
Submitted 2 October 2023
Accepted 20 November 2023
Published 20 December 2023

Corresponding author
Jingxu Xiao,
xiaojingxu2301@163.com

Academic editor
Yue Zhang

Additional Information and
Declarations can be found on
page 35

DOI 10.7717/peerj-cs.1747

Copyright
2023 Xiao et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Attribute identification based IoT fog
data security control and forwarding
Jingxu Xiao1, Chaowen Chang1, Ping Wu1 and Yingying Ma1,2

1 Information Engineering University of the Army Strategic Support Force, Zhengzhou, China
2Zhengzhou University of Technology, Zhengzhou, China

ABSTRACT
As Internet of Things (IoT) applications continue to proliferate, traditional cloud
computing is increasingly unable tomeet the low-latency demands of these applications.
The IoT fog architecture solves this limitation by introducing fog servers in the fog
layer that are closer to the IoT devices. However, this architecture lacks authentication
mechanisms for information sources, security verification for information transmis-
sion, and reasonable allocation of fog nodes. To ensure the secure transmission of end-
to-end information in the IoT fog architecture, an attribute identification based security
control and forwarding method for IoT fog data (AISCF) is proposed. AISCF applies
attribute signatures to the IoT fog architecture and uses software defined network
(SDN) to control and forward fog layer data flows. Firstly, IoT devices add attribute
identifiers to the data they send based on attribute features. The ingress switch then
performs fine-grained access control on the data based on these attribute identifiers.
Secondly, SDN uses attribute features as flow table matching items to achieve fine-
grained control and forwarding of fog layer data flows based on attribute identifiers.
Lastly, the egress switch dynamically samples data flows and verifies the attribute
signatures of the sampled data packets at the controller end. Experimental validation
has demonstrated that AISCF can effectively detect attacks such as data tampering
and forged matching items. Moreover, AISCF imposes minimal overhead on network
throughput, CPU utilization and packet forwarding latency, and has practicality in IoT
fog architecture.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Cryptography, Security and Privacy, Internet of Things
Keywords IoT-Fog security, Software defined network, Attribute-based signature, Packet
verification, Access control

INTRODUCTION
The Internet of Things (IoT) (Guo et al., 2021) is a technology that connects various
physical devices through the network and enables them to collect, transmit and process
data. It has extensive applications in areas such as smart homes, transportation, and
healthcare, thanks to its principle of universal connectivity. Cloud computing, as a network
computing model, has been widely used in the IoT field (Chen et al., 2021). However,
in practical applications, the cloud data center is far away from the IoT devices, which
may cause latency and security risks in data transmission (Nurmi, 2022). Especially in
large-scale IoT application scenarios, massive data transmission between devices may cause
long latency due to network congestion, transmission distance and other factors, affecting

How to cite this article Xiao J, Chang C, Wu P, Ma Y. 2023. Attribute identification based IoT fog data security control and forwarding.
PeerJ Comput. Sci. 9:e1747 http://doi.org/10.7717/peerj-cs.1747

https://peerj.com/computer-science
mailto:xiaojingxu2301@163.com
mailto:xiaojingxu2301@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1747
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1747

real-time performance and user experience. Fog computing (Costa et al., 2022), which
emerged as a solution to these issues deploys computing, storage and network services
closer to the data sources, effectively reducing data transmission latency and improving
real-time performance (Chang et al., 2020). At the same time, fog computing can also ease
the pressure on cloud servers, save network bandwidth and computing resources.

IoT-Fog architecture divides the IoT into three parts: the device layer, the fog layer,
and the cloud layer (Chiang & Zhang, 2017), as shown in Fig. 1. The device layer handles
data collection and local control, while the fog servers within the fog layer undertake
data processing and analysis. The cloud layer, on the other hand, manages advanced
data services and applications. The IoT-Fog architecture brings efficient computing and
storage, but also faces some security threats (Aleisa et al., 2022). For example, the security
levels of different IoT devices vary greatly, and when the fog layer does not implement
defense mechanisms for accessing devices, there is a high risk of low-security-level device
access (Zhang & Zhou, 2018); illegal malicious IoT devices can inundate fog nodes with
false requests, preventing the nodes from receiving and processing regular data (Kolias,
Kambourakis & Stavrou, 2017); IoT devices can launch deception attacks on fog nodes by
forging IP and Mac addresses (Javed et al., 2021). When data is transmitted in the fog layer,
malicious nodes in the link will steal, tamper with or delete data, affecting the safe use of
IoT users (Kang et al., 2019). Therefore, ensuring end-to-end data security transmission in
the fog layer is the key to IoT data security.

The software-defined network (SDN) is an innovative network architecture introduced
by the CleanSlate team at Stanford University (Kreutz et al., 2014). Unlike traditional
networks, SDN separates the control plane from the data plane, allowing the data plane
to focus solely on data forwarding while the control plane manages the flexible control
and forwarding of data flow within the network. Programming Protocol-Independent
Packet Processors (P4) (Bosshart et al., 2014), a state-of-the-art programming language
and framework, enables the programmability of forwarding devices, such as switches, in
the data plane. By embracing P4, networks can effectively implement the network data
control function, as originally envisioned in the concept of SDN. SDNhas the characteristics
of centralized management, scalability and flexible programmability. By deploying SDN in
IoT, it is convenient to efficiently manage massive data flows. At the same time, SDN can
realize the detection and security verification of data transmission between IoT devices and
fog nodes (Rafiq et al., 2022).

Maji, Prabhakaran & Rosulek (2011) formally proposed the Attribute-Based Signature
(ABS) in 2011. By introducing a signature policy, only signers who meet the attribute set
requirements in the policy are allowed to sign, ensuring fine-grained access control of the
signer while authenticating the source of information. By applying attribute signatures to
the source authentication of IoT devices and generating keys based on attribute features,
it can effectively solve problems such as establishing keys for all users and occupying a
large amount of key storage space. The attribute features used in attribute signatures can
effectively describe data flows. SDNcan effectively improve the fine-grained data forwarding
in IoT fog architecture by using attribute features as matching items. Meanwhile, attribute

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 2/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Cloud Layer

Fog Layer

IOT Layer

Figure 1 IoT fog architecture diagram.
Full-size DOI: 10.7717/peerjcs.1747/fig-1

signatures can effectively guarantee the non-forgery and integrity of data, and realize the
security verification function of end-to-end data in IoT fog layer.

To solve the security problems in the current IoT fog architecture and realize the security
transmission of end-to-end data in the fog layer, we propose an attribute identification
based security control and forwardingmethod for IoT fog data. It uses attribute signatures to
perform access control on IoT devices, adds attribute identity headers to the data flowing
into the fog layer, and combines SDN to perform fine-grained forwarding, dynamic
sampling and security verification on the fog layer data. The main contributions of this
paper are as follows:
(1) We propose a method of data security control and forwarding based on attribute

identification, which is called AISCF. AISCF establishes an access control mechanism

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 3/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-1
http://dx.doi.org/10.7717/peerj-cs.1747

based on attribute features for data flows, ensuring the security and traceability of
incoming data flows in IoT fog layer. It also uses attribute identification as the basis for
SDN control forwarding, enabling fine-grained control forwarding based on attribute
characteristics for data flow. Furthermore, it detects malicious packets such as data
tampering and matching item forgery based on attribute signature, ensuring the
security of end-to-end data packet forwarding process.

(2) We propose a method of dynamic sampling for data flows, which adjusts the sampling
factor according to the verification results of data packets, effectively reducing the
verification overhead of AISCF.

(3) We test AISCF by simulating the IoT fog architecture environment using P4 software
switches. Through experiments, we verify that AISCF is effective. At the same time,
AISCF has less overhead in terms of forwarding delay, throughput and controller CPU
usage, and is a lightweight scheme suitable for IoT fog architecture.
The rest of this article is organized as follows. The ‘Related work’ section introduces the

related research on IoT fog data forwarding security. The ‘Problem description’ section
summarizes the threat model of end-to-end packet forwarding and proposes the goal of
this article. The ‘Attribute identification based security control and forwarding’ introduces
the architecture and the specific implementation ofMSLPFV. The ‘Analysis and discussion’
section analyzes and discusses the security proof, overhead, and implemented functions
of AISCF. The ‘Experiment and evaluation’ section constructs experiments to test and
evaluate AISCF. The ‘Conclusion’ section concludes the article.

RELATED WORK
To ensure secure data transmission in the IoT fog layer, current security defense measures
mainly consist of firewall, anomaly detection, access control and data verification
techniques. Kamoun-Abid et al. (2019) suggested a firewall architecture based on the
integration of cloud and fog layers. As fog nodes are closer to IoT devices, they can filter
traffic efficiently according to rules, effectively reducing the hop count of data packets in
the IoT. Sadiq, Thompson & Ayeni (2020) leveraged Software Defined Networking (SDN)
to defend against DDoS attacks in the IoT. Although firewalls incur low overhead, they are
unable to defend against internal and unknown attacks effectively. Dhawan et al. (2015)
introduced Sphinx, which collects traffic information from switches, constructs flow graphs
for specific traffic information in the network, andmonitors network traffic effectively based
on flow graph features. Nguyen et al. (2019) employed distributed controllers to obtain
IoT traffic information, alleviating the single point of failure problem, and combined deep
learning to build three different levels of intrusion detection systems to detect abnormal
traffic. However, anomaly detection schemes require real-time monitoring and statistics of
IoT traffic, which increases network load when monitoring all data streams and causes false
negatives when monitoring specific types of data streams. Moreover, anomaly detection
introduces some detection delay, making it hard to block malicious traffic attacks in real
time.

By establishing access control and authentication mechanisms for the fog layer traffic,
the inflow and circulation of illegal data can be effectively controlled. The Virtual source

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 4/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Address Validation Edge (VAVE) framework (Yao, Bi & Xiao, 2011) added a source address
verification module in the controller, which can effectively filter data streams with spoofed
addresses. Li et al. (2017) modified OpenFlow protocol and Bloom filter to ensure the
security of the channel between SDN controller and switch, and to resist man-in-the-
middle attacks launched by malicious nodes in the IoT, but the scheme did not describe
the method of confirming malicious nodes. Al Hayajneh, Bhuiyan & McAndrew (2020)
employed TLS/SSL proxy to solve the problem of IoT device reconfiguration. The scheme
isolated the traffic from abnormal physical devices by analyzing the source MAC address of
the traffic in the control plane. However, the scheme used deep packet inspection technique,
which incurred high time overhead. Muthanna et al. (2019) introduced blockchain into
the IoT, and used SDN controller to authenticate IoT devices, but did not implement
blockchain in the scheme. Gao et al. (2019) collected flow information from requesters to
responders, and built an identity verification model based on blockchain, achieving secure
management of IoT fog architecture. Xie et al. (2019) applied blockchain technology to
vehicular networks. Each vehicle in the system contained a road information, which was
rated by its surrounding vehicles for its authenticity, thus ensuring the correctness of
the information. Although blockchain can authenticate IoT devices, it generates a lot
of information exchange between controllers or fog nodes, and schemes (Muthanna et
al., 2019; Gao et al., 2019; Xie et al., 2019) are not suitable for IoT devices that need fast
feedback. ELMansy, Metwally & Badran (2022) utilized SDN controller’s traffic monitoring
function, and used MPTCP mode in multipath routing to manage fog nodes securely,
allowing redundant communication between nodes, but the scheme had fixed fog node
topology structure and required modifying TCP/IP protocol. To enable users to flexibly
use data streams on demand, Halpern & Pignataro (2015) proposed service function chain
(SFC), which built the SDN flow table and controlled and forwarded data streams according
to different user needs, but SFC did not analyze the security of the scheme. Zhu et al.’s
(2020) Attribute-Guard used attribute features to classify rules issued by SDN controller
into fine-grained categories, improving the drawback of fixed OpenFlow match item
categories, and combined digital signature to verify the source of different types of data
streams, but the scheme executed signature verification process on switches, introducing
large forwarding delay.

Encrypting and verifying data with cryptographic algorithms can effectively enhance
the security of end-to-end communication in the IoT fog architecture. Mohan, Kodati &
Krishna (2022) encrypted flow rules through SDN controller, and used SDN switch as fog
layer server to decrypt flow rules, ensuring the integrity of flow rules, but the scheme could
not identify abnormal data streams. LPV (Wang, Li & Zhang, 2019) calculated the message
authentication code of data packets, and compared the message authentication codes of
data packets when they passed through the ingress switch and egress switch, ensuring
the integrity of data packet forwarding process. However, LPV calculated the message
authentication code of data packets through the ingress switch, and could not effectively
distinguish data packets sent by illegal visitors. SDNsec (Sasaki et al., 2016) added a code
containing transmission path information to data packets. When data packets passed
through switches in the network, switches verified this field and discarded data packets

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 5/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

that violated path rules, ensuring the consistency of data packet forwarding path in SDN.
However, SDNsec required verifying message authentication code of data packets on
each switch, which had high configuration requirements for switches in the network.
P4Label (Zuo et al., 2020), a packet forwarding control mechanism for SDN based on P4,
detected attacks such as malicious tampering and data forgery, but P4Label added extra
header length to data packets, which was relatively long, and generated large key storage
overhead. Qin, Tang & Chang (2018) introduced the concept of cryptographic identity
into SDN’s control forwarding, generating cryptographic identity from user’s identity,
file attributes or business content and other features, and verifying signature when data
packets entered and exited network, ensuring security of data packet transmission, but this
method caused problems such as frequent key replacement and large number of keys in
implementation process. Xiao et al. (2022) proposed a secure data flow forwarding method
based on service ordering management, which establishes a corresponding relationship
between users, hosts, and services by formulating business rule tables. This method only
allows authenticated users and hosts to use the service and performs business-based ordered
management of data flows. However, this scheme uses digital signatures to perform security
verification on matching items, which can only ensure that the matching items are not
tampered with. Attackers can still illegally access the network by stealing and forging
legitimate matching items.

Table 1 summarizes the relevant research schemes. From the table, it can be seen that
research on establishing secure access control mechanisms for data and secure verification
of data are separate. Furthermore, some schemes have issues such as high communication
costs, long anomaly detection times, and high verification overheads. Therefore, there is
currently a lack of a low-cost method that can balance access control and data security
verification for the Internet of Things fog architecture.

PROBLEM DESCRIPTION
This section presents the security threats encountered during the end-to-end data
forwarding process within the IoT fog architecture. It also proposes objectives to address
these issues based on the challenges currently faced.

Attack model
Assuming that an SDN architecture has been established in the IoT, Fig. 2 illustrates the
security threats encountered during the data forwarding process in the IoT. The data in the
figure originates from IoT devices, and the receiver is a fog node or a fog server. The solid
part of the figure depicts the data forwarding process, and the dashed line indicates the
control process of the controller to the IoT switch. Lines of different colors denote different
types of data streams. The following describes the data streams shown in the figure:

Security dataflow: A legal IoT device sends a data packet to switch A (1). After receiving
the packet, switchA checkswhether it has the flow table information required for controlling
and forwarding the packet. If switch A has the information, it forwards the packet according
to the flow table information (4). If switch A does not have the flow table information
that matches the packet, it sends a request for flow table information to the controller (2).

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 6/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Table 1 Summary of related schemes.

Scheme Security Function Main Technology Issues

Scheme (Kamoun-Abid et
al., 2019; Sadiq, Thompson
& Ayeni, 2020)

Filtering malicious traffic Firewall Unable to defend against
internal and unknown at-
tacks

Scheme (Dhawan et al.,
2015; Nguyen et al., 2019)

Detecting malicious traf-
fic

Anomaly detection Monitoring and statistics
of traffic cause high over-
heads, and detection has
lag

Scheme (Yao, Bi & Xiao,
2011; Li et al., 2017)

Security of data sources Access control Unable to prevent tam-
pered malicious traffic

Scheme (Al Hayajneh,
Bhuiyan & McAndrew,
2020)

Isolating abnormal traffic Deep packet inspection Payload detection re-
quires high time overhead

Scheme (Muthanna et al.,
2019; Gao et al., 2019)

Device authentication Blockchain Multiple nodes record
and authenticate infor-
mation, resulting in high
communication overhead

Scheme (Xie et al., 2019) Authentication of infor-
mation authenticity

Blockchain Large amount of infor-
mation exchange between
nodes, unable to timely
block abnormal informa-
tion

Scheme (ELMansy, Met-
wally & Badran, 2022;
Halpern & Pignataro,
2015)

Flexible control of ser-
vices

Software-defined network Security analysis of data is
not performed

Scheme (Zhu et al., 2020) Source authentication Digital signature Verification process is
performed on the switch,
resulting in high time
overhead

Scheme (Mohan, Kodati
& Krishna, 2022)

Flow rule integrity Encryption Unable to detect abnor-
mal data

Scheme (Wang, Li &
Zhang, 2019)

Data packet forwarding
verification

Sampling verification Ingress and egress ex-
change devices need to
sample data packets sepa-
rately, increasing commu-
nication overhead

Scheme (Sasaki et al.,
2016)

Consistency verification
of forwarding path

Message verification code All switches need to par-
ticipate in the verification
process, and the header
length increases linearly
with the path

Scheme (Zuo et al., 2020;
Qin, Tang & Chang, 2018)

Data packet forwarding
verification

Digital signature Different types of data
need to generate keys, re-
sulting in large key stor-
age overhead

Scheme (Xiao et al., 2022) Secure and ordered data
flow

Digital signature Unable to detect illegal
data flows with forged
matching items

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 7/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Controller

1

2 3

4 5

1-2

3

4-2 5-2
4-3

Security dataflow

Unauthorized access

Match forgery

Data tampering

4-1 5-1Legal IoT Device

Malicious IoT Device

5-3

Flow Flow

Matches Matches

Switch A Switch B
Fog Device A

Fog Device B

Figure 2 Security threats faced by IoT during data flow forwarding.
Full-size DOI: 10.7717/peerjcs.1747/fig-2

Upon receiving the request, the controller sends the corresponding flow table information
to switch A and switch B (3), and switch A forwards the packet according to the flow table
information (4). After receiving the packet from switch A, switch B performs the same
process as switch A and forwards the packet to Fog Device A.

Unauthorized access: Unauthorized IoT devices or users transmit data within the IoT.
Unauthorized devices and users refer to those that have not obtained IoT authorization.
When an unauthorized device (user) sends a data packet to switch A (1-2), switch A cannot
differentiate between authorized and unauthorized devices, and will forward the data
packet from the malicious device to Fog Device A according to the same process as for
secure data packets (4-2,5-2), thus exposing Fog Device A to attack.

Matches forgery: Malicious nodes in the network forge match items such as IP address,
device information, etc., and deceive switching devices to forward data streams abnormally.
For example, Switch A is a malicious node (the attacker pollutes the switching device by
exploiting vulnerabilities, implanting malicious software, ARP spoofing, etc.), and it forges
the match item of the data stream and sends it to switch B (4-3). Switch B forwards the
data stream to the wrong Fog Device B (5-3) according to the tampered match item.

Data tampering: The malicious nodes in the network tamper with or inject malicious
content into the payload of the transmitted packets. For example, suppose that switching
device A in the figure is a malicious switching device, which tampers with the received
security data packets and forwards them to switch B (4-1). Because the matching items of
the data packets tampered with have not changed, switch B forwards the data packets to

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 8/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-2
http://dx.doi.org/10.7717/peerj-cs.1747

Fog Device A (5-1) according to the processing flow of the security data packets. At this
time, Fog Device A may be subject to network attacks.

Objectives
To address the security threats encountered during the end-to-end data forwarding process
in the IoT fog architecture, we aim to propose a scheme for secure control and forwarding
of data streams. The objectives we hope to achieve with this scheme are as follows:
(1) To authenticate the origin of data initiators, it is essential to permit only devices that

adhere to the access control rules to transmit data within the network. Simultaneously,
by integrating the characteristics of data initiators with SDN matching criteria, we
can achieve precise access control for data initiators and fine-grained control and
forwarding of data flows.

(2) To detect and block abnormal packets that have data tampering and matching item
forgery, and provide the function of tracing malicious data that enter the network,
ensuring the security of data transmission.

(3) To choose an appropriate sampling method for sampling and verifying data flows,
it is crucial to avoid creating excessive verification overhead. Such overhead could
significantly affect both data transmission efficiency and network performance.

ATTRIBUTE IDENTIFICATION BASED SECURITY CONTROL
AND FORWARDING
To ensure secure data transmission within the IoT fog architecture, we have developed
the AISCF model architecture. This section provides an overview of AISCF, covering four
key aspects: the overall architecture, the attribute identity structure, the attribute signature
scheme, and the AISCF implementation.

Overall architecture
In AISCF, first, the data initiator needs to obtain the key from the key generation center
(KGC) according to its own attribute characteristics, and the attribute identification
adding module adds the attribute identification header to the data packet and sends it to
the network. The ingress switch judges whether the data packet has attribute identification,
and matches and forwards the qualified data packet based on the attribute identification.
The intermediate forwarding device only performs matching forwarding based on attribute
identification for data packets. The egress switch samples the data packets while forwarding
them, and sends the sampled data packets to the controller. The controller performs
security verification on the sampled packets based on the attribute signature parameters
obtained from the KGC. Figure 3 depicts the AISCF architecture.

The AISCF architecture consists of several components, each serving specific functions:
KGC: The KGC is responsible for generating and distributing keys used in the packet

attribute signature phase. Users provide their own attribute set and attribute policy set for
the signature. The KGC verifies the attribute policy set, generates the key, and provides
users with the attribute private key required for signature. Additionally, the KGCmaintains

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 9/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Identify
identification

Identify
identification

Match and
forward

Match and
forward

Match and
forward

Match and
forward

Dynamic
sampling

Dynamic
sampling

Entry switch Exit switchExit switch

ControllerController

Packet
sampling

Packet
sampling

Match and
forward

Match and
forward

Intermediate
forwarding device

Intermediate
forwarding device

KGC

Attribute identification
adding module

Source(IoT device) Destination(Fog device)Destination(Fog device)

Verify
signature

Verify
signature

Find anomaly
source

Find anomaly
source

Users

Figure 3 AISCF architecture.
Full-size DOI: 10.7717/peerjcs.1747/fig-3

communication with the controller, supplying the attribute policy set and system public
parameters needed for verifying attribute signatures.

Attribute identification adding module: The attribute identification header is added to
the packet to realize control forwarding and security verification of data packets entering
the IoT based on attribute identity.

Forwarding device: The forwarding device selects the programmable P4 switch that
can effectively identify the attribute identification field and processes its contents. We
classify the switches into ingress switches, intermediate forwarding devices, and egress
switches based on the packet forwarding order. These switches realize their respective
functions according to the multilevel flow table. The ingress switch identifies the attribute
identification field of the incoming packets and only forwards the packets with attribute
identification according to the flow table information. The intermediate forwarding
device only forwards the packets that match based on attribute identification. The egress
switch dynamically samples the incoming packets and uploads the sampled packets to the
controller, while forwarding the unsampled packets based on attribute identification.

Controller: The controller adopts a dynamic sampling mechanism based on data packet
security verification, which dynamically updates the sampling factor according to the
verification results of the sampled data packets, and controls the egress switching devices to
perform dynamic sampling on the data flows. The controller verifies the signatures on the
attribute identifiers of the sampled data packets. In the event of an abnormal data packet
failing verification, the controller promptly updates the flow rules based on the attribute
identifiers of the abnormal data packets, ensuring the security of the data flow forwarding
paths. Through communication with the KGC, the controller can track and confirm the
identity of the packet initiator, effectively tracing the source of abnormal packets in the
network.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 10/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-3
http://dx.doi.org/10.7717/peerj-cs.1747

Ethernet_Header IPV4_Header IP_Payload

Next_Type

AttributeID_Header

Att_Features Att_Signature Att_Tree

Figure 4 Attribute identification structure.
Full-size DOI: 10.7717/peerjcs.1747/fig-4

Attribute identification structure
The packet header defines the attribute identification field, which is added between the
Ethernet header and the IP header in the traditional packet. The attribute identification
structure is shown in Fig. 4. The attribute identification field comprises four parts:
Next_Type, Att_Features, Att_Signature, and Att_Tree. AISCF can realize secure and
fine-grained control and forwarding of dataflow based on attribute identification.
Each part of the attribute identification field is discussed here:
Next_Type (16 bits): It acts as a logical connection between multiple headers. After

parsing the attribute identification field, the switch determines the header field that needs
to be parsed next through Next_ Type to realize the orderly parsing of various headers.

Att_Features (64 bits): Used to represent the set of packet attribute features. The
attribute class features, such as user, device, and service categories, are used to replace
deterministic features to describe the dataflow. AndAtt_Features is generated by calculating
the hash function of attribute characteristics. AISCF implements fine-grained control and
forwarding of dataflow according to Att_Features.

Att_Signature (256 bits): It is the packet attribute signature field. By using the attribute
signature scheme, the Att_Features section and the IP_Payload section of the packet
is signed and stored in Att_Signature. AISCF verifies the security of the data packages
according to Att_Signature.

Att_Tree (128 bits): It stores the attribute signature policy in a tree structure. Att_Tree
contains attribute features and the logical relationship between attribute features. Only the
attribute set that conforms to the signature policy can sign the packet. Att_Tree is also used
as an input parameter in the packet attribute signature verification phase.

Attribute based signature scheme
ABS scheme poses problems such as high time consumption and linear correlation between
signature verification time and the number of attributes (Su et al., 2020). Packets experience
large transmission delays when using ABS verification. To address these problems, AISCF
extends and employs the ABS scheme proposed by Tang, Ling & Shan (2022) in the
packet forwarding process through SDN. The scheme incurs low time overhead in the
signature verification process and is independent of the number of attributes, enabling

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 11/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-4
http://dx.doi.org/10.7717/peerj-cs.1747

KGC

Generate signature

(Public parameters)

Initialization

(A
ttr

ibute Features,A
ttr

ibute Polic
y)

Switch ControllerUsers
Attribute identification

module

Verification

(P
riv

ate keys)

Sampling

Figure 5 Application of the proposed ABS scheme in AISCF.
Full-size DOI: 10.7717/peerjcs.1747/fig-5

lightweight and fine-grained secure forwarding verification of data packets. Figure 5 shows
the implementation process of the attribute signature scheme in AISCF.

AISCF adopts the concept of attribute tree proposed by Bethencourt, Sahai & Waters
(2007) and uses the tree structure to restrict the access policy of the signer’s attribute
features. The signer qualifies to sign only when they match the access structure of the
attribute policy tree. Threshold and attribute nodes compose the nodes in the attribute
policy tree. Each attribute node corresponds to an attribute of the signer, whereas the
threshold node represents the structure of n inputs corresponding to one output. For
example, (m,n) means that effective output is possible only when at least m inputs out of
a total of n inputs satisfy the conditions. In particular, when m =n, (m,n) represents the
‘‘and’’ relationship; when m =1, (m,n) represents the ‘‘or’’ relationship.

Figure 6 illustrates an example of the attribute policy tree structure. As shown
in the figure, the signer with administrator characteristics or the authority to use the
authentication host conforms to the signature rules of the attribute policy tree. If the signer
has the attribute features of user and Service C, they can effectively sign. However, if the
signer has the attribute features of user and Service D, they cannot execute the signature
because it does not conform to the access structure of the attribute policy tree.

Figure 6 illustrates an example of an IoT access control structure based on an attribute
policy tree. In this structure, users with administrative privileges can access the IoT. Regular
users can send data to the IoT via authenticated devices, with service types A, B, or C. If
a user does not have administrative status, uses a non-authenticated IoT device, or sends
other types of services, they will not be able to access the IoT due to non-compliance with
the attribute policy tree structure. This structure provides secure and controlled access to
the IoT system.

To clearly describe the attribute signature scheme, the following definitions are given.
Definition 1. Define the basic parameters in the ABS scheme. p and N are two large

prime numbers, E is defined as an elliptic curve over a finite field Fp,G1 and G2are N -th

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 12/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-5
http://dx.doi.org/10.7717/peerj-cs.1747

(1,2)

(2,2)

(1,3)

Administrator

Authentication

Device

Service B Service CService A

Figure 6 Attribute policy tree structure.
Full-size DOI: 10.7717/peerjcs.1747/fig-6

order additive cyclic groups on the elliptic curve, GT is an N -th order multiplicative cyclic
group, and P1 and P2 are, respectively the generators of G1 and G2.[x]Pi is defined as
x times of generator Pi, where x ∈ Z∗N .ϕ is defined as a mapping of G2→G1 such that
ϕ(P2)= P1. H 1 and H2are hash functions, and hid is the identification used for generating
the key for the user. e is defined as a bilinear mapping of G1×G2→GT and must meet
the following conditions:
(1) Bilinearity: e ([a]P1,[b]P2)= e ([b]P1,[a]P2)= e(P1,P2)ab, where a,b∈Z∗N .
(2) Non-degeneracy: e (P1,P2) 6= 1, where 1 is an identity element of GT .
(3) Computability: For P1 ∈ G1,P2 ∈ G2, the value of e (P1,P2) can be solved within

polynomial time.
Definition 2. ID represents the identity information of the signer, and AttID represents

the attribute set of the signer.
Definition 3.ϒ represents the access control policy based on attributes, and T represents

the attribute policy tree generated based on ϒ .
Definition 4. PP represents the parameters disclosed in the attribute signature process,(

msk,mpk
)
represents the master key pair of the system, in which msk and mpk represent

the master public key and the master private key of the system respectively.
Definition 5. m represents the signed message, and the hash function H is defined. In

AISCF,m is the hash value generated by the Att_Features field in the attribute identification
and the data package payload, m=H(Att_Features

∥∥IP_Payload).
Definition 6. sk represents the private key used for signature, and sign represents the

attribute signature.
Definition 7. The Lagrangian coefficient is defined as 1i(x)=

∏
i∈S,j 6=i

x−xj
xi−xj

, where
i∈Z∗N ,S∈Z

∗

N . For the t−1-th order polynomial p(·), any value can be calculated through
t given points (xi,yi= p(xi)), that is, p(x)=

∑t
i=1p(i)1i(x)modN .

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 13/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-6
http://dx.doi.org/10.7717/peerj-cs.1747

The proposed ABS scheme is discussed in terms of five aspects: system initialization, key
generation, signature, signature verification, and tracing.

System initialization
(
1l
)
→
(
PP,mpk,msk

)
: The KGC generates the system master

private key msk according to the security parameter l, and calculates the system master
public key mpk= [msk]P2. KGC saves msk and makes mpk public. g = e

(
P1,mpk

)
, KGC

obtains the public parameters PP=
(
N ,P1,P2,e,ϕ,G1,G2,GT ,hid,g ,H1,H2

)
according to

the basic parameters in Definition 1.
Key generation (msk,ϒ,AttID)→ (sk): The user provides the KGC with attribute

policy ϒ and user attribute feature set AttID. The KGC then generates the user private key
according to the following steps:
(1) It is determined whether the attribute set provided by the user meets the access control

policy.ϒ(AttID)= 1indicates that the user meets the access control policy, and perform
step (2); otherwise, ⊥ is returned, and the user cannot obtain the key.

(2) A random number t is selected. Let hID =H1(ID ‖ hid,N).sk′ =
[

msk
hID+msk

]
P1 and

sk2=
[hID+msk

t

]
P2 are calculated.

(3) The attribute policy tree T is constructed from ϒ , and the kx−1-th order polynomial
px(·) for each node x in T is generated using the top-down method, where kx is the
threshold of the node. The constant term of the root node is defined as t, that is,
pxr (0)= t . For a non-leaf node x ′,px ′(0)= ppar(x ′)(ind(x ′)), where ind(x) and par(x)
represent the numbers of node x and its parent node, respectively. For a leaf node x

′′

,
the attribute key sk1=

{
sk1,i= px ′′ (0) · sk

′
}
, i= att(x

′′

) is calculated; att(x) represents
the number of node x.

(4) The KGC saves (ID,sk2) and returns sk=
(
sk1 :

{
sk1,i

}
,sk2

)
to the user.

Signature (m,sk,ϒ)→
(
sign

)
: The user signs message m by using sk, selects a random

number r, and calculates w = g r , h=H2(m||w,N), k = sk2, l = (r − h)modN , and
si = [l]sk1,i, obtaining the signature as sign= (h,si,k). In AISCF, sign is stored in
Att_Signature in the attribute identification.

Signature verification
(
m,sign,T

)
→ (1/⊥): The controller in AISCF will verifie the

Att_Signature field in the attribute identification of packets. The signature verification
process is as follows:
(1) The Lagrangian interpolation formula is used to calculate sxr of the root node

from bottom to top, that is, [l]pxr (0) · sk
′. When kpar(x) = 1 for node x, spar(x) = sx ;

otherwise spar(x) =
∑

xi∈bro(x)sxi1xi(x)modN . Finally, sxr =
[

l·t ·msk
msk+hID

]
p1 is obtained.

The parameter x is omitted and let sr = sxr =
[

l·t ·msk
msk+hID

]
p1.

(2) w ′= e (sr ,k)·g h and h′=H2
(
m||w ′,N

)
are calculated. If h′= hthe signature verification

is successful and 1 is returned. Otherwise, the signature verification fails and ⊥ is
returned. Because w = g r , the condition for the success of signature verification is
w ′= g r . The correctness of the signature verification process can be determined using
Eq. (1):

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 14/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Table 2 Headers defined by AISCF in P4.

Structure of headers in P4 Switch
header InPort_Header{
fields{
Next_Type : 16;
In_Port : 2;
}

}

header AttributeID_Header{
fields{
Next_Type : 16;
Att_Features : 64;
Att_Signature : 256;
Att_Tree : 128;
}

}

w ′= e(sr ,k) ·g h

= e
([

l · t ·msk
msk+hID

]
P1,
[
hID+msk

t

]
P2

)
·g h

= e ([r−h]P1,[msk]P2) ·g h

= g r−h ·g h

= g r

(1)

Tracing
(
sign

)
→ (ID): It is known that k = sk2 in sign(h,si,k) and the KGC saves

(ID,sk2) when distributing the key to the user, then the KGC can trace the signer ID by
checking the table of sk2.

Implementation of AISCF
This section introduces the implementation of AISCF by explaining the workflows of both
the switch and the controller.

Switch workflow
P4 programmable switch can add, read and delete headers in data packets. In addition to
Ethernet header, IP header and other traditional packet headers, AISCF defines two header
types in P4 switches in the network, namely InPort_Header and AttributeID_Header. The
format of the header is shown in Table 2. The unit of the header field length in the table is
bit.

InPort_Header is used to identify the source of data packets. When In_Port=01 in
InPort_Header, it indicates that the data packet is from the IoT device; when In_Port=00,
it indicates that the data packet is from the switch. AttributeID_Header represents
the attribute identification header defined in the ‘Attribute identification structure’
section. The switch controls and forwards the data packets according to the content
of AttributeID_Header.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 15/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Identification

table

Sampling table

Receive packets

Forward packets

Matching forward

table

If out-port is

access port？

If in-port is

access port？

Yes

Yes

No

No

Figure 7 Multilevel flowmatching process.
Full-size DOI: 10.7717/peerjcs.1747/fig-7

The P4 switch will mark the header type for different types of headers. The Next_Type
field in the header records the next header type that needs to be parsed. The P4 switch
implements the orderly analysis of multiple headers according to Next_Type. The default
IP header and Ethernet header type numbers in P4 switch are 0x0800 and 0x1212, and the
InPort_Header and AttributeID_Header type numbers are 0x2828 and 0x1818 defined in
AISCF. The source host adds the AttributeID_Header, while the ingress switch adds the
InPort_Header. The logical position of InPort_Header is in front of the Ethernet header,
Next_Type =0x1212 in InPort_Header. AttributeID_Header is in front of the IP header,
and Next_Type =0x0800 in AttributeID_Header.

The switch works by executing a ‘‘match–action’’ process on the packet, based on the
flow table information it stores and receives from the controller. The switch matches the
information parsed from the packet header with the corresponding flow table entry, and
then executes the corresponding action on the packet. AISCF architecture establishes port
distinguishing table, header validation table, matching forwarding table and sampling table

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 16/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-7
http://dx.doi.org/10.7717/peerj-cs.1747

in P4 switch, and carries out multilevel flow table matching process based on attribute
identification for data packets. Figure 7 illustrates the multilevel flow matching process.

As can be seen from Figure, the switch first performs the ‘‘match–action’’ process based
on the port matching table for the received packets and executes the corresponding actions
for the various input port types. When the input port is an access port, the switch performs
the ‘‘match–action’’ process of the identification table for the packets. Next, according to
the content of the matching forwarding table, the packet is controlled and forwarded based
on attribute identification, and the next hop address of the packet is set. Before the packet
flows out of the switch, it is determined whether the exit port of the packet is an access
port. If so, the contents of the sampling table are executed. The flow tables shown in Fig. 7
are discussed as follows:

Port matching table: Perform the corresponding action on the packet by matching the
switch port type. AISCF divides switch ports into access ports and routing ports based
on connection types. The access port indicates that the port is connected to the IoT
device, and the routing port indicates that the port is connected to the switch. The port
matching table is divided into inbound and outbound port matching tables. In the inbound
port matching table, the matching item is In_Port in InPort_Header, when In_Port=01,
submit the data packet to the identification table for processing, and when In_Port=00,
the switch submits the data packet to the basic forwarding table for processing. In the
outbound port matching table, the matching item is standard_metadata.egress_spec, when
standard_metadata.egress_spec =01, submit the data packet to the sampling table for
processing, and when standard_metadata.egress_spec =00, perform the forwarding action
on the packet.

Identification table: Perform the corresponding action on the packet by matching the
Next_Type field in the Ethernet_Header. P4 switch extracts the header information from
the data packet. When Next_Type =0x0800, it indicates that Ethernet_Header is adjacent
to IP_Header, the data packet does not contain attribute identification, and the switch
discards the data packet; When Next_Type =0x1818, it indicates that the data contains
attribute identification, and the data packet is sent to the matching forwarding table for
subsequent processing.

Matching forwarding table: The forwarding policy is formulated based on Att_Features
in attribute identification to realize fine-grained packet control and forwarding.
The matching and forwarding table matches Att_Features precisely with the type
of exact. When Att_Features matches successfully, the switch assigns the parameter
standard_metadata.egress_spec based on the matching and forwarding table, where
standard_metadata.egress_spec represents the outbound port value of the packet, and
forwards the packet, that is, forwards the packet according to the requirements of the
matching and forwarding table. When the matching fails, the switch drops the data
package and upload the package to the controller through packet-in.

Sampling table: AISCF defines the packet sampling parameter pkt_sample_val in the P4
switch, and the sampling table takes pkt_sample_val as the matching item to sample the
packet. When pkt_sample_val =1, the switch executes action clone_ingress_pkt_to_egress

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 17/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

on the data packet and sends the mirror of the data packet to the controller; When
pkt_sample_val =0, the switch does not process the data packet.

The switch in AISCF processes the data packets according to the Multilevel flow table
matching process shown in Fig. 7. Algorithm 1 shows the control and forwarding process
of the switch for data packets.

Algorithm 1. Control and forwarding process of the switch for packets
Input : packet A,sampling factor θ
Output : action executed on A
1.Function Control and forwarding of packets in switches :
2. If A has no InPort_Header :
3. add_header(A,InPort_Header,In_Port= 1)
4. in_port =A.InPort_Header.In_Port
5. If in_port = 1 :
6. next_type=A.InPort_Header.Next_Type
7. If match(next_type,Identification_table)=NULL :
8. drop(A)
9. A.InPort_Header.In_Port= 0
10. att_features=A.AttributeID_Header.Att_Features
11. If match(att_features,Matching_forward_table) :
12. action(att_features,Matching_forward_table)
13. If standard_metadata.egress_spec is Access port :
14. sample_val =modify_field_rng_uniform(0,1+θ)
15. If θ < sample_val <θ+1 :
16. pkt_smaple_val= 1
17. Else :
18. pkt_smaple_val= 0
19. If match(pkt_smaple_val,Sampling_table) :
20. action(pkt_smaple_val,Sampling_table)
21. delete_header(A,InPort_Header,AttributeID_Header)
22. Else :
23. drop(A)
24.END Function

In the Algorithm 1, θ represents the sampling factor, add_header() and delete_header()
are defined as functions to add and delete headers to packets, match(table, matching
field) and action(table, matching field) represent the matching result and execution action
between matching field in packets and the corresponding flow table table respectively, and
drop() represents that the switch discards packets.

For data packets entering SDN, the incoming switch adds InPort_Header() to them and
performs matching and action execution based on identification table. The switch then sets
In_Port in InPort_Header to 0 to inform downstream switches that the routing port sends
the data packet (lines 2-9 of Algorithm 1).Then the switch performs the matching and
action execution on the packet based on the matching forwarding table. When the switch
is an egress switch, the egress switch selects the data packet according to the probability
of 1 : θ+1 through the random function modify_field_rng_uniform() in P4 system, and
stores the sampling result in pkt_smaple_val (lines 13-18 of Algorithm 1), then performs
matching and action execution on the data packet based on the sampling table. Finally,

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 18/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

the egress switch deletes InPort_Header and AttributeID_Header from the packet before
forwarding it.

Controller workflow
AISCF architecture implements the functions of dynamic sampling of data flows, signature
verification based on attribute identification for sampled packets, and source tracing of
abnormal data packets at the controller end. The realization of controller function in AISCF
is shown in Algorithm 2.

Algorithm 2. Processing flow of data package by controller.
Input : packet A, sampled packets number k, sampling factor θ
Output : new k and θ, or malicious user identity ID
1.Function Security verification, adaptive sanpling and exception tracking
of packets by controller :
2. If A is from switch port :
3. m=H

(
A.AttributeID_Header.Att_Features

∥∥A.IP_Payload)
4. signature=A.AttributeID_Header.Att_Signature
5. T =A.AttributeID_Header.Att_Tree
6. If verify(m,signature,T) 6= 1 :
7. drop(A) and reset_flow_path(A.AttributeID_Header.Att_Features)
8. k= 0, θ = θ0
9. Else :
10. k= k+1
11. If k= k :
12. k= 0,θ = f (θ)
13. return (k,θ)
14. If A is from controller port :
15. signature=A.AttributeID_Header.Att_Signature
16. ID= trace(signature)
17. return(ID)
18.END Function

In combination with Algorithm 2, the functions implemented by the controller in AISCF
architecture are introduced as follows:

Validate packets based on attribute identification. When the controller receives the
data packet sampled by the egress switch, it generates the signed message m using the
same hash function H as the attribute identification adding module. The verify() function
verifies the signature of the data packet according to the signature verification process
in Section 4.3. When the return value is not 1, it indicates that the packet has anomalies
such as matching item forgery or data tampering, which implies that there are malicious
nodes in the forwarding path that attack the packet. The controller drops A, uses the
reset_flow_path() function to reset the forwarding path for the data flow with Att_Features
as its attribute feature, and checks for malicious nodes in the old path to ensure the security
of the data flow forwarding process (lines 2 to 7 of Algorithm 2).

Dynamically sampling data flows. Let K be the number of samples, and the controller
adjusts θ based on the verification result of A. If the verification fails, K and θ are reset to
their initial values of 0 and θ0, and if the verification succeeds, the number of verifications
is updated. When K reaches the preset maximum number of samples K, it means that the
data flow is securely transmitted. Use the monotonic increasing function f () to update θ ,

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 19/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

and decrease the sampling rate of the data flow by increasing θ (lines 8 to 13 of Algorithm
2). AISCF samples the data flow by updating the sampling factor, which can effectively
reduce the verification overhead and improve the transmission performance of the data
stream while verifying its security.

Traceability of abnormal data packets. When the anomaly detection system or other
security defense mechanisms find abnormal packets in the network, the controller in
AISCF will effectively locate the sender of the abnormal packets. The controller extracts
the Att_Signature field in the attribute identification of the abnormal data packet, and
function trace() obtains ID of the originator of the abnormal data packet according to the
tracking process in the ‘Attribute based signature scheme’ section, effectively realizing the
traceability function of the abnormal data packet. The controller ensures the security of
incoming packets in the network by restricting or updating the access control permissions
of users with the identified ID (lines 14 to 17 of Algorithm 2).

ANALYSIS AND DISCUSSION
This section will analyze and discuss AISCF from the perspectives of security proof,
implemented functions, and scheme overhead.

Security proof
The security of the cryptographic algorithm is based on difficult mathematical
problems. The security of AISCF is based on the complexity assumption of q-SDH
(q-Strong Diffie-Hellman Problem) (Boneh & Boyen, 2004), For a given q +2 tuple(
P1,P2,[a]P2,[a2]P2,...,[aq]P2

)
that is known, it is difficult to solve

(
x,[a

a+x]P1
)
where

a,x ∈ Z∗N ,P1 ∈G1,P2 ∈G2. Next, we will prove the unforgeability of attribute signature
scheme in AISCF.

We use the method of disproof to demonstrate that if attacker can forge the
attribute signature in AISCF with a non negligible advantage ε, then challenger can
be constructed to solve q-SDH with a non negligible advantage. Build a q-SDH instance,(
P1,P2,[a]P2,[a2]P2,...,[aq]P2

)
, in which a =msk, for challenger based on the attribute

signature scheme in Section 4.3. Define a binary group L2, and the format of each element
in L2 is (IDi,βi). Assume that the number of times attacker can obtain H1(ID ‖ hid,N)
by asking is th. When attacker asks once for the hash of IDi, challenger randomly selects
βj from L2 and returns it to attacker, βj ∈ Z∗N ,j ∈ [1,th]. Challenger randomly selects βi
by q− 1 times, i ∈ [1,q− 1], and put the IDi corresponding to βi into L2. Challenger
generates polynomial f (a) =

∏q−1
i=1 (a+ βi) =

∑q−1
i=0 cia

i, where c0,c1,...,cq−1 ∈ Z∗N .
Let P ′2 = [f (r)]P2,P

′

1 = ϕ(P
′

2),P
′

1 and P ′2 are respectively the generators of G1andG2,
mpk= [a]P ′2 =

∑q−1
i=0 cia

i, and make mpk public. The public parameters of challenger,
PP=

(
N ,P ′1,P

′

2,e,ϕ,G1,G2,hid,g ,H1,H2
)
.

Key inquiry process. Define a triplet group L3 of challenger, and the format of each
element in L3 is (IDi,ski

′
,ski). Assume that attacker can ask ski, the key of IDi, by q times,

where IDi meets ϒ
(
AttIDi

)
= 1. If IDi is not in L2, the query fails. If IDi is in L2, challenger

constructs a polynomial fi(a)=
f (a)
a+βi
=
∑q−2

i=0 dia
i, where d0,d1,...,dq−2 ∈ Z∗N .sk

i′can be

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 20/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

obtained by Eq. (2):

ski
′
= [

msk
hIDi+msk

]P ′1= [
a · f (a)

hIDi+msk
]P1

= [a · fi(a)]P1

= [a ·
q−2∑
i=0

diai]P1

=

q−2∑
i=0

[diai+1]P1

=

q−2∑
i=0

diϕ([ai+1]P2)

(2)

For leaf node x
′′

in the attribute policy tree, j = att(x
′′

), then get ski1= ski1,j = pj(0) · ski
′,

ski2= [t ·([βi]P
′

2+mpk)−1]−1. Challenger returns ski=
(
ski1 :

{
ski1,j

}
,ski2

)
which is the key

of IDito attacker, and saves
(
IDi,ski

′
,ski

)
in L3.

Signature inquiry process. Assume that attacker can ask for signature by ts times, and
attacker provide (IDi,mi) at each inquiry. If IDi is not in L3, challenger returns randomly
generated ski to attacker. If IDi is in L3, challenger returns sign= (h,sj,k) , the signature
generated by ski for mi, to attacker.

Challenge process. Challenger executes signature verification algorithm on(
m∗,ID∗,sign∗= (h∗,s∗j ,k

∗),T
)
input by attacker. If IDi is not in L2 and L3, the

challenge fails. Otherwise, we can get sk∗′ = [a
hID∗+a

]P ′1 = [
a·f (a)
hID∗+a

]P1, and because

a · f (a) =
∑q−1

i=0 cia
i+1, through the transformation by long division, we can get

a · f (a)= γ (a)(a+ hID∗)+ γ−1, where γ (a)=
∑q−2

i=0 γ
i
· ai+1, γ−1 ∈ Z∗N . Then Eq. (3)

can be obtained:[
1

hID∗+a

]
P1=

1
γ−1

(sk∗′−γ (a)P1)

=
1
γ−1

(sk∗′−
q−2∑
i=0

[γ i
·ai+1]P1)

=
1
γ−1

(sk∗′−
q−2∑
i=0

γ i
·ϕ(ai+1P2))

(3)

Challenger can get hID∗ By looking up L2, and (hID∗, 1
γ−1

(sk∗′−
∑q−2

i=0 γ
i
·ϕ(ai+1P2))) can

be used as the solution of challenger to q-SDH.
To sum up, the condition for challenger to challenge successfully is that the three

processes of key inquiry, signature inquiry and challenge need to be successful, the

probability of success of the three processes are
(
q−2
th

)q−2
,
(
ts
th

)ts
and 1

th
, and the probability

of successful challenge is the product of the three. Then it is concluded that if attacker can
forge the attribute signature in AISCF with a non negligible advantage ε, challenger can
solve q-SDH with a non negligible advantage ε′= (q−2)q−2·t tss

(th)ts+q−1
·ε. It proves that the attribute

signature scheme in AISCF can not be forged, that is, AISCF has security.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 21/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Implemented functions
This section analyzes the safety functions of AISCF based on the safety problems described
in ‘Attack Model’ section.

Defend against unauthorized access. AISCF only allows users that meet attribute access
control policy ϒ to access the network. Invalid users cannot obtain the key from KGC
due to their inconsistent attributes, and thus cannot generate attribute identifications.
AISCF requires only the ingress switch to check the data packets and discard those that
do not contain attribute identifications, effectively preventing the data streams sent by
illegal visitors. The security proof in the ‘Security proof’ section shows that the attribute
identification cannot be forged. When the illegal visitor wants to forge the attribute
identification, because the illegal visitor does not have the key required for signature, he
can only randomly generate the 256bit signature field, and the probability of the generated
signature passing the verification is (2256)−1, which would cause great difficulties for illegal
visitors. Therefore, we believe that illegal visitors without keys will not randomly generate
attribute identifications.

Prevent matches forgery and tampering with packet content. The signature field in
the attribute identification is the signature of the hash value of the matching item field
and the load field of the packet. The signature ensures the integrity of the information. If
someone forges the matching item or tampers with the content of the data package, it will
damage the integrity of the information. As a result, it cannot pass the security verification
process in the controller based on the attribute signature field.

Source authentication. AISCF ensures that packets are sent from trusted sources that
conform to attribute access policies by adding attribute identifiers to packets. AISCF has
anonymity for the data source, that is, the attribute identification of the data package only
contains attribute characteristics, signatures generated based on attribute characteristics,
and attribute policy trees. In order to prevent attackers from using the anonymity of
attribute signatures to perform illegal operations, AISCF provides the traceability function
of data sources, which can trace signer ID through k in signature sign= (h,si,k).

Fine-grained access control. AISCF implements fine-grained access control on data
flow based on attribute characteristics. The fine-grained access control of AISCF on data
flow is determined by the number of attribute characteristics in attribute identification
and the structure of attribute policy tree in Att_Tree. Suppose there are Nt attributes of
different categories, and nt represents the number of attribute features in the t- th attribute,
where t ∈ [1,Nt]. In theory, AISCF can implement up to

∏Nt
t=0nt different access controls

on data flows. AISCF can achieve access control of IoT fog architecture under various
requirements by flexibly setting the access control structure through attribute policy trees.
This effectively solves illegal access behavior caused by low access control granularity.

Fine-grained forwarding of data flows. AISCF uses Att_Features field in attribute
identifier as a matching term for data stream forwarding, and SDN is used to achieve
attribute based forwarding of the data stream, effectively improving the fine-grained
control of data forwarding in the IoT fog architecture.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 22/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

Table 3 Comparison of overheads among different schemes.

Extra header
overhead

Verification
overhead

SDNsec (Sasaki et al., 2016) (22+8l)B (l +1)M
P4Label (Zuo et al., 2020) 268B 3E
Attribute-Guard (Zhu et al., 2020) 40B (|Sϒ |+6)E
AISCF 58B E +exp

Scheme overhead
This section analyzes the overhead of AISCF from two aspects: header overhead and
computational complexity.

Additional header overhead. AISCF realizes its function by adding AttributeID_Header
header to the data packet. The length of AttributeID_Header added to the data packet at
the source host is 464 bit (58B).

Computational complexity. exp is defined as the exponential operation on GT ; sca1
and sca2 are the scalar multiplication operations on G1 and G2, respectively; E represents
a bilinear mapping operation; and |Sϒ | is the number of attribute features in attribute
policy ϒ . The time cost of the scheme in the key generation phase, signature phase, and
signature verification phase is |Sϒ+1|sca1+ sca2,|Sϒ |sca1+exp, and E+exp, respectively.
The computational complexity of the tracing process is O(n), where n is the number of
users stored in AISCF. AISCF exhibits a linear correlation between the time complexity and
the number of attributes during key generation and signature. The key generation stage
only needs to occur once for the same user, while the attribute signature stage takes place
at the source device side, not affecting the forwarding delay of packets in the network.

Table 3 compares AISCF with related schemes in terms of extra header overhead and the
verification overhead of data packets during the forwarding process. In the table, l denotes
the number of switches in the forwarding path, and M denotes the computation process of
a message authentication code. It can be seen from Table 3 that the extra header overhead
and the verification overhead of data packets for SDNsec (Sasaki et al., 2016) grow linearly
with l, which will incur large overhead when the forwarding path is long; P4Label (Zuo
et al., 2020) introduces large extra header overhead and requires three pairing bilinear
operations at the egress switch; Attribute-Guard’s (Zhu et al., 2020) verification overhead
of data packets increases linearly with the number of attribute features, when the value of
|Sϒ | is large, it will cause huge cost to the controller. Compared to related schemes, AISCF
incurs less extra header overhead and has smaller and more stable time overhead for data
packet verification.

Additionally, AISCF employs dynamic sampling to sample the data flow, which reduces
the verification overhead incurred by sampling and verifying the data flow by dynamically
changing the sampling factor. Next, we compare the verification overhead incurred by
using dynamic sampling and using a fixed sampling factor. Assume that the data stream
contains N packets, and the initial fixed sampling factor is θ0. In dynamic sampling, when K
consecutive packets are verified successfully, use f () to update the sampling factor, which

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 23/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

is represented by θi. For ease of computation, let N have the value as shown in Eq. (4),
which means that the sampling factor is changed n times in the dynamic sampling process
of N packets.

N=
i=n−1∑
i=0

K(1+θi). (4)

Using the number of packets that are sampled and verified from the data flow as a
measure of the verification overhead, when a fixed θ0 is used to sample and verify the
data flow, the number of packets that are sampled and verified from the data stream is
n0 = N/(1+θ0); when dynamic sampling is used, the number of packets that are sampled
and verified from the data stream is n1 = nK, then the ratio of n1 to n0 can be calculated as
shown in Eq. (5).
n1
n0
=

nK(1+θ0)
N

=
nK(1+θ0)∑i=n−1
i=0 K(1+θi)

=
n+nθ0

n+
∑i=n−1

i=0 θi
.

(5)

Where θi= f (θi−1), and f () is a monotonic increasing function, so for any θ0<θi, and it
can be concluded that for the same data flow, the dynamic sampling method produces less
verification overhead than the fixed sampling method.

EXPERIMENT AND EVALUATION
In this section, we establish an experimental environment and evaluate the validity and
performance of AISCF through a series of experiments.

Experimental environment
The AISCF architecture is implemented by employing P4 programmable software switches.
These switches utilize the P4 language and generate a JSON format description file via the P4
compiler (P4c). Subsequently, this description file is imported into P4 behavioral-model
version 2(BMv2) for execution. Additionally, we enhance security by incorporating an
attribute signature verification function in Python within the controller. The controller
communicates with the data plane through the P4 Runtime interface.

We conducted the experiment on an Intel i7–11370H 4.266-GHz host with 32-GB
memory. We used mininet to simulate the IoT fog architecture environment, and Fig. 8
shows the network topology, including two hosts Host1 and Host2 (simulating IoT devices
and IoT fog layer servers respectively), four P4 software switches Switch1 to Switch4, and
one controller. We generated the data message required for the experiment using scapy
and sent it from the host. We also captured and analyzed the operation flow information
using Wireshark.

Validity analysis
Experiment 1: We conducted Experiment 1 to verify whether AISCF can realize access
control, security verification, and fine-grained control forwarding of data flow, targeting

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 24/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

eth0

Host1 Host2

Controller

Switch1

Switch2

Switch3

Switch4

eth1

eth0 eth1

eth1

eth1

eth0

eth0

eth2

eth2

Figure 8 Experimental topology.
Full-size DOI: 10.7717/peerjcs.1747/fig-8

the attack model summarized and objectives proposed in the ‘Problem description’
section. We constructed five types of dataflow, Flow A∼Flow E, at Host1 in the network
topology shown in Fig. 8. Flow A represents the data flow sent by the user whose attribute
feature set is R, Flow B represents the data flow sent by the user whose attribute feature
set is P, Flow C represents the data flow sent by the user whose attribute feature set is
Q, Flow D represents the data flow obtained after tampering with the data content of
Flow B, Flow E represents the data flow obtained by forging the matches of Flow C,
assume that Flow E replaces Att_Features of Flow C with Att_Features of Flow B. AISCF
establishes access control over data flows flowing into the network, and stipulates that
the data flow whose attribute feature set is P and Q can be transmitted in the network.
And packets with attribute characteristics P and Q are specified to be transmitted in
different paths, assume that when packets are sent from Host1 to Host2, the forwarding
path with attribute P and Q are Host1→ Switch1→ Switch2→ Switch4→Host2 and
Host1→ Switch1→ Switch3→ Switch4→Host2 respectively. To verify the results, the
sampling parameter was set as θ = 0 in the effectiveness verification stage; that is, all the
packets were sampled, and signature verification based on attribute identification was
performed for all of them. Host1 successively sent the five types of packets to Host2 at the
rate of 50 packets per second; this step was repeated 10 times. The average was obtained,

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 25/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-8
http://dx.doi.org/10.7717/peerj-cs.1747

� �� �� �� �� ��

���

���

���

���

���

�

��

��

��

��

��
 F l o w A
 F l o w B
 F l o w C
 F l o w D
 F l o w E

t i m e / s
pac

ket
 nu

mb
er

e t h 0

e t h 1 e t h 1e t h 1e t h 2

Figure 9 Switch1 port traffic.
Full-size DOI: 10.7717/peerjcs.1747/fig-9

� �� �� �� �� ��

���

���

���

���

���

�

��

��

��

��

��

t i m e / s

pac
ket

 nu
mb

er

e t h 0 e t h 0 e t h 0e t h 1

e t h 2 e t h 2

 F l o w A
 F l o w B
 F l o w C
 F l o w D
 F l o w E

Figure 10 Switch4 port traffic.
Full-size DOI: 10.7717/peerjcs.1747/fig-10

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 26/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-9
https://doi.org/10.7717/peerjcs.1747/fig-10
http://dx.doi.org/10.7717/peerj-cs.1747

and the data traffic was measured at the switch port. Figs. 9 and 10 show the traffic at each
port of Switch1 and Switch4, respectively, during the experiment.

Figures 9 and 10 show the results for every 10s, representing the forwarding of one type
of dataflow on Switch1 and Switch4. The x-axis and y-axis represent the time and number
of packets, respectively. The positive and negative directions of the y-axis respectively
represent the number of packets received and sent by the port. Flow A received from port
eth0 of Switch1 but did not send from any port of Switch1, because Flow A does not
meet the access control specified by AISCF and cannot generate attribute identification,
the ingress switch in AISCF will discard Flow A, indicating that AISCF can achieve
effective access control over data flows. Unlike Flow A, Switch4 sent Flow B and Flow
C. This indicates that AISCF can implement fine-grained access control on Flows A to
C according to access control rules. Port eth1 of Switch1 sent Flow B, and port eth0 of
Switch4 received it. In contrast, port eth2 of Switch1 sent Flow C, and port eth1 of Switch4
received it. These actions comply with the forwarding rules that AISCF formulated for data
flows, demonstrating that AISCF can control and forward data flows based on attribute
identification. Switch4 received Flows D and E but did not forward them. This indicates
that AISCF can detect and block abnormal packets with content tampering and matches
forgery through signature verification based on attribute identification.

Experiment 2: In Experiment 2, to verify the impact of θ on AISCF packet verification,
we set θ as 0, 1, 3, 4, 7, and 9. These values correspond to a sampling probability of 100%,
50%, 25%, 20%, 12.5%, and 10%, respectively. Test the performance of AISCF using
different θ in detecting abnormal packets. It is considered as a successful detection when
AISCF blocks the data flow which has the same Att_Features item as the abnormal packet’s
within the specified time, and the false negative of detection is defined as the percentage
of undetected times in the total detection times. Host1 continuously sends the security
data flow Flow B in Experiment 1 to Host2, and mixes 10% abnormal data flows into
Flow B. The abnormal data flows include Flow A, Flow D and Flow E, which correspond
to three types of abnormal data flows: the illegally accessed data flow, the data flow with
data tampering, and the data flow with forged matching items. The false negative is used
as the evaluation parameter for AISCF detection performance to analyze the impact of θ
on AISCF. The results are shown in Fig. 11.

Figure 11 compares the false negatives of abnormal dataflow detected by the AISCF
architecture for different sampling factors θ . It can be seen from the figure that AISCF can
achieve accurate detection of the illegally accessed data flow, and the false negative rate is
0% which does not change with θ . When θ was fixed, the false negatives of data tampering
and matches forging cases were similar because both malicious flows would change the
attribute signature of the packet and could not pass the signature verification based on
attribute identification. When the sampling factor is 5, AISCF detects data tampering
and matches forging anomalies with false negative rates of 6.5% and 6.6% respectively;
when the sampling factor is 3, AISCF obtains false negative rates of 4.5 and 4% for data
tampering and matches forging respectively; and when the sampling factor is 0, AISCF can
get a detection false negative rate of 0%. It can be concluded that the false negative rate
is proportional to the sampling factor, that is, the smaller the sampling factor, the lower

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 27/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

�

�

�

�

�

��

��

Fal
se

Ne
gat

ive
/%

I l l e g a l a c c e s

 θ= 9
 θ= 7
 θ= 4
 θ= 3
 θ= 1
 θ= 0

D a t a t e m p e r i n g M a t c h e s f o r g i n g T y p e

Figure 11 False negatives in detection.
Full-size DOI: 10.7717/peerjcs.1747/fig-11

the false negative rate of malicious flow detection. Depending on the current network
conditions, it is possible to lower θ to enhance the detection effect of AISCF.

Based on the findings from Experiment 1 and Experiment 2, it is evident that AISCF is
capable of effectively detecting malicious activities in the network, such as unauthorized
access, data tampering, and spoofing of match items, which ensures the secure transmission
of data from end-to-end within an IoT fog architecture. Furthermore, AISCF provides
flexible and fine-grained control over data flow, significantly enhancing the efficiency of
data management within the IoT.

Performance evaluation
This section evaluates the network performance of AISCF in terms of packet forwarding
delay, network throughput and controller CPU usage.

Experiment 3: We conducted Experiment 3 to analyze the time consumption of the
ABS scheme in AISCF. We established multiple attribute policy tree structures with the
number of attribute features as 5, 10, 15, 20, 25, and 30. The AISCF’s time consumption of
the signature phase and signature verification phase under various quantities of attribute
features was calculated repeatedly for averaging. The results are shown in Fig. 12.

Figure 12 shows that the time consumed by the signature phase is proportional to the
number of attributes in the attribute policy tree. The time consumption of the signature
phase increases by an average of 0.5 ms for every five attribute features added. A normal
local area network (LAN) requires a signature policy composed of 20–30 attribute features.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 28/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-11
http://dx.doi.org/10.7717/peerj-cs.1747

� � �� �� �� �� ��

�

�

�

�

�

tim
e/m

s

A t t r i b u t e n u m b e r

�S i g n a t u r e
�V e r i f i c a t i o n

Figure 12 Time consumption of the signature scheme.
Full-size DOI: 10.7717/peerjcs.1747/fig-12

Therefore, when creating packets based on attribute identification, the increase in the time
consumption caused by the signature phase at the IoT device side can be controlled within
4 ms, which is an acceptable transmission delay in the AISCF architecture. The average
time consumption of the signature verification process is 1.96 ms and is independent of
the scale of the signature policy. Therefore, the AISCF architecture can ensure a low and
stable time delay of dataflow in the transmission process.

Experiment 4: We conducted Experiment 4 to test the dataflow forwarding delay in the
AISCF architecture. A total of 1,000 conventional packets and 1,000 packets containing
legal attribute identification were created at Host1 and sent to Host2. The conventional
packets were transmitted in the basic network without the AISCF architecture, whereas the
packets containing attribute identification were transmitted in the network with the AISCF
architecture. The sampling factor in the AISCF architecture was set as 7. We captured
the packets at Switch1-eth0 and Switch1-eth2, respectively, and calculated the forwarding
delay. The experimental results were used to generate the cumulative distribution function
(CDF) curves, as shown in Figures 13∼15.

Figures 13 and 14 show the forwarding delays of 1,000 packets in the conventional
network and AISCF, respectively. The average forwarding delay for 1,000 packets in the
basic network was 2.56 ms, whereas the average forwarding delay in the AISCF architecture
was 2.95 ms. Using AISCF architecture will increase the forwarding delay by 15.2% during
packet forwarding compared to conventional network and the increased forwarding delay
originated from two aspects. First, the packets transmitted in the AISCF architecture

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 29/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-12
http://dx.doi.org/10.7717/peerj-cs.1747

� ��� ��� ��� 	�� ����
���

���

���

���

���

���

���

���

���

���

Fo
rw

ard
ing

 de
lay

/m
s

N u m b e r s o f p a c k e t s
Figure 13 Packet forwarding delay in conventional network.

Full-size DOI: 10.7717/peerjcs.1747/fig-13

include an attribute identification field compared with the conventional packets. Second,
the AISCF architecture samples the packets and copies the sampled packets to the controller
for signature verification process.

Figure 15 plots the cumulative distribution function (CDF) curve of the experimental
results, and from the figure we can see that, when packets were transmitted in the basic
network, 96% of the packets could be forwarded within 3 ms. When we use the AISCF
architecture, 87% of the packets can be forwarded within 3 ms, and 99% of the packets
can be forwarded within 5.5 ms. AISCF causes a small increase in the forwarding latency
of packets.

Table 4 compares the forwarding delay of data packets between AISCF and related
schemes. LPV (Wang, Li & Zhang, 2019) has a low verification overhead, but it requires
sampling at the first and last switches where the data flow enters and exits, resulting in an
increase in forwarding delay. AISCF architecture only samples and verifies data packets
at the egress switch, effectively reducing the burden on the controller and the forwarding
delay of data packets. P4Label (Zuo et al., 2020) performs signature verification in P4
switching devices, thus generating a high verification overhead. AISCF only performs
sampling at the switching devices, and delegates the signature verification process to the
controller. Attribute-Guard (Zhu et al., 2020) has a large time overhead in the verification
process, because it involves multiple bilinear pairings and polynomial calculations in the
signature verification process, and the number of calculations is linearly related to the

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 30/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-13
http://dx.doi.org/10.7717/peerj-cs.1747

� ��� ��� ��� 	�� ����
�

�

�

�

�

�

�

�

	

Fo
rw

ard
ing

 de
lay

/m
s

N u m b e r s o f p a c k e t s
Figure 14 Packet forwarding delay in AISCF.

Full-size DOI: 10.7717/peerjcs.1747/fig-14

number of attributes, which increases the forwarding delay of data packets. Compared
with Attribute-Guard, AISCF only performs one bilinear pairing and one exponentiation
in the signature verification process, which significantly improves the signature verification
overhead. Scheme (Xie et al., 2019) applies blockchain to 5G Vehicle Ad-hoc Network
(5G-VANET) and verifies data through a consensus mechanism between multiple nodes.
However, data transmission between two points requires confirmation from other nodes.
Therefore, when the data volume is large, it can cause an increase in node burden and result
in high forwarding latency. Compared to Scheme (Xie et al., 2019), AISCF’s forwarding
latency is only related to the forwarding path and is not affected by other nodes in the
network.

Experiment 5: The egress switch mirrors and transmits the sampled packets to the
controller for signature verification, which affects the throughput of the network. To test
the relationship between sampling factor θ and throughput in AISCF, Experiment 5 is
constructed. In Experiment 5, θ was varied from 0, 1, 3, 4, 7, to 9, and the packets sent
in the network were security packets with a load length of 1,000B. Test the throughput of
AISCF for many times, take the average value and compare it with the network throughput
without AISCF. The result is shown in Fig. 16.

In Fig. 16, the bars show the throughput of the network for different θ , and the line shows
the ratio of the throughput of the network with AISCF architecture to the throughput of

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 31/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-14
http://dx.doi.org/10.7717/peerj-cs.1747

� � � � � � � 	

���

���

���

���

��

���

CD
F

F o r w a r d i n g d e l a y / m s

�N o r m a l P a c k e t f o r w a r d i n g
�P a c k e t f o r w a r d i n g u s i n g A I S C F

Figure 15 Forwarding delay CDF curves.
Full-size DOI: 10.7717/peerjcs.1747/fig-15

Table 4 Comparison of packet forwarding latency among different schemes.

Scheme Verification scheme Verification overhead Forwarding delay Functions

LPV (Wang, Li & Zhang,
2019)

Hash-based message
authentication code
(HMAC) encryption

0.15 ms 33.17 ms (3–5 switches) Detecting and locating
forged and tampered
packets

P4Label (Zuo et al., 2020) Identity-based signature 16.2 ms 1.12 ms (3 switches) Detecting forged and
tampered packets

Attribute-Guard (Zhu et
al., 2020)

Attribute-based group
signature

20.2 ms 30.95 ms (3 switches) Access control and valid-
ity authentication of data
flows

Scheme (Xie et al., 2019) Blockchain-based verifi-
cation

Not analyzed 0.5 s-0.9 s (distance 200
m–500 m)

Node identity authentica-
tion and data access con-
trol

AISCF Attribute-based signature 1.96 ms 2.95 ms (3 switches) Detecting and block-
ing forged and tampered
packets; fine-grained
packet control; tracing
abnormal packets

the basic network. With the decrease in θ , the throughput decreased, when θ was 0, the
throughput was the lowest, which decreased by 42.5% compared with the throughput of
the basic network, and when θ was greater than 7, the network throughput decreased by
less than 10% compared with the basic network, which had little impact on the network

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 32/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-15
http://dx.doi.org/10.7717/peerj-cs.1747

performance. Combined with the results of Experiment 2, the sampling factor will affect
the detection effect and system performance, such as the network throughput, of AISCF
at the same time. AISCF can dynamically select θ to meet the requirements between the
detection effect of abnormal data flow and the system performance.

Experiment 6: To evaluate the verification overhead of the dynamic sampling method
in AISCF, Experiment 6 is conducted, where Host1 continuously sent secure data flows to
Host2. We measured the CPU utilization of the controller in AISCF using both dynamic
sampling and fixed sampling factormethods, and compared themwith a conventional SDN
network. The results are shown in Fig. 17.We defined the function f (θ)= 2θ to dynamically
select the sampling factor, the maximum sampling number threshold K = 1000, and the
fixed sampling factor θ0= 1.

Figure 17 shows the statistics of the controller’s CPU utilization at different time points
during data flow transmission. The figure suggests that the average CPU utilization of the
controller is 9.21% when the data flow is transmitted in the SDN network. When AISCF
uses a fixed sampling rate, the CPU utilization of the controller is stable, with an average
value of 18.24%, which is significantly higher than that of the SDN network. When AISCF
uses a dynamic sampling rate, the CPU utilization of the controller exhibits a gradual
decline, with average values of 16.7%, 14.1%, and 10.3% when the number of packets sent
ranges from 2,000 to 5,000, 5,000 to 10,000, and 10,000 to 18,000, respectively. When the
number of packets sent ranges from 10,000 to 18,000, AISCF using a dynamic sampling rate
reduces the controller’s CPU utilization by 44.3% compared to using a fixed sampling rate,
indicating that AISCF using a dynamic sampling rate can effectively reduce the verification
overhead of the controller for packets by adjusting the sampling factor. AISCF using a
dynamic sampling rate increases the controller’s CPU utilization by 11.35% compared
to SDN network, and the additional CPU resources are used for verifying signatures of
sampled packets, tracking malicious users, and other operations. The impact of AISCF on
the controller’s performance is minimal.

The results of Experiment 3 to Experiment 6 demonstrate that AISCF achieves its security
functions with low network performance overhead, which is a feasible and lightweight data
flow forwarding verification scheme.

CONCLUSION
To address the security issues of data lacking effective access control mechanisms and
secure verification in the IoT fog architecture, we propose the AISCF, a method of data
security control and forwarding based on attribute identification. AISCF applies attribute
signatures and SDN to the data packet forwarding verification process in the IoT, achieving
fine-grained access control of data, detection and defense of attacks such as data tampering
and match item spoofing, and tracing of abnormal data, ensuring the secure transmission
of data from end-to-end within the IoT fog architecture. AISCF uses attribute identifiers
as match items to match and forward data streams, effectively improving the granularity
of data stream management in the IoT. At the same time, AISCF uses a dynamic sampling
method to sample and verify data streams, effectively reducing the verification overhead
of AISCF. Finally, AISCF is experimentally verified in a simulated IoT fog architecture

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 33/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747

4 4 8 . 5

5 9 5 . 9 2
6 6 5 . 3 4 6 9 8 . 8 8 7 1 9 . 9 4 7 3 4 . 7 6

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

θ= 7 θ= 9

 T h r o u g h p u t
 P r o p o r t i o n

Th
rou

ghp
ut(

MB
/s)

7 6 . 4 %

5 7 . 5 %

θ= 4θ= 3θ= 1θ= 0 0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

 Pr
opo

rtio
n(%

)

9 4 . 2 %9 2 . 3 %8 9 . 6 %8 5 . 3 %

Figure 16 Throughput analysis.
Full-size DOI: 10.7717/peerjcs.1747/fig-16

��
��

��

��

���

���

���

���

���
�A I S C F w i t h s a m p l i n g f a c t o r
 A I S C F w i t h d y n a m i c s a m p l i n g
 N o r m a l S D N n e t w o r k

CP
U u

tili
zat

ion

n u m b e r o f p a c k e t s s e n t

0�

Figure 17 CPU utilization of the controller.
Full-size DOI: 10.7717/peerjcs.1747/fig-17

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 34/38

https://peerj.com
https://doi.org/10.7717/peerjcs.1747/fig-16
https://doi.org/10.7717/peerjcs.1747/fig-17
http://dx.doi.org/10.7717/peerj-cs.1747

environment. The experimental results show that AISCF can effectively ensure the secure
transmission of data from end-to-end, and that AISCF has low overhead in terms of data
packet forwarding delay, throughput and CPU utilization. AISCF is a lightweight data
forwarding verification scheme that has practicality in the IoT fog architecture.

The next step in our research will focus on addressing the issue of detecting and locating
malicious nodes in the IoT fog architecture. We aim to establish a transmission path
generation scheme based on security scores between IoT devices and fog nodes. This will
enable the rapid replacement of secure alternative paths when abnormal data forwarding
is detected.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (No.
61572517). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 61572517.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jingxu Xiao conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Chaowen Chang analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.
• Ping Wu performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.
• Yingying Ma performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The method for generating the verification data in the experimental section of the article
is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1747#supplemental-information.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 35/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1747#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1747#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1747

REFERENCES
Al Hayajneh A, BhuiyanMZA, McAndrew I. 2020. Improving internet of things

(IoT) security with software-defined networking (SDN). Computers 9(1):9010008
DOI 10.3390/computers9010008.

Aleisa MA, Abuhussein A, Alsubaei FS, Sheldon FT. 2022. Novel security models
for IoT–Fog–cloud architectures in a real-world environment. Applied Sciences
12(10):4837 DOI 10.3390/app12104837.

Bethencourt J, Sahai A,Waters B. 2007. Ciphertext-policy attribute-based encryption.
In: 2007 IEEE symposium on security and privacy (SP’07). Piscataway: IEEE,.

Boneh D, Boyen X. 2004. Short signatures without random oracles. In: International
Conference on the Theory and Applications of Cryptographic Techniques. Berlin:
Springer.

Bosshart P, Daly D, Gibb G, IzzardM,McKeown N, Rexford J, Schlesinger C, Talayco
D, Vahdat A, Varghese G,Walker D. 2014. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Review 44(3):87–95.

Chang Z, Liu L, Guo X, Sheng Q. 2020. Dynamic resource allocation and computation
offloading for IoT fog computing system. IEEE Transactions on Industrial Informatics
17(5):3348–3357.

Chen F, Luo D, Xiang T, Chen P, Fan J, Truong H-L. 2021. IoT cloud security review:
a case study approach using emerging consumer-oriented applications. ACM
Computing Surveys 54(4):1–36 DOI 10.1145/3447625.

ChiangM, Zhang T. 2017. Fog and IoT: an overview of research opportunities. IEEE
Internet of Things Journal 3(6):854–864 DOI 10.1109/JIOT.2016.2584538.

Costa B, Bachiega Jr J, De Carvalho LR, Araujo AP. 2022. Orchestration in fog comput-
ing: a comprehensive survey. ACM Computing Surveys (CSUR) 55(2):1–34.

DhawanM, Poddar R, Mahajan K, Mann V. 2015. Sphinx: detecting security attacks in
software-defined networks. In: Ndss. pp. 8–11.

ELMansy H, Metwally K, Badran K. 2022.MPTCP-based security schema in fog com-
puting. In: 2022 13th International Conference on Electrical Engineering. Piscataway:
IEEE, 134–138.

Gao J, AgyekumKO-BO, Sifah EB, Acheampong KN, Xia Q, Du X, Guizani M, Xia
H. 2019. A blockchain-SDN-enabled internet of vehicles environment for fog
computing and 5G networks. IEEE Internet of Things Journal 7(5):4278–4291.

Guo F, Yu FR, Zhang H, Li X, Ji H, Leung VC. 2021. Enabling massive IoT toward
6G: a comprehensive survey. IEEE Internet of Things Journal 8(15):11891–11915
DOI 10.1109/JIOT.2021.3063686.

Halpern EJ, Pignataro EC. 2015. Service Function Chaining (SFC) Architecture. Internet
Engineering Task Force.

Javed A, Malik KM, Irtaza A, Malik H. 2021. Towards protecting cyber-physical and
IoT systems from single-and multi-order voice spoofing attacks. Applied Acoustics
183:108283 DOI 10.1016/j.apacoust.2021.108283.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 36/38

https://peerj.com
http://dx.doi.org/10.3390/computers9010008
http://dx.doi.org/10.3390/app12104837
http://dx.doi.org/10.1145/3447625
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JIOT.2021.3063686
http://dx.doi.org/10.1016/j.apacoust.2021.108283
http://dx.doi.org/10.7717/peerj-cs.1747

Kamoun-Abid F, Meddeb-Makhlouf A, Zarai F, Guizani M. 2019. DVF-fog: distributed
virtual firewall in fog computing based on risk analysis. International Journal of
Sensor Networks 30(4):242–253 DOI 10.1504/IJSNET.2019.101242.

Kang JJ, Fahd K, Venkatraman S, Trujillo-Rasua R, Haskell-Dowland P. 2019.Hybrid
routing for Man-in-the-Middle (MITM) attack detection in IoT networks. In:
2019, 29th International Telecommunication Networks and Applications Conference
(ITNAC). Piscataway: IEEE.

Kolias C, Kambourakis G, Stavrou JA. 2017. Voas, DDoS in the IoT: Mirai and other
botnets. Computer 50(7):80–84.

Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S. 2014.
Software-defined networking: a comprehensive survey. Proceedings of the IEEE
103(1):14–76.

Li C, Qin Z, Novak E, Li Q. 2017. Securing SDN infrastructure of IoT–fog net-
works from MitM attacks. IEEE Internet of Things Journal 4(5):1156–1164
DOI 10.1109/JIOT.2017.2685596.

Maji HK, PrabhakaranM, RosulekM. 2011. Attribute-based signatures. In: Cryptogra-
phers’ track at the RSA conference. Berlin: Springer, 376–392.

Mohan KVM, Kodati S, Krishna V. 2022. Securing SDN enabled IoT scenario infras-
tructure of fog networks from attacks. In: 2022 Second International Conference on
Artificial Intelligence and Smart Energy. Piscataway: IEEE, 1239–1243.

Muthanna A, Ateya AA, Khakimov A, Gudkova I, Abuarqoub A, Samouylov K,
Koucheryavy A. 2019. Secure and reliable IoT networks using fog computing
with software-defined networking and blockchain. Journal of Sensor and Actuator
Networks 8(1):8010015 DOI 10.3390/jsan8010015.

Nguyen TG, Phan TV, Nguyen BT, So-In C, Baig ZA, Sanguanpong S. 2019. Search: a
collaborative and intelligent nids architecture for sdn-based cloud iot networks. IEEE
Access 7:107678–107694 DOI 10.1109/ACCESS.2019.2932438.

Nurmi J. 2022. A survey of security in cloud, edge, and fog computing. Sensors
22(3):s22030927 DOI 10.3390/s22030927.

Qin X, Tang G, Chang C. 2018. SDN security control and forwarding method based on
cipher identification. Journal on Communications 39(2):31–42.4.

Rafiq A, MuthannaMSA, Muthanna A, Alkanhel R, AbdullahWAM, Abd El-Latif AA.
2022. Intelligent edge computing enabled reliable emergency data transmission
and energy efficient offloading in 6TiSCH-based IIoT networks. Sustainable Energy
Technologies and Assessments 53:102492 DOI 10.1016/j.seta.2022.102492.

Sadiq KA, Thompson AF, Ayeni OA. 2020.Mitigating DDoS attacks in cloud network
using fog and SDN: a conceptual security framework. International Journal of Applied
Information Systems 12:32.

Sasaki T, Pappas C, Lee T, Hoefler T, Perrig A. 2016. SDNsec: Forwarding accountability
for the SDN data plane. In: 2016 25th International Conference on Computer Commu-
nication and Networks (ICCCN). Piscataway: IEEE.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 37/38

https://peerj.com
http://dx.doi.org/10.1504/IJSNET.2019.101242
http://dx.doi.org/10.1109/JIOT.2017.2685596
http://dx.doi.org/10.3390/jsan8010015
http://dx.doi.org/10.1109/ACCESS.2019.2932438
http://dx.doi.org/10.3390/s22030927
http://dx.doi.org/10.1016/j.seta.2022.102492
http://dx.doi.org/10.7717/peerj-cs.1747

Su Q, Zhang R, Xue R, Li P. 2020. Revocable attribute-based signature for blockchain-
based healthcare system. In: IEEE Access. 127884–127896
DOI 10.1109/ACCESS.2020.3007691.

Tang F, Ling G, Shan J. 2022. Traceable attribute-based signature scheme based on
domestic cryptographic SM9 algorithm. Electronics & Information Technology 44:1–8.

Wang S, Li Q, Zhang Y. 2019. LPV: Lightweight packet forwarding verification in SDN.
Journal of Computers 42(1):176–189.

Xiao J, Chang C,Wu P, Ma Y, Lu Z. 2022. A secure data flow forwarding method based
on service ordering management. Electronics 11(24):4107
DOI 10.3390/electronics11244107.

Xie L, Ding Y, Yang H,Wang X. 2019. Blockchain-based secure and trustwor-thy
internet of things in SDN-enabled 5G-VANETs. IEEE Access 7:56656–56666
DOI 10.1109/ACCESS.2019.2913682.

Yao G, Bi J, Xiao P. 2011. Source address validation solution with OpenFlow/NOX
architecture. In: IEEE international conference on network protocols. Piscataway: IEEE
DOI 10.1109/ICNP.2011.6089085.

Zhang P, Zhou GM. 2018. Fortino, security and trust issues in fog computing: a survey.
Future Generation Computer Systems 88:16–27 DOI 10.1016/j.future.2018.05.008.

Zhu X, Chang C, Xi Q, Zuo Z. 2020. Attribute-guard: attribute-based flow access control
framework in software-defined networking. Security and Communication Networks
2020:6302739.

Zuo Z, Chang C, Zhang Y, He R, Qin X, Yung KL. 2020. P4Label: packet forwarding
control mechanism based on P4 for software-defined networking. Journal of Ambient
Intelligence and Humanized Computing 1–14.

Xiao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1747 38/38

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2020.3007691
http://dx.doi.org/10.3390/electronics11244107
http://dx.doi.org/10.1109/ACCESS.2019.2913682
http://dx.doi.org/10.1109/ICNP.2011.6089085
http://dx.doi.org/10.1016/j.future.2018.05.008
http://dx.doi.org/10.7717/peerj-cs.1747

