
Modified graph-based algorithm to analyze
security threats in IoT
Ferhat Arat1 and Sedat Akleylek2,3,4

1 Department of Software Engineering, Samsun University, Samsun, Turkey
2 Department of Computer Engineering, Ondokuz Mayis University Samsun, Samsun, Turkey
3 University of Tartu, Tartu, Estonia
4 Cyber Security and Information Technologies Research and Development Centre, Ondokuz
Mayis University Samsun, Samsun, Turkey

ABSTRACT
In recent years, the growing and widespread usage of Internet of Things (IoT)
systems has led to the emergence of customized structures dependent on these
systems. Industrial IoT (IIoT) is a subset of IoT in terms of applications and usage
areas. IIoT presents many participants in various domains, such as healthcare,
transportation, agriculture, and manufacturing. Besides the daily life benefits, IIoT
technology provides major contributions via the Industrial Control System (ICS) and
intelligent systems. The convergence of IoT and IIoT systems brings some
integration and interoperability problems. In IIoT systems, devices interact with each
other using information technologies (IT) and network space. However, these
common usages and interoperability led to some security risks. To avoid security
risks and vulnerabilities, different systems and protocols have been designed and
published. Various public databases and programs identify and provide some of the
security threats to make it easier for system administrators' missions. However,
effective and long-term security detection mechanisms are needed. In the literature,
there are numerous approaches to detecting security threats in IoT-based systems.
This article presents two major contributions: First, a graph-based threat detection
approach for IoT-based network systems is proposed. Threat path detection is one of
the most critical steps in the security of IoT-based systems. To represent
vulnerabilities, a directed acyclic graph (DAG) structure is constructed using threat
weights. General threats are identified using Common Vulnerabilities and Exposures
(CVE). The proposed threat pathfinding algorithm uses the depth first search (DFS)
idea and discovers threat paths from the root to all leaf nodes. Therefore, all possible
threat paths are detected in the threat graph. Second, threat path-reducing algorithms
are proposed considering the total threat weight, hop length, and hot spot thresholds.
In terms of available threat pathfinding and hot spot detecting procedures, the
proposed reducing algorithms provide better running times. Therefore, all possible
threat paths are founded and reduced by the constructed IoT-based DAG structure.
Finally, simulation results are compared, and remarkable complexity performances
are obtained.

Subjects Algorithms and Analysis of Algorithms, Security and Privacy, Internet of Things
Keywords Industrial IoT, Security, Risk assessment, Threat graph, Graph theory, Threats

INTRODUCTION
The rise of Internet of Things (IoT) technologies has drawn significant attention from
different organizations, industries, and fields. When considering real-time benefits,

How to cite this article Arat F, Akleylek S. 2023. Modified graph-based algorithm to analyze security threats in IoT. PeerJ Comput. Sci. 9:
e1743 DOI 10.7717/peerj-cs.1743

Submitted 28 July 2023
Accepted 15 November 2023
Published 8 December 2023

Corresponding author
Sedat Akleylek, akleylek@gmail.com

Academic editor
Miriam Leeser

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.1743

Copyright
2023 Arat and Akleylek

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1743
mailto:akleylek@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1743
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

application domain contributions are indisputable. These technological developments and
manufacturers will continue to be part of all aspects of life, from smart, connected systems
to small appliances. Especially in industrial domains, IoT has shifted to the industrial IoT
(IIoT) paradigm via control, management, and monitoring systems (Jaidka, Sharma &
Singh, 2020). The IIoT systems ensure self-sufficient ecosystems in manufacturing phases
via smart connected devices and systems such as controllers, sensors, and compact systems
(Al-Turjman & Alturjman, 2018).

Numerous application industries, such as health care, transportation, agriculture, and
security systems, are rapidly evolving via the form of IoT technologies (Da Xu, He & Li,
2014). For instance, security systems benefit from Internet-connected and addressed
cameras, heat, sound, and movement sensors to provide permanent and manageable
solutions (Javaid et al., 2021). In transportation and supply chain systems, significant data
about vehicles and deliveries, such as instant location and expected delivery time, can be
obtained remotely (Wu et al., 2022). In agriculture, there are numerous facilities and
methods to provide effective farms, manufacturing, and storage. With embedded systems,
sensors, and controllers, agricultural processes can be managed effectively (Brewster et al.,
2017). Previously, the Industrial Automation and Control Systems (IACS) were largely
isolated from conventional networks (Boyes et al., 2018). With IoT technologies and
related services, Internet-connected architectures are adopted. The sub-classified system of
IACS, which is termed Industrial Control System (ICS) includes any control and
management systems such as Supervisory Control and Data Acquisition (SCADA) and
programmable logic controllers (PLC). In these remote control structures, each data-
centric sensing and transmitting device is connected via the Internet. An increasing
number of devices and connected nodes make it easier to grow and manage all of the
industrial systems (Jaidka, Sharma & Singh, 2020).

Industrial systems, which have become easier with innovative technologies, are always
under threat due to security vulnerabilities due to the number of connected devices
(Mosteiro-Sanchez et al., 2020). Limited device resources cause deficiencies in terms of
protocols and security systems. Especially combined with the mentioned deficiencies,
remote accessibility via Internet connection can pose a threat to the entire system.
Considering all IoT system vulnerabilities, an attacker can exploit system resources and
access system data. Attacks can occur with various attack types. For instance, a malicious
user can access the network and cause increased network traffic (George & Thampi, 2018).
Moreover, an attacker can monitor the network traffic. These attackers can be invisible
because of device features. An attacker may access industrial control systems and cause
hardware damage; therefore, the entire manufacturing and control system can be affected
(Pretorius & van Niekerk, 2020).

Permanent, strong, and long-term security solutions are required in ICTs which are the
backbone of IIoT. To identify and remove threats, various attack and vulnerability
representations are designed (Boyes et al., 2018; Mouratidis & Diamantopoulou, 2018a).
For instance, in Sun et al. (2021) and Poolsappasit, Dewri & Ray (2012), graph-based
representing models were designed for malware detection and risk management in IIoT
systems. In Prostov, Amfiteatrova & Butakova (2021), Nandhini & Mehtre (2019), directed

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 2/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

acyclic graph (DAG)-based solutions were presented for IoT networks. DAG is a graph
type that does not contain any directed cycles. In general, a directed graph structure refers
to a structure consisting of edges and vertices. DAG structure does not allow for the
formation of a cycle by the same vertex and edge connections. It is impossible to begin at
one point in the graph and traverse the entire graph. Each edge is directed from a previous
edge to the next edge. Contrary to existing intrusion detection and prevention schemes, we
propose a DAG-based representation of security attacks and identify all attack paths from
source to target, taking into account IIoT systems. In conventional network systems, fixed
protocols and standards provide comprehensive solutions most of the time. Unlike these
conventional systems, IoT and IIoT systems are quite different in terms of device features
and network range. In IIoT systems, there can be a huge number of connected devices.
Therefore, it is almost impossible to change the device structure and address vulnerability
issues. To mitigate risk and attack scenarios, alternative and effective models are needed.
The designed and proposed models should work for all attack types and scenarios.

Motivation
In George & Thampi (2018), a graph-based security framework was presented for IIoT
networks. The security issues in the IIoT network were defined as related to vulnerabilities
in the IIoT devices. In addition, the threat and vulnerability relations were represented as a
directed graph. According to the designed graph, some attack types in devices were
weighted using the Common Vulnerability Scoring System (CVSS), and threat calculations
were made via the weighted graph. The main motivation of this article is to propose a
graphical model that represents attacks on IIoT networks and depending on attacks and
threats, to find attack paths on graphs and reduce these paths according to varying metrics.

There are many studies in the literature that represent attacks and vulnerabilities in IoT
and IIoT network systems. Some of the related studies that are investigating and designing
threat graphs were highlighted in “Related Works”. In general, it is seen that various
approaches were proposed to represent attacks on IoT and IIoT networks. However, the
number of articles to find attack paths on IoT-based networks is very limited. In addition,
very few studies focus on threat path reductions, considering threat path weights and path
length. This study represents threats to the general IoT networks via their graph structure.
Using the graph structure, each of the threats on the network can be represented as a node.
In addition, the graph structure shows the relationship between the nodes clearly and with
low complexity. With graph structure, all neighborhoods, weight values, and paths
between the source and the destination can be shown in an organized manner. Therefore,
the relationship between the threats is shown in the proposed structure as a graph. When a
graph structure is generated, the DFS algorithm is used to traverse the graph and find the
paths from the source to the destination. The DFS algorithm works by deeply visiting the
neighbors of the visited nodes. When the visited node does not contain any child nodes,
graph traversing is completed. Since the DFS algorithm works using a stack structure, it
has less time and space complexity than the Breadth First Search (BFS) algorithm.
Therefore, the DFS algorithm is used in the proposed procedure to find all possible threat
paths. This article brings to our attention two significant advantages. First, the proposed

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 3/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

threat graph works regardless of the threat types that were identified by the Common
Vulnerabilities and Exposures (CVE) or any other threat identification programs and
databases. The second is that threat finding and reducing algorithms perform better in
terms of running time, and algorithm complexity compared toGeorge & Thampi (2018). In
addition, we compare our study with Arat & Akleylek (2023a) in terms of threat path-
reducing procedure.

Our contribution
The main contributions of the study can be summarized as follows:

� This study presents a new graph-based approach to represent general threat types in
IoT-based networks.

� The graph-based approach to analyze security threats given in George & Thampi (2018)
is modified by considering the threat detection method. This modification includes the
DFS algorithm, which is traversing or searching graph algorithm, finding threat paths.

� In addition, path-reducing algorithms are merged into a compact algorithm. The
modified algorithms reduce threat paths considering thresholds and compute varying
values such as cumulative threat, hop length, and hot spot values on the threat path.
Finally, the time complexity for hot spot detection on the threat graph is decreased by
the proposed hot spot detection method.

� The proposed approach is compared to another graph-based threat assessment model
given in Arat & Akleylek (2023a) in terms of threat path-reducing methods. According
to the experimental results, the proposed idea gives better running time output in terms
of threat pathfinding and hot spot detection procedures.

Organization
The article is organized as follows: In ‘Preliminaries’, we give preliminaries of the study
supporting graph-based approaches in the literature and some of the device threats defined
in CVE and other databases. In ‘The Proposed Idea’, general details of the proposed
approaches are presented in terms of graph structure and related procedures. In
‘Experiments’, proposed procedures are explained and implemented for experiments, and
experimental results are highlighted. Finally, we conclude the presented study, and we give
future works in ‘Conclusion and Future Works’.

PRELIMINARIES
In this section, we present the preliminaries of the study. In ‘Attack graph’ we give the
selected attack types and their base scores using CVE and CVSS. In addition, we investigate
graph-based security approaches on IoT and IIoT networks in ‘Related works’. Table 1
illustrates abbreviations and variables used throughout the article.

Attack graph
In this subsection, some IoT-based vulnerabilities are presented. In our assumptions, these
vulnerabilities are used to generate a threat graph. There are many presented

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 4/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

vulnerabilities in IoT-based networks. These attacks and threats are defined and classified
in various databases. CVE is a database that identifies and classifies cyber security
vulnerabilities (CVE, 2023). Various vulnerabilities and threats are discovered by
organizations, and CVE publishes these vulnerabilities. In this work, we define some of
these vulnerabilities, which are related to our assumptions. For example, CVE-2014-2360
is a vulnerability that allows malicious users to execute arbitrary codes. It exists in wireless
sensor I/O modules. CVE-2022-25359 is another vulnerability that exists in SCADA
controllers. It allows unauthenticated users to change system files. CVE-2022-0162 exists
in some wireless router types, and an attacker may intercept router credentials and
perform management operations via the wireless router interface. CVE-2011-2688 is a
SQL injection vulnerability that exists on web servers. Through CVE-2019-2776, an
attacker may cause intrusions into the Oracle database. CVE-2021-4045 vulnerability
exists on IP cameras and allows attackers to control all camera activities. CVE-2021-30353
vulnerability may cause improper validation in Snapdragon IIoT. Table 2 shows some
published vulnerabilities and their Version 2 Base Scores (BS) in the CVE program and the
National Vulnerability Database (NVD), which exist in IoT-based systems.

Related works
In this subsection, we investigate proposed security models. There are several works for
IIoT and IoT systems. Therefore, we consider graph-based intrusion and threat detection
models in the literature in the investigation. The main differences between the literature

Table 1 Abbreviations and variables used through the article.

Variable Definition

TDG IoT-based threat directed graph

src Source node

dest Destination node

graph Generated threat graph

visited Visited node in pathfinding procedure

path Each path for src and dest pairs

pathList List of all paths in Algorithm 1

hop Number of hop count

listOfPath Dimensional list of all paths in Algorithm 2

threatThreshold Threat threshold

remainingPath Path list to store remaining paths after path reduction

removedPath Path list to store removed path after path reduction

threatSum Cumulative threat weight

listOfPathThreat Dimensional list of all threats in Algorithm 3

hopThreshold Hop length threshold

adjDict Hash object to store node and threat pairs

hotSpotDict Hash object to store node, threat, and hot spot

alpha Hot spot threshold

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 5/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

and our study are we consider graph-based threat modeling approaches to present an
approach. We also use algorithmic methods to detect, compute, and reduce risks, and we
improve the literature in terms of complexity and running time using varying existing and
customized algorithms. In addition, we propose a generic vulnerability assessment method
to apply for each platform. Table 3 summarizes graph-based security approaches in the
literature.

In Wang et al. (2018), the vulnerability assessment model was designed in IIoT. The
designed model works graph-based and considers the maximum flows of the path. In an
attack graph, nodes represent the host property, and edges represent attacks or
vulnerabilities. The method considers node and edge relationships to identify maximum
flows. The attack risk was calculated by graph weight, and the maximum loss flow
represents the attack path. In addition, evaluation results were demonstrated under various
nodes.

In Qureshi et al. (2020), a routing protocol for low-power and lossy networks (RPL)-
based threat detection model was proposed. The proposed model performs by detecting
the different types of attacks, such as Sinkhole attacks, HELLO-Flood attacks, and
Blackhole attacks, in an IIoT environment. With the rank structure of RPL messages, the
message transmitting time was considered as a determining factor of malicious nodes. The
idea relied on threshold values. The experimental results were compared by a standard
RPL algorithm.

In Sun et al. (2021), a malware detection scheme was proposed. The proposed scheme
considers malware behavior graphs. Graph optimizations and malware classification were
made on malware types such as Delf, Obfuscated, etc. The experimental results were
evaluated in terms of true positive rate accuracy.

In Nguyen et al. (2022), a supervised machine learning classification method was
proposed. A graph-based hybrid analysis method, which contains static and dynamic
methods, was used in IoT botnet detection. Malware classification was made using
printable string information graph (PSI) features via machine learning-based algorithms
such as decision tree (DT) and k-nearest neighbor (kNN).

Table 2 Some of IoT-based vulnerabilities.

CVE-ID BS (v2.0) Description

CVE-2020-3162 5.0 CoAP vulnerability

CVE-2021-30353 5.0 Qualcomm Snapdragon IIoT vulnerability

CVE-2019-2776 5.5 Oracle Database vulnerability

CVE-2021-22779 6.4 PLC vulnerability

CVE-2014-2360 7.5 Wireless sensor vulnerability

CVE-2011-2688 7.5 Web Server vulnerability

CVE-2022-25359 9.1 SCADA controller vulnerability

CVE-2022-0162 9.8 Wireless router vulnerability

CVE-2021-4045 10.0 IP Camera vulnerability

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 6/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Table 3 Highlights of the related works.

Ref. Year Description Complexity Platform Advantages/Disadvantages

Poolsappasit, Dewri
& Ray (2012)

2012 Proposed Bayesian attack graph to
security risk assessment. A method
developed to estimate an
organization’s risk level. Edges
represent posterior probabilities,
and vertices represent various
device and attack attributes.

The graph generation is Oðn2Þ,
Computational complexity of
prior or posterior cases is
Oð2nÞ.

General
network
system

Proposed model is not scalable
for large networks. No
method was proposed to
reduce the attack path.

Wang et al. (2018) 2018 Finds maximum loss flow in graph.
Nodes represent hop and edges
represent threats. Works on a
directed graph.

Vulnerability detection is
Oðn:pÞ, Maximum loss flow is
OðnÞ, Path seeking is Oðn2Þ.
Total time complexity is
Oðn2Þ.

IIoT No methods were proposed to
reduce attack paths or edges.

George & Thampi
(2018)

2018 Finds and reduces attack paths in
graph. Vertices represent the
vulnerabilities, edges represent
relations between vulnerabilities.
Works on a directed graph.

Threat path detection is
OðNij:LijÞ, Threat and hop
length calculation is OðNijÞ,
Path reduction is OðNijLijpqÞ
Hot spot detection is Oðn2Þ.

IIoT Final results were calculated
manually. The graph was
designed for IIoT networks. In
generating subgraphs,
separated procedures were
used.

Polatidis, Pavlidis &
Mouratidis (2018)

2018 Proposed attack path identification
approach. Attack graph approach
was used. Attack paths were
identified using the DFS algorithm.

The complexity of algorithms
were not analyzed.

General
network
system

Real time data was used. Threat
weights were not considered.

Mouratidis &
Diamantopoulou
(2018b)

2018 Proposed security analysis method
for IIoT. The proposed method
includes two phases. Each IIoT
component was represented as an
actor.

The complexity of algorithms
were not analyzed.

IIoT Real time data was used.
Potential attack paths were
identified and categorized
considering importance.
Attack paths were not filtered,
considering their importance.

Qureshi et al. (2020) 2020 Detects different type of attacks
using RPL. Genetic algorithm was
used to detect presence of security
threats. Nodes represent devices.
Works on DODAG.

The complexity of algorithms
were not analyzed.

Smart home
IIoT

Proposed algorithms work only
detects vulnerabilities
different type of attacks.
Threat weights were not
considered.

Sun et al. (2021) 2021 Proposed graph-based malware
detection architecture. Malware
detection scheme works based on
classification.

The complexity of algorithms
were not analyzed.

IIoT Proposed methods only detect
malware considering behavior
graph. Threats and path
weights were not considered.

Stellios,
Kotzanikolaou &
Grigoriadis (2021)

2021 Proposed graph-based attack path
identification and risk assessment
method. Interaction modeling was
performed to define device
relations.

For the graph construction
phase, computational cost is
OðDnÞ where Dis set of all the
devices, and n is the number
of interactions.

IoT Proposed methods works using
pre-defined interactions.
Some devices can interacts
with each others without pre-
defined connections.

Sukiasyan et al.
(2022)

2022 Proposed security architecture to
mitigate security risks. The model
works based on blockchain DAG
structure. Different types of attack
vectors such as tampering, and
DDoS were analyzed, and security
data exchange was ensured. Works
on DAG.

The complexity of methods
were not analyzed.

IIoT Threat weights were not
considered. Only
communication paths were
considered.

(Continued)

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 7/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

In Jing & Wang (2022), a graph theory-based DDoS attack detection method was
proposed for IP ports from source to destination. Edge and vertex structures were
generated to extract traffic data characteristics. Next, clustering and classifying were done
via principal component analysis (PCA) and Fuzzy C-means (FCM) clustering methods.
The proposed model works in IP-connected topologies, considering traffic flows.

In Poolsappasit, Dewri & Ray (2012), a Bayesian network-based risk assessment
framework was proposed. The designed model incorporates different relationship models
such as attack graphs and attack trees. The initial test vulnerabilities were generated using
CVSS, and network attacks were modeled as a Bayesian attack graph (BAG). To manage
network risks, the graph was generated considering the probabilities of attributes. With the

Table 3 (continued)

Ref. Year Description Complexity Platform Advantages/Disadvantages

Nguyen et al. (2022) 2022 Presented a novel to detect IoT
botnets using PSI-subgraph
features with machine learning-
based algorithms. Malware
classification was made and
traversed nodes were removed to
reduce algorithm implementation
time. Works on a directed graph.

The complexity of algorithms
were not analyzed.

IoT/IIoT Proposed methods only classify
malware as botnet or benign.
No methods were proposed to
detect attack paths.

Jing & Wang (2022) 2022 Proposed graph theory based DDoS
attack classification method.
Machine learning approach was
used to detect attacks. Vertices
represent IP addresses and ports,
and edges represent relationships
between vertices. Works on
directed graphs.

The complexity of algorithms
were not analyzed.

IoT Proposed method classify
DDoS attacks. Adjacency
matrix was used to identify
relationships. No methods
were proposed to detect the
attack path. The number of
partitions was calculated
manually.

Arat & Akleylek
(2023a)

2023 Proposed graph based threat
assessment model. DFS and Floyd-
Warshall algorithms were used in
path finding and threat computing.
Vertices and edges represent nodes
and relations, respectively. Works
on directed graphs.

The time complexity of
pathfinding algorithm is
Oðn2Þ The time complexity of
threat computing algorithm is
Oðn3Þ. The time complexity
of path filtering algorithm is
Oðn3Þ.

General
networks
system

Threat computing procedure
takes Oðn3Þ time. Path
filtering procedure depends
on threat computing and it
takes Oðn3Þ time. Hop count
and threat amount were used
as filtering metric.

Arat & Akleylek
(2023b)

2023 Proposed graph-based risk
assessment model. Vulnerable
paths were detected. Risk
computing equations were
presented. Works on DAG.

Path detection is OðV þ EÞ.
Threat computations
procedures work OðnÞ, Path
filtering procedures works
OðnÞ.

General
network
system

Running time for path
detection is reduced. Risk
levels were determined overall
network. A complete risk
assessment model was
presented.

Ours 2023 Proposed graph-based threat
detection model. Threat
pathfinding procedure is modified.
Vertices represent threats, and
edges represent threat weight.
Works on DAG.

Path detection is OðV � VÞ,
Threat and hop length
computation is OðNij:LijÞ,
Path reducing is OðPijÞ, Hot
spot detection is OðVÞ.

General
network
system

Running time for path
detection is reduced. Hot spot
detection complexity is
reduced. The final results are
calculated inside the
procedures.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 8/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

BAG structure, pre-conditions and post-conditions were highlighted in terms of
vulnerability exploitation.

THE PROPOSED IDEA
In this section, we present the details of the proposed idea. We also explain the designed
and modified algorithms via separated subsections. The main differences from George &
Thampi (2018) are vulnerability path detection methods and path reduction procedures. In
George & Thampi (2018), the authors used a recursive pathfinding algorithm. In our
approach, the graph searching and traversing method, which is known as DFS, is used to
detect vulnerabilities in graphs. In addition, subgraph-generating algorithms are merged
without any additional procedures.

An attack graph is a network security application of graph theory that can be used to
detect an attack or vulnerability route, with the node representing the hosts’ state or
properties (Szwed & Skrzyński, 2014). In this definition, an attack or vulnerability graph
can be represented according to host and attack types, pre or post-threat conditions, and
host and attack relations, considering attack weights. Therefore, possible threat paths can
be detected using the graph theory. For this reason, this article uses attack attributes and
weights representing general IoT-based network topology to analyze threat paths and
network vulnerabilities.

In Fig. 1, the proposed threat detection model is demonstrated with three basic tasks.
The main tasks of the proposed model include the following tasks:

� Considering IoT-based device connections, network elements are represented as a
vulnerability or threat. Since each network element has a vulnerability defined in CVE or
other databases. To generate graph topology, nodes, and connection links are connected
in a DAG structure.

� Using the CVSS scores, communication links are weighted, and vertices are referred to
as attack types. According to the generated graph structure, all possible attack paths
from source to destination are detected using a DFS-based discovery algorithm.

� Considering attack paths, weighted links and the number of paths are reduced using hop
count, threat threshold, and hot spot threshold values.

Representation of threat graph
In this section, we give the general threat graph representation notations. During the graph
construction phase, we assume that the configured attack graph works independently from
threats or vulnerabilities. In other words, the designed graph works similarly when the
attack or vulnerability characteristics are changed. We construct a general graph model to
define our proposed procedures. It can be a conventional network or an IoT-based
network. In the representation of TDG, we assume that each node in the graph represents
an IoT-based network device such as a sensor, router, or IP-based component. As

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 9/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

explained in ‘Attack graph’, these devices have vulnerabilities that have the potential to
affect other devices and systems. In addition, IoT-based network devices have predefined
CVSS scores in CVE to determine vulnerability levels. We assign these CVSS scores to
edges. In general, each edge is a connection between vertices. Firstly, a device affects a
connected device or path depending on its vulnerability. CVSS values consist of base scores
provided by the National Vulnerability Database (NVD). These scores represent the
unique characteristics of each vulnerability. Since the weighted graph structure is used, we
created the weight assignments to the edges in the graph by directly considering the CVSS
values between 0 and 10, to be simple and understandable. Due to a representative threat
value calculation being used, a different calculation metric or formulation is not used. We
focused on calculating the threat value and reducing it according to the threshold value.
Therefore, we assign these scores to the links to generate a weighted graph. Then, we
compute the path risk level after identifying a communication path using CVSS scores.
First, we identify the exploitable threats and elements in the IoT-based network. We define
the IoT-based Threat Directed Graph (TDG) formally as follows:

TDG ¼ ðN; src; dest;Tt; k; EwÞ

Figure 1 Main steps of the proposed idea. Full-size DOI: 10.7717/peerj-cs.1743/fig-1

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 10/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-1
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

1) ðV ; EÞ is a directed acyclic graph, which consists of vertices and edges.

2) N represents the set of nodes in TDG. As the algorithm parameter, each node stores a
threat in an IoT-based network.

3) src is the source node that initializes the attack path. It acts as a root node in a graph.

4) dest is the destination node that directly acts as a sink node in a graph. It can be named
as a target node.

5) Tt represents the set of threats in a graph.

6) k is the threat weight, which is defined in CVSS.

7) Ew represents the link of the graph. It is constructed considering CVSS scores and stores
k values between two nodes in a graph.

We considered some general network types to realize our graph. In our scenario, there
are nodes and their interactions. We defined these pairs as vertices and edges ðV ; EÞ. In our
assumptions, nodes represent the IoT-based devices that have vulnerabilities and
corresponding scores. We also have some edges, which represent dependencies between
nodes and vulnerabilities. These dependencies are randomly generated by the custom
Python simulator. After the network graph is generated, it can be paired with any device
and link, such as an IP-based sensor and network router. For instance, we explain it using a
case scenario as shown in Fig. 2.

Figures 3A and 3B illustrates an example representation for TDG. According to the
figure, src is the source node, and dest is the destination node. In addition, communication
link values between nodes are represented by k which is defined as a threat weight.
Additionally, Figs. 4–6 in the following sections, show the change of the main graph
(Fig. 3B) as a result of the parameters included in the TDG definition and the proposed
algorithms. Thus, the current graph structure that is updated due to the performing of the
relevant algorithms is visualized.

Detecting of all threat paths
In this subsection, a threat pathfinding algorithm is proposed. A DFS-based traversing
graph algorithm is used to find all possible attack paths from source to destination. There
can be many paths in a directed graph. Finding all paths that will be used by attackers while
calculating the total threat amount is a very heavy load for system administrators. Since
detected attacks can be prevented in this way, Algorithm 1 has seven inputs. The inputs are
as follows, respectively:

� IoT-based network graph TDG,

� Source node src,

� Destination node dest,

� Boolean value to determine visited nodes,

� List of detected attack nodes,

� List of all detected attack path,

� Hop count parameter.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 11/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Algorithm 1 demonstrates the main steps of threat path detection. To find possible
threat paths from src to dest in the given as a parameter TDG graph, GETALLPATHSBYDFS

(graph, src, dest, visited, path, pathList, hop) is called. The proposed method works using
the DFS algorithm, and the complexity depends on the total number of vertices.

When all possible threat paths are found via Algorithm 1, the total amount of number-
of-hop and threats are calculated via Algorithm 2. The algorithm takes two parameters. In
the given graph, the number-of-hop is calculated according to the table listOfPath. Since
the number of path values is not stored in a parameter, it is calculated considering the
length of each path list in the table listOfPath. The algorithm time complexity is OðPijÞ
where the Pij is the number of the path between source i and destination j. Since the
algorithm runs for each path in the listOfPath.

Path reduction with threat threshold
In this subsection, we give the path reduction procedure, which works based on threat
threshold metrics. A threat path with a high threat amount is more desirable for an
attacker in IoT-based TAG. In addition, it will be easier for system administrators to focus
on critical nodes and points with high threat value instead of nodes with low threat value in
terms of ensuring system security and reliability. Therefore, reducing attack paths with

Figure 2 Generalized device-based case scenario. Full-size DOI: 10.7717/peerj-cs.1743/fig-2

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 12/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-2
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

high total threats is essential for security mechanisms. To reduce these types of attack
paths, a threat threshold value is used.

Algorithm 3 demonstrates a threat path-reducing procedure. The algorithm takes three
inputs. listOfPathThreat table stores paths and their total threat values. The algorithm
gives a subgraph of TDG ¼ ðV; EÞ which includes removed and remaining paths. The
remaining path list is generated considering if the total threat of the path is greater than the

Figure 3 (A) A generic representation for threat directed graph (TDG). (B) A weighted example for
threat directed graph (TDG) representation. Full-size DOI: 10.7717/peerj-cs.1743/fig-3

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 13/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-3
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

threat threshold threatThreshold value. The time complexity of the procedure is given by
OðPijÞ where Pij is the number of paths from source i to destination j.

Figure 4 illustrates the remaining TDG after reducing the path by maximum cumulative
threat threshold, and dashed lines represent reduced path fsrc� j� r � destg.

Path reduction with hop length
In this subsection, we give a path reduction procedure that works based on hop length
threshold metrics. In vulnerable network topology, more hop counts state is not desired by
an attacker since increasing the number of hop counts increases the attack detecting
probability. When an attacker wants to reach a destination or target device, it needs to pass
through more security mechanisms or a detection strategy. Additionally, considering the

Figure 4 Remaining TDG after reducing path by cumulative threat threshold.
Full-size DOI: 10.7717/peerj-cs.1743/fig-4

Figure 5 Remaining TDG after reducing threat path by hop length threshold.
Full-size DOI: 10.7717/peerj-cs.1743/fig-5

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 14/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-4
http://dx.doi.org/10.7717/peerj-cs.1743/fig-5
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Figure 6 Remaining TDG after path reduction by hot spot threshold.
Full-size DOI: 10.7717/peerj-cs.1743/fig-6

Algorithm 1 Algorithm to find possible attack paths.

Input: A TDG graph, source node src, destination node dest, visited boolean variable visited, path lists, and hop length variable hop.

Output A table listOfPath containing the threat paths from src to dest.

1: Procedure GETALLPATHSBYDFS(graph, src, dest, visited, path, pathList, hop)

2: visited½src� True

3: Add src to table path

4: hopþþ
5: if src ¼ dest then

6: Compute the threat for the path

7: Add path to table pathList

8: else

9: for each node adjacent to src do

10: if visited½node� True then

11: GETALLPATHSBYDFS(graph, node, dest, visited, path, pathList, hop)

12: end if

13: end for

14: end if

15: Pop to last inserted node from table path

16: path.pop()

17: visited½src� False

18: end procedure

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 15/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-6
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

overall system, a higher number of hops means more time and protection mechanisms. In
this way, it will be difficult for malicious users or threats to damage the device and the
network. Therefore, threat paths with a high number of hops are reduced in common
conventional threat-based mechanisms.

Algorithm 4 demonstrates a path path-reducing procedure which considers the number
of hop counts. The algorithm performs using three inputs and produces a subgraph of
ðV ;EÞ which includes removed and remaining paths. The hop threshold determines the
maximum desired path length in pathList. Finally, REDUCEPATHBYHOP(graph, listOfPath,
hopThreshold) procedure consists of two tables as a output. The time complexity of the
algorithm is given byOðPijÞ where Pij is the number of paths from source i to destination j.

Algorithm 2 Algorithm to compute hop and threat values.

Input: A TDG graph, path list listOfPath.

Output A set of threat and hop length parameters.

1: Procedure FINDVALUES (graph, listOfPath)

2: totalHop; avgHop; totalThreat 0

3: minHop 1
4: maxHop �1
5: minThreat 1
6: maxThreat �1
7: for each path in listOfPath do

8: if minHop > length of ððpathÞ � 1Þ then
9: minHop length of ððpathÞ � 1)

10: end if

11: if maxHop < length of ððpathÞ � 1Þ then
12: maxHop length of ððpathÞ � 1Þ
13: end if

14: totalHopþ ¼ (length of ððpathÞ � 1Þ
15: end for

16: for each thr in listOfPath.thrList do

17: if minThreat > thr then

18: minThreat thr

19: end if

20: if maxThreat, thr then

21: maxThreat thr

22: end if

23: totalThreatþ ¼ thr

24: end for

25: end procedure

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 16/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Figure 5 illustrates the remaining TDG after reducing the path by hop length threshold,
and dashed lines represent reduced path fsrc� i� t �m� destg.

Detection of hot-spots
In this subsection, we give the hot spot detection procedure, which works based on hot
spot threshold metrics. High relations between network devices with each other can be
considered a vulnerability in traditional and IoT-based networks. Connections can pose a

Algorithm 3 Algorithm to reduce paths by threat.

Input: A TDG graph, path lists listOfPath, and threat threshold value threatThreshold

Output Tables remainingPath and removedPath containing removed and remaining paths.

1: Procedure REDUCEPATHBYHop (graph, listOfPath, threatThreshold)

2: listOfPathThreat object contains all paths and theirs sum of threat as last element of array.

3: remainingPaths �

4: removedPaths �

5: for each threatSum in listOfPathThreat½�1� do
6: if threatSum > threatThreshold then

7: remainingPaths listOfPathThreat½0�
8: else

9: removedPaths listOfPathThreat½0�
10: end if

11: end for

12: end procedure

Algorithm 4 Algorithm to reduce paths by hop.

Input: A TDG graph, path lists listOfPath, and hop threshold value hopThreshold

Output Tables remainingPath and removedPath containing removed and remaining paths.

1: Procedure REDUCEPATHBYHop (graph, listOfPath, hopThreshold)

2: remainingPaths �

3: removedPaths �

4: for each path in listOfPath do

5: if length of ðpathÞ � 1. hopThreshold then

6: removedPaths path

7: else

8: remainingPaths path

9: end if

10: end for

11: end procedure

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 17/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

threat to devices. For example, the IoT-based device, which has many connections as input
and output, acts as a HUB device, which provides many uncontrolled connections.
Therefore, heavy connected node loads must be detected and reduced. In Algorithm 5, we
propose a procedure to detect nodes that have a high connection.

The procedure FINDHotspots (graph, adjDict, alpha) performs using alpha hot-spot
threshold value and returns a hash object. The hash object ensures an efficient, convenient
structure to quick data storage and retrieval. The hash object stores and retrieves data
based on lookup keys. Therefore, it provides time efficiency and prevents data duplication.
The hash object hotSpotDict contains key and value pairs that are formed by nodes and
hot-spot degrees. In this algorithm, key and value pairs represent nodes and their
individual hot spot degrees. In this way, we access the high and low connected nodes and
paths quickly due to the average time complexity of the hash data structure in Oð1Þ time.
High-connected IoT-based network nodes can be reduced using the returned hash object.
The time complexity of the algorithm is given byOðVÞ where V is the number of vertices.

Figure 6 illustrates the remaining TDG after path reduction by hot spot threshold, and
dashed lines represent reduced path fsrc� k� r � destg. As seen in the figure, node k has
the highest number of connections; therefore, node k can be considered as a hot spot
maximum node.

Comparison
In this subsection, we compare our study with George & Thampi (2018) in terms of
algorithmic approaches and complexity. According to the comparison, our modified
threat-finding algorithm works based on DFS. Therefore, it works recursively. Also, in
Algorithm 2, the hop length variable is generated using the length of the path in the list. In
addition, remaining and reduced path lists are generated using a single and compact
procedure. In George & Thampi (2018), pathfinding algorithm complexity is related to the
number of paths and path length. In our approach, the time complexity depends on the

Algorithm 5 Algorithm to find hot spots.

Input: A TDG graph, hash object adjDict, and hot spot threshold value alpha.

Output A hash object hotSpotDict containing nodes and hot spots.

1: Procedure FINDHOTSPOTS(graph, adjDict, alpha)

2: adjDict object contains all nodes and their connections as key and value pairs.

3: hotSpotDict fg
4: hotSpotDict adjDict

5: for each node in adjDict.keys() do

6: hotSpotDict½node� ½node; threatLabel; alpha�
7: end for

8: return hotSpotDict

9: end procedure

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 18/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

number of vertices. In George & Thampi (2018), attack pathfinding algorithm complexity
was given as OðNijLijÞ where Nij is the number of paths and Lij is the hop-length of the
longest path. In the modified approach, the algorithm complexity is OðV � VÞ where V is
the number of vertices. In the hot spot finding procedure, the algorithm complexity is
reduced to OðVÞ where V is the number of vertices. In summary, we improved previous
work in different aspects. As mentioned, we have made improvements in terms of
complexity and running time. The most obvious of these improvements are the path-
finding algorithm used, the calculation of the threat value within the same algorithm, the
use of data structures that provide access and storage efficiency, and the graph reduction
phase in a single procedure. Table 4 highlights general differences between studies.

EXPERIMENTS
Experimental environment
In this section, we present the setup of the simulation environment. We design a custom
simulator using the Python programming language. Thus, the simulation is operated on
the custom simulator. A threat-based graph, which consists of fixed-located nodes with
IoT-based network devices, is generated. Each link is weighted using pre-defined threat
types. In the simulation phase, it is assumed that the root node, which acts as an attacker,
targets to reach the sink node by passing through nodes. Figure 7 illustrates an instance of

Table 4 Comparison of proposed algorithms.

Proposed algorithm George & Thampi (2018)

Finding all paths The algorithm performs recursively, and the
content of the path list decreases
for each loop because of the stack object.
The time complexity is OðV � VÞ where V is
the number of vertices.
The auxiliary space isOðV � VÞ where V is the
number of vertices.
Parameters were stored by a single path list.

The algorithm performs recursively, and the content of the path list increases
for each loop.
The time complexity is OðNij:LijÞ where Nij is the number of paths and Lij
is the hop-length of the longest path.
General table T was used to store all parameters.

Calculating hop
and threat
values

The algorithm performs linear. The time
complexity is OðPijÞ where Pij is the number
paths.
The hop length was generated using path
length.

The algorithm performs linear.
The time complexity is OðNijÞ where Nij is the number of paths.
The hop length variable was generated using by different variable.

Reducing paths
by hop and
threat

The algorithm performs linear.
The time complexity is OðPijÞ where Pij is the
number paths.
Remaining and reduced path lists are generated
via compact and collective single function.
Reduced subgraph is generated in a single
function.

The algorithm performs linear.
The time complexity is OðNijLijpqÞ where Nij, Lij, p and q
represents the number of paths,
The hop-length of longest path among them, the number of attackers, and the
number of targets respectively. Remaining and reduced path lists were
generated via separated algorithms.
Reduced subgraph was generated via separated algorithms.

Finding hotspots The algorithm performs linear.
The time complexity is OðVÞ where V is the
number of vertices.
Hash data type is used to store labels and the
hot-spot index of the nodes.

The algorithm performs quadratic.
The time complexity is Oðn2Þ where n is the number of nodes.
Adjacency matrix was used to store labels and hot-spot index of the nodes.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 19/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

an IoT-based network threat graph. The graph topology is designed to support all threat
types. In other words, the proposed algorithms run considering general threat and attack
types that were defined in CVE. The simulation is performed on the same machine, which
has an Intel Core i5 10300H CPU, 16 GB of RAM, and a GTX 1650 GPU.

Example scenario
In this subsection, we present an example IoT-based threat graph scenario. In this
scenario, a threat graph was generated using nine threat nodes. Node connections and
locations were randomly distributed. In addition, the threat weights were set using CVSS
metrics. In general, we propose an attack or threat path detection approach using graph
theory. We use the DFS algorithm to traverse the graph and identify all paths from source
to destination. In addition, we propose threat path-reducing procedures to assess and
mitigate risk in the IoT network topology to provide a more secure communication
structure. Tables 5 and 6 summarize the computation results of the example scenario. In
these tables, we give the results of the example running using Fig. 7. For instance, in
Table 5, we give the results of the path detection and threat computing procedures. We also
determine the hop length of the identified paths. Likewise, Table 6 summarizes the focused
points in terms of the number of hops, average threat value, and some maximum and
minimum values, using the results in Table 5.

Performance analysis
In this subsection, we present the simulation results and performance evaluations. To
investigate the behaviors of proposed methods under various parameters, we change the
number of nodes, the number of edges, the threat threshold, the hop threshold, and the hot
spot threshold values. Therefore, the proposed algorithms run over various scalable
network sizes, and we present a comprehensive performance analysis. The simulation
results are presented considering average values of 1,000 iterations.

Figure 8 demonstrates the number of nodes to be removed against a varying number of
nodes. In an IoT-based network graph, the hop threshold is set at 6, the threat threshold at
0.1, and the hot spot index at 3. According to Fig. 8, the number of removed paths
decreases as the depending on the number of nodes increases. When new nodes are joined
to the IoT-based network topology, the number of paths between the source and
destination increases. The total threat value decreases when the path length and the total
number of nodes are considered. This is because the desired metric is to reduce threat
paths that have high total threat values and less hop count.

Figure 9 depicts the number of nodes to be removed against the number of edges. The
hop threshold in an IoT-based network graph is set to 6, the threat threshold to 0.1, and the
hot-spot index to 3. According to the figure, the number of nodes to be removed increases
as the number of nodes increases. Since the number of paths between source and
destination increases as the number of edges increases. Path length and the total number of
edges are considered the overall threat value increases. If the cumulative threat value of the
path exceeds the threat threshold value, the path is removed. Since the main goal of the
procedure is to reduce threat paths with high cumulative threat values.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 20/28

http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Table 5 General results of example scenario.

Path no Path node sequence Hop length Avg threat

1 1, 2, 4, 5, 6, 8, 7, 9 7 5.8

2 1, 3, 4, 5, 6, 8, 7, 9 7 6.6

3 1, 2, 4, 5, 6, 7, 9 6 5.05

4 1, 2, 4, 5, 6, 8, 9 6 5.85

5 1, 3, 4, 5, 6, 7, 9 6 5.83

6 1, 3, 4, 5, 6, 8, 9 6 5.8

Figure 7 An example of IoT-based network threat graph.
Full-size DOI: 10.7717/peerj-cs.1743/fig-7

Table 6 Computation results of example scenario.

Computing metrics Values Path no

Maximum hop 7 1, 2

Minimum hop 6 3, 4, 5, 6

Average hop 6.33 –

Maximum threat 6.6 2

Minimum threat 5.05 3

Average threat 5.82 –

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 21/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-7
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Figure 10 demonstrates the number of nodes to be removed against varying hop
thresholds. In an IoT-based network graph, the number of nodes is set at 20, the threat
threshold at 0.1, and the hot-spot index at 3. According to the figure, the number of paths
to be removed decreases as the hop threshold increases. Since, considering the fixed
number of nodes, edges, and threat threshold, the number of paths from the source to the
destination is constant. Accordingly, the total threat value and hop count of paths do not
change. The increasing number of hops reduces the number of reduced paths due to the
fixed path length.

Figure 11 shows the number of nodes to be removed under varying threat thresholds.
The number of nodes is set at 20, the hop threshold at 6, and the hot-spot index at 3 for this
running. It is clear that the number of paths to be removed decreases as the threat
threshold increases. Since, the number of paths from the source to the destination is
constant considering the fixed number of nodes, edges, and hop threshold. In addition, the

Figure 8 Number of paths to be removed under various numbers of nodes.
Full-size DOI: 10.7717/peerj-cs.1743/fig-8

Figure 9 Number of paths to be removed under various numbers of edges.
Full-size DOI: 10.7717/peerj-cs.1743/fig-9

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 22/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-8
http://dx.doi.org/10.7717/peerj-cs.1743/fig-9
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

total threat value and hop count of paths remain constant and do not change. The increase
in the threat threshold values reduces the number of removed paths in the fixed path
length condition.

Figure 12 demonstrates the running time results between Arat & Akleylek (2023a) and
our studies in terms of threat path-reducing algorithms. According to the results, our
proposed procedure performs better under an increased number of nodes. The path-
reducing algorithm given in Arat & Akleylek (2023a) calls threat computing procedure and
it works Oðn3Þ time complexity due to the Floyd-Warshall algorithm. Our proposed
reducing procedure takes the threat amount as a parameter which is computed in the
Algorithm 2, and it works linearly due to accessing the threat amount.

For the hot spot detection, according to Fig. 13, it is obvious that the number of hot
spots detected for a fixed number of nodes decreases as the cut-off index increases. In
addition, the number of detected hot spots decreases as the number of nodes increases for

Figure 10 Number of paths to be removed under various hop thresholds.
Full-size DOI: 10.7717/peerj-cs.1743/fig-10

Figure 11 Number of paths to be removed under various threat thresholds.
Full-size DOI: 10.7717/peerj-cs.1743/fig-11

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 23/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-10
http://dx.doi.org/10.7717/peerj-cs.1743/fig-11
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

the fixed cut-off index. The cut-off index determines the number of removed paths
considering the hop threshold value.

Figure 14 highlights comparison results between George & Thampi (2018) and our
studies in terms of running time due to threat path detection procedures. The comparison
is made under various numbers of nodes and it is obvious that our proposed threat path
detection procedure outperforms (George & Thampi, 2018). Since the proposed procedure
works using the DFS algorithm, any additional variable is not used to store visited nodes
on the traversed graph.

Figure 15 compares George & Thampi (2018) and our study in terms of running time
due to hot spot finding procedures. As seen in the figure, the proposed hot spot detecting
procedure outperforms (George & Thampi, 2018) under the varying number of nodes. The
main difference between the studies is that our proposed procedure uses hash objects to

Figure 12 Running time for reducing threat paths under various numbers of nodes.
Full-size DOI: 10.7717/peerj-cs.1743/fig-12

Figure 13 Number of detected hot-spots under various numbers of nodes.
Full-size DOI: 10.7717/peerj-cs.1743/fig-13

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 24/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-12
http://dx.doi.org/10.7717/peerj-cs.1743/fig-13
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

store node data, labels, and hot spot values. Therefore, the procedure can access the stored
data quickly. In addition, the proposed method performs linear andOðnÞ time complexity.

CONCLUSION AND FUTURE WORKS
Detection and prevention of potential threat paths in network systems is a key issue for
network and system administrators. Especially in IoT-based systems, which have high
interaction and connections among devices, security vulnerability detection is essential.
This study focuses on vulnerability and threat detection in IoT-based systems. Considering
the existing graph-based assessment methods, threat paths are represented as a DAG. A
weighted graph structure is generated using the CVSS base scores to help calculation of
several parameters and metrics. In addition, the threat pathfinding method is modified
using the DFS algorithm. All possible threat paths are detected by the DFS algorithm.

Figure 15 Running time for finding hot spots under various numbers of nodes.
Full-size DOI: 10.7717/peerj-cs.1743/fig-15

Figure 14 Running time for detecting threat paths procedure under various number of nodes.
Full-size DOI: 10.7717/peerj-cs.1743/fig-14

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 25/28

http://dx.doi.org/10.7717/peerj-cs.1743/fig-15
http://dx.doi.org/10.7717/peerj-cs.1743/fig-14
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Therefore, the existing attack pathfinding procedure was improved in terms of the running
time period. Using hop length and cumulative threat values, detected vulnerability paths
are reduced considering the determined threshold values. As a final, a hot spot detection
algorithm, which is used to compute node connections, is designed. Also, the hot spot
detecting algorithm was improved in terms of running time complexity. The performance
evaluation is made using a custom simulator, which is designed in the Python
programming language. According to the evaluation results, the obtained performance
outputs were presented. Proposed and modified algorithms provide detection and removal
of threat paths on networks. Time complexities of existing threat paths and hot spot
detecting procedures were reduced by proposed methods. We improved the previous study
in terms of algorithmic approaches, complexity, and time efficiency. This means that we
proposed compact and complete procedures in a different way in terms of pathfinding and
threat computing. We also concatenated graph-reducing procedures according to a
previous study. In future studies, attack tree modeling for other platforms such as avionics
will be studied.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by ASELSAN A.Ş. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
ASELSAN A.Ş.

Competing Interests
Sedat Akleylek is an Academic and Section Editