the
graph. This way, we can improve the efficiency and scalability of our algorithm and avoid
redundant computations.

In Algorithm 1, the sequential DFS algorithm uses a visited array to detect cycles in a
graph. If it finds an adjacent vertex that has already been visited during traversal, it
indicates a cycle. However, in a multi-threaded environment, using a visited array would
cause one thread to occupy a node, preventing other threads from exploring subsequent
node through that node. This would greatly reduce parallelism. If there are large cycles in
the graph, it would make the algorithm’s performance degrade even faster.

To solve this problem, before running our algorithm, we use the multi-core on-the-fly
SCC algorithm (Bloemen, Laarman & van de Pol, 2016; Bloemen & van de Po, 2016;
Bloemen, 2015). This algorithm can return SCCs on-the-fly while traversing or generating
the graph and has linear time complexity. An example is the most effective way to explain
the strategy. Figure 2 shows a specific scenario where two workers(blue, red) can explore a
SCC more efficiently when compared to a sequential version.

Starting from node a, both threads randomly select an adjacent node to explore the
graph: the blue thread goes to node b and the red thread goes to node d (Fig. 2A).
Assuming that the red thread has already explored the path a! d ! e! a and thus
discovered a cycle fa; e; dg, while the blue thread has explored the path a! b! c! b
and discovered a cycle fb; cg. The SCCs discovered by the two threads have been marked
in Fig. 2B. Now, the blue thread continues to visit the unvisited neighboring node d of node
c (Fig. 2C). Without exchanging information between the threads, the blue thread needs to
continue exploring the path d ! e! a to discover the cycle fa; e; d; c; b; ag. However, as
shown in Fig. 2D, the red thread knows that nodes d and a part of the same SCC. If the two
threads exchange node information correctly, the blue thread can determine that c! d is
equivalent to c! �a, since node a also belongs to the exploration path of the red thread.
Finally, the red thread adds nodes b and c to the red SCC (fa; e; dg). Therefore, the
complete SCC is fa; b; c; d; eg.

We apply this algorithm to find all SCCs in the graph and aggregate all vertices in an
SCC to a representative vertex. This way, we can effectively eliminate cycles in the graph
and improve parallelism and efficiency of multi-threaded DFS. Figure 3 demonstrates how
to convert a directed graph to a directed acyclic graph. In the strongly connected
component a; b; c, node c is chosen as the representative node. For node a, FðaÞ ¼ fcg and

Figure 1 Data structure of nodes. Full-size DOI: 10.7717/peerj-cs.1749/fig-1
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SðFðaÞÞ ¼ fa; b; cg. Node c inherits all the node relations of a; b; c, that is, the original
b! d and a! d become c! d after the conversion.

Sequential depth-first search is a recursive algorithm that keeps exploring the vertices of
the graph in one direction until it hits a dead end. When we convert bank transaction
records into a directed graph, the order of visiting neighbor vertices in the adjacency list is
fixed for each vertex. In Algorithm 1, line 14, the next vertex to explore can only be Nnext ,

Figure 2 (A–D) Example of two threads discovering SCCs.
Full-size DOI: 10.7717/peerj-cs.1749/fig-2
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which is very unfavorable for parallelization. To overcome this limitation, we introduce
randomness in our algorithm. For each thread, we randomly select one of the neighbor
vertices as the next vertex to explore in each iteration. This can guide threads to explore
different directions in the graph and greatly improve the parallelism of the algorithm.
Figure 4 below shows the difference between multi-threaded and single-threaded methods
of accessing neighboring nodes.

We designed an algorithm that allows each thread to collaboratively update node states
in a shared data structure and jointly perform graph search. The general idea of our
algorithm is best explained using the example from Fig. 5. In Fig. 5, two threads (or
workers), which we call red and blue, start their search from the start node a. Here, node e
is the target node, and the goal is to find all nodes between the start node and the target
node. During the process of two threads traversing the graph, if one thread completes the
traversal of all neighboring nodes of a particular node, that node is marked as Done,
indicating that other threads no longer need to traverse it. In Fig. 5, we use red or blue to fill
nodes, representing vertices marked as Done by two different threads. The pathnode array
in the bottom right corner stores nodes currently marked as Reachable, meaning nodes
that can potentially reach the target node. Reachable in the current stage, meaning nodes
that are potentially reachable to the target node.

In Fig. 5A, we illustrate how our parallel graph exploration algorithm starts. Both red
and blue threads start from node a and randomly select one of its neighbors to explore. For
example, if the blue thread selects node d, it will proceed along the path a! d ! c.

Figure 3 The process of converting to a directed acyclic graph.
Full-size DOI: 10.7717/peerj-cs.1749/fig-3

Figure 4 Single-threaded vs multi-threaded execution. Full-size DOI: 10.7717/peerj-cs.1749/fig-4
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Similarly, after two random selections at nodes b and d, the red thread will follow the path
a! b! c. In this stage, the pathnode array contains only the target node, which is node e.
This random selection strategy enables sufficient parallelism for our algorithm.

In Fig. 5B, the red thread explores forward along the path a! b! c! e. Node e,
serving as the target node, doesn’t have any neighboring nodes by default, so it is marked as
Done. When the red thread backtracks from the reachable node e to node c, it marks node c
as a reachable node and adds it to the pathnode. At the same time, the blue thread advances
along the path a! d ! c. However, when it encounters node c, it realizes that node c has
already been marked as Done by the red thread and is a reachable node. Consequently, the
blue thread ceases further exploration. Upon backtracking to node d, it marks node d as a
reachable node and adds it to the pathnode. After confirming that there are no other
neighboring nodes left to explore for node d, it is then marked as Done.

Now consider what happens in Fig. 5C. When the blue thread backtracks to node a, it
continues to explore along the unvisited node b. At node b, the blue thread and the red
thread have different choices. The blue thread chooses to explore towards ndoe e. In our
random process, the two threads may sometimes choose the same path, but they will

Figure 5 (A–D) The process of parallel depth-first search.
Full-size DOI: 10.7717/peerj-cs.1749/fig-5
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diverge again after exploring a segment of the path. This allows the threads to fully explore
different parts of the graph.

In Fig. 5D, after exploring node e, blue thread backtracks to node b and finds that all
remaining neighbours of b have been visited by red thread. Therefore, blue thread marks
node b as done and inherits the reachability of node e, adding node b to the pathnode.
Similarly, when backtracking to node a, blue thread also marks nodes a as done and
reachable, and it is included in the pathnode. It can be observed that due to the randomness
of numbers, many identical nodes may appear in the path stacks of both threads. In this
case, whichever thread processes a node faster will determine its status, and the other
thread can simply pop it out of the stack when encountering it. This reflects the flexibility
of our algorithm.

From the above parallel example, it is evident that the red and blue threads effectively
share the task of traversing the graph. The blue thread primarily handles nodes a, b, and d,
while the red thread focuses on nodes c and e. This efficient task distribution significantly
reduces the program’s execution time. In our comprehensive algorithm, we aggregate
highly suspicious loops into single nodes, thereby enhancing the parallelism of traditional
DFS. We introduce an element of randomness to guide each thread to different areas of the
graph. Through the use of Done and Reachablemarkers, we prevent multiple threads from
redundantly exploring the same graph segments. This strategy effectively achieves parallel
DFS for identifying suspicious accounts in networked graphs.

After identifying these suspicious bank accounts, financial institutions must establish
time and monetary thresholds based on the specific context. If transaction records reveal
significant fund transfers between the fund output and fund input accounts within a short
timeframe, there is a substantial likelihood that these transactions are intended to conceal
the illicit source of funds through multiple account transfers. This may involve money
laundering, online fraud, and other illicit activities. Following verification by the financial
institution, these accounts will be officially designated as fraudulent.

This practice enables financial institutions to more accurately detect potential
fraudulent activities, particularly those attempting to obscure their criminal activities
through complex transactions. Auditors or risk management professionals within financial
institutions can more effectively monitor risks in fund transactions by setting time and
amount thresholds, thereby enhancing anti-fraud and anti-money laundering measures,
ensuring transparency and security within the financial system.

IMPLEMENTATION OF OUR ALGORITHM
Before running our algorithm, we optimized the graph using the multi-core on-the-fly
SCC algorithm (Bloemen, Laarman & van de Pol, 2016; Bloemen & van de Po, 2016;
Bloemen, 2015), as shown in Algorithm 2.

To ensure the correctness of the parallel algorithm, each line in Algorithm 2 is an atomic
operation. Each thread has its own local search stack stack and the global sets S, Dead and
Completed are initialized in lines 26–28. Dead means that an SCC has been fully explored,
and Completed means that a node has been fully explored. In line 3, each iteration starts
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from a node v in S that is not completed and searches for an SCC. For each neighbour w of
v, lines 4–16 describe the three possible states and actions of w:

� If w is dead (line 5), it means that w is part of a completed SCC and can be ignored.

� If w is not in the local stack stack and is not part of another SCC from stack (line 8), it
means that w has not been visited by any thread and its S(w) contains nodes that need to
be further explored, so the UFSCC function is recursively called on w.

Algorithm 2 UFSCC algorithm.

1 Function UFSCC (v)

2 stack.push(v);

3 while v0 ¼ SðvÞ n Completed do

4 foreach w 2 RandomðNðvÞÞ do
5 if w 2 Dead then

6 continue;

7 end

8 else If ∄w0 2 stack : w 2 Sðw0Þ then
9 UFSCC (w);

10 end

11 else

12 while S(w) ≠ S(v) do

13 Unite(S,stack.top(),stack.pop());

14 end

15 end

16 end

17 Completed ¼ Completed [ fv0g;
18 end

19 if SðvÞ 6� Dead then

20 Dead ¼ Dead [ SðvÞ;
21 reportSCC;

22 end

23 if v ¼ stack:topðÞ then
24 stack.pop();

25 end

26 foreach thread do

27 stack ∅;

28 Completed ¼ Dead  ∅;

29 SðvÞ ¼ v : v 2 VðGÞ;
30 UFSCCfwg;
31 end
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� If w is in the local stack (lines 12–15), it forms a cycle and all nodes on the cycle are in an
SCC. We assume that partial SCCs adhere to the strong connectivity property and that
the search stack sufficiently captures them.

After exploring all neighbours of w, w is added to Completed. After detecting a cycle, if v
is at the top of the local stack, a completed SCC is reported and marked as Dead, indicating
that v cannot be merged with any node (lines 19–20).

We constructed a directed graph from bank transaction data and preprocessed it using
the multi-core on-the-fly SCC algorithm. Based on this, we applied our parallel depth-first
search algorithm to find all possible paths from the start node to the target node that visit
every node in the graph. We present the pseudocode of our implementation in Algorithm
3.

We define four possible states for each node in the graph, based on two boolean flags:
isDone and isReachable. The flag isDone indicates whether all the neighbors of the node
have been explored or not. The flag isReachable indicates whether the node belongs to a
SCC that can reach the target node or not. The four states are:

� isDone = false and isReachable = false: This state means that the node has some
unexplored neighbors, and it cannot reach the target node through any of its current
paths.

� isDone = false and isReachable = true: This state means that the node has some
unexplored neighbors, but it belongs to a reachable SCC, so it can potentially reach the
target node through some other nodes in its SCC.

� isDone = true and isReachable = false: This state means that all the neighbors of the node
have been explored, and none of them can reach the target node, so this node is also
unreachable.

� isDone = true and isReachable = true: This state means that all the neighbors of the node
have been explored, and at least one of them can reach the target node, so this node is
also reachable.

At the beginning of the parallel algorithm, we initialize some variables for the target
node in lines 1–2. We set both isDone and isReachable flags of the target node to true,
because it is the only reachable node at the start of the algorithm, and its reachability will
be inherited by other nodes during backtracking. Moreover, when a thread reaches the
target node, it does not need to explore further, so we use the done flag to terminate the
exploration at this point. After pushing the start node into the stack, each thread starts a
parallel depth-first search. In lines 7–8, at each iteration, we check whether the current
node is done or not. If it is true, we pop it out of the stack promptly to avoid unnecessary
traversal. In lines 10–14, we determine whether a node is done and reachable or not. A
node becomes done when all its neighbours have been visited. Once a node is done, we can
decide its reachability status. If any neighbour of a node is reachable, then all nodes in its
SCC should be reachable as well. In lines 16–17, if a node still has unvisited neighbours, we
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randomly select one representative neighbour to explore and complete the depth-first
search.

In Algorithm 1, a traditional DFS is used to find all nodes between two specified nodes,
including those within the cycles to which they belong. Assuming the graph comprises V
nodes and E edges, where N represents the number of nodes and E represents the number
of edges, in the worst-case scenario, the algorithm requires visiting every node and edge,
resulting in a time complexity of O(N + E). Algorithm 2 adopts an approach that
dynamically identifies and constructs SCCs during processing, without the need to

Algorithm 3 Finding all PathNodes between s and t in a graph (parallel).

Input: The Graph stored in a Directed acyclic graph G', The starting node s, The target node t

Output: Graph G' with reachable markers

1 VðG0Þ:isDone false;

2 VðG0Þ:isReachable false;

3 t:reachable true;

4 t:isdone true;

5 stack ∅;

6 foreach thread do

7 stack.push(s);

8 while stack is not empty do

9 v  stack:top;

10 if v is done then

11 stack.pop;

12 end

13 else

14 if N'(v) is all been traversed then

15 v:isdone true;

16 if N'(v) contain a reachable node then

17 SðvÞ:isreachable true;

18 end

19 stack.pop;

20 end

21 else

22 u NrandomðvÞ;
23 stack.push(u);

24 end

25 end

26 end

27 end
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explicitly create the transitive closure of the entire graph. Generally, this algorithm exhibits
linear time complexity. Algorithm 3 fundamentally employs a parallel DFS approach, with
its complexity also being O(N + E), but it becomes more efficient than O(N + E) when
executed in a parallel computing environment. Algorithm 2’s transformation of the graph
into a Directed Acyclic Graph, followed by its handover to Algorithm 3’s parallel DFS for
path detection, significantly enhances the performance of the algorithm.

EVALUATION
In this section, we evaluate the efficiency of the proposed algorithms. We conducted our
experiments on a computer with the following configuration: a 3.2 GHz Intel Core i9-
12900K processor with a FLOPS performance of 1,180 GFLOPS, 16 GB of RAM, a 256 GB
SSD. The operating system was Windows 10 Pro (64-bit). We used C and C++ for
implementing our algorithm.

In our experimental evaluation, we employed a range of parameters to ensure the
robustness and reliability of our results. We assessed the performance of our algorithms on
seven real-world benchmark graph datasets, as detailed in Table 2. To analyze the impact
of parallelism, we conducted experiments using varying numbers of threads, ranging from
1 to 6 threads. This allowed us to evaluate the efficiency of our algorithm under different
multi-threaded configurations. To ensure result reliability, each experiment was run at
least 10 times, and the averages were computed. This approach effectively minimizes the
influence of random variations and provides a more accurate representation of our
algorithm’s performance. Concurrently, we recorded the time consumption and memory
usage for each experiment, employing appropriate metrics to quantify the algorithm’s
efficiency and resource utilization.

In our implementation, we utilized standard computing libraries and tools commonly
used in the fields of computer science and data analysis. We leveraged the thread library
from the C++ Standard Library to facilitate multi-threading and parallel processing.
Additionally, we utilized the mutex library to provide synchronization primitives for
managing shared resource access in multi-threaded programs. For handling graph data
structure operations and analysis, we relied on widely used C++ containers such as
unordered map and unordered set.

Table 2 Statistic of the datasets.

Dataset Name V E

Iceland IL 75 114

Political-Books PB 105 441

Jazz-Musicians JM 198 2,742

Wiki-Vote WV 7,115 103,609

Soc-Epinions SE 75,879 508,837

Email-EuAll EE 265,214 420,045

Soc-Pokec-Relationship SPR 1,632,083 30,622,564
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The primary focus of our algorithm lies in the efficient identification of potential
fraudulent bank accounts through the utilization of parallelized DFS on a meticulously
optimized data structure. Our algorithm enhances parallelism by guiding each thread
towards distinct portions of the graph through the random selection of neighboring nodes,
while simultaneously achieving load balancing through collaborative updates of node
states within a shared data structure. By introducing randomness and enabling
communication of node states among threads, we have successfully reduced the execution
time of our algorithm through parallelization.

Performance
The comparison of sequential and parallel DFS is shown on Figs. 6–12. We tested our
parallel depth-first search algorithm on seven datasets. These datasets spanned from tens
to millions of vertices and from thousands to millions of edges. We measured the
performance of our algorithm under different numbers of threads, running each

Figure 6 Running data on the Iceland (IL) dataset. Full-size DOI: 10.7717/peerj-cs.1749/fig-6

Figure 7 Running data on the Political-Books (PB) dataset.
Full-size DOI: 10.7717/peerj-cs.1749/fig-7
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Figure 8 Running data on the Jazz-Musicians (JM) dataset.
Full-size DOI: 10.7717/peerj-cs.1749/fig-8

Figure 9 Running data on theWiki-Vote (WV) dataset. Full-size DOI: 10.7717/peerj-cs.1749/fig-9

Figure 10 Running data on Soc-Epinions (SE) dataset. Full-size DOI: 10.7717/peerj-cs.1749/fig-10
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experiment at least 10 times and using the average values to compute all results. We
compared the time and memory consumption across different threads and discussed the
trade-offs and challenges involved.

When we use dataset IL to test our algorithm, as shown in Fig. 6, when the number of
threads is 2, the time consumed by the algorithm is better than that of a single thread.
However, when the number of threads is greater than 2, the time consumed by the parallel
algorithm exceeds that of a single thread, and there is a significant performance decline.
This is largely because IL is a small-scale dataset with only 75 vertices and 114 edges, which
means that each thread needs to build a stack to process this simple graph. This makes the
resources consumed by parallelism greater than the performance advantages brought by
parallelism. In terms of memory consumption, when the number of threads is small,
threads can still share the pressure of other threads, but when the number of threads grows

Figure 11 Running data on EMail-EuAll (EE) dataset. Full-size DOI: 10.7717/peerj-cs.1749/fig-11

Figure 12 Running data on the Soc-Pokec-Relationship (SPR) dataset.
Full-size DOI: 10.7717/peerj-cs.1749/fig-12
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to more than 3 for this small-scale dataset, multiple threads will only increase redundant
calculations.

When the dataset is slightly larger, the advantages of our algorithm are reflected. Our
algorithm’s performance on the PB and JM datasets is shown in the Figs. 7 and 8. Due to
the randomness of each thread selecting a neighboring node, the time consumption of our
algorithm did not show a linear relationship with the number of threads, but fluctuated
slightly. However, overall, our parallel depth-first search algorithm was more time-efficient
than the serial algorithm, and achieved this with an acceptable memory consumption.

We ran our algorithm on the WV dataset, which is a relatively small dataset with about
7,000 nodes and more than 100,000 edges. As shown in Fig. 9, When the number of
threads is 2, the time consumption of multi-threading is only slightly better than that of
single-threading, but as the number of threads increases, the time consumption of the
algorithm is much lower than that of single-threading, which indicates that multi-
threading can better share the pressure of graph processing between each thread. In terms
of memory consumption, multi-threading occupied more memory than single-threading,
and also showed a substantial increase when the number of threads reached 5. This is
because multiple threads may push the same nodes onto the stack, which adds extra
computations and increases the memory burden of the program.

Our algorithm also performed well on the larger datasets SE and EE. As shown in Figs.
10 and 11, the time performance of our algorithm improved gradually with the increase of
the number of threads on slightly larger datasets. The memory consumption also slowed
down with more threads. With the help of multithreading, we achieved better results than
the serial program.

We now turn to the performance of our algorithm on larger datasets SPR. The SPR
dataset has more than 1.6 million vertices and more than 30.6 million edges, making it a
challenging test case for our algorithm. as shown in the (Fig. 12), Our algorithm has also
demonstrated the feasibility of scaling up to large datasets by utilizing multi-threading,
while incurring reasonable additional memory overhead. This verifies that our algorithm
can achieve better time performance than a single-threaded approach.

In Figs. 6–12, we observe that the memory consumption for the multi-threaded
approach is indeed higher than that of the single-threaded approach. When detecting
financial flows within bank accounts, the speed of detection is crucial for effectively
identifying and preventing fraudulent activities. Therefore, we are willing to trade memory
consumption for runtime efficiency. Our goal is to strike a balance that ensures a
significant improvement in algorithm execution time while keeping memory consumption
within manageable limits. Even with the largest dataset, SPR, the increase in memory usage
due to the addition of threads remains within acceptable bounds, not exceeding 5 MB in
total. This approach allows us to achieve the expected efficiency and effectiveness in
identifying and addressing fraudulent activities.

In Table 3, we compared the time efficiency between DFS and our algorithm. DFS
(Grossi, Marino & Versari, 2018; Peng et al., 2019; Rizzi, Sacomoto & Sagot, 2014) is a
brute-force search algorithm that finds all nodes that may be passed from the start node to
the target node by depth-first search. There are two approaches to solve the DFS problem:
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recursive and non-recursive. However, in the context of this experiment, the graph size is
relatively large, which introduces the risk of stack overflow due to excessively deep
recursive function calls when using recursive DFS. Therefore, we opted to compare the
runtime of a non-recursive DFS approach that utilizes an explicit stack with parallel
algorithms.

We have summarized the performance of DFS and our algorithm in Table 3. In this
table, the maximum and minimum values for our algorithm in parallel represent the
slowest and fastest execution times of our algorithm with different threads. In some
datasets, the time consumption of the DFS algorithm is marked as INF, indicating that it
cannot find suspicious nodes within the acceptable time range for the banking institution.
Analyzing the table, it is evident that for the IL dataset, our algorithm only marginally
outperforms DFS in the best-case scenario of parallel execution. However, in most cases,
the time consumption of our algorithm is higher than that of DFS. This is attributed to the
small size of the IL dataset, which consists of only 75 nodes and 114 edges. As a result,
there is a higher probability of multiple threads randomly selecting the same nodes, leading
to increased resource overhead for updating node states in parallel compared to the
resources required for single-threaded execution. On the other hand, for moderate-sized
datasets like PB and JM, the advantages of our algorithm gradually become apparent.
Table 3 demonstrates that our algorithm consistently outperforms DFS in terms of
runtime. This improvement can be attributed to the inherent randomness of our
algorithm, which guides threads to different parts of the graph, effectively distributing the
graph processing workload and significantly enhancing the algorithm’s efficiency. For
larger datasets such as WV, SE, EE, and SPR, our algorithm surpasses the traditional DFS
algorithm by a significant margin in terms of runtime. The parallelization strategy
employed in our algorithm proves highly effective when handling large graphs. The
utilization of random selection and coordinated updates allows for optimal workload
distribution among threads, resulting in enhanced efficiency.

Table 3 Comparison of time consumption of different algorithms on different datasets.

Dataset (start! target ) DFS PathNodes Our algorithm in serial Our algorithm in parallel PathNodes

Minimum Maximum

IL(1!45) 0.0012454 26 0.0015345 0.0011453 0.0022238 26

PB(1!35) 4.92856 33 0.0024732 0.0015063 0.0024676 33

JM(112!137) 48.89013 19 0.0028869 0.0019388 0.0025811 19

WV(5! 61) INF – 0.0421159 0.296087 0.419268 1,302

SE(0!4) INF – 0.6306173 0.496998 0.538866 32,233

EE(0!1) INF – 1.2075687 0.756337 0.886058 34,203

SPR(1!13) INF – 151.59621 135.941559 138.321742 1,304,537
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Algorithm validity
As our parallel DFS algorithm selects neighboring nodes in a random manner during the
graph exploration process, each thread may explore different parts of the graph in each
iteration. To ensure that there are no false positives or false negatives, we have established
strict definitions for node states. To validate the effectiveness of our algorithm, we use the
suspicious nodes detected by the traditional DFS algorithm as a benchmark. In Table 3, the
third and seventh columns represent the number of suspicious accounts detected by the
two algorithms, respectively. It can be observed that in the IL, PB, and JM datasets, we
obtained a same number of suspicious nodes as traditional DFS. This indicates that our
parallel algorithm can correctly detect fraudulent nodes while ignoring innocent ones.

CONCLUSION
In this article, we proposed a novel parallel path detection algorithm for identifying
suspicious fraudulent accounts in large-scale banking transaction graphs. Our algorithm is
based on a three-step approach that involves constructing a directed graph, shrinking
strongly connected components, and using a parallel depth-first search algorithm to mark
potentially fraudulent accounts. We used Vincent Bloemen’s multi-core on-the-fly SCC
algorithm for finding all strongly connected components in linear time, which enabled us
to handle large-scale graphs with exponential growth.

Our algorithm achieved high performance and scalability on multi-core processors,
making it a promising solution for detecting suspicious accounts and preventing money
laundering schemes in the banking industry. The evaluation results demonstrate that our
algorithm outperforms serial time baselines in terms of both runtime and scalability.
Furthermore, our approach can significantly improve the accuracy of financial regulation
on bank accounts, enabling risk-labeling of anomalous accounts in transaction paths.

Overall, our work contributes to the ongoing efforts to combat financial fraud and
promote financial stability in the banking sector. In the future, we plan to investigate the
effectiveness of our algorithm in detecting other types of financial fraud, such as insider
trading and market manipulation, to further improve the accuracy of fraudulent account
detection.
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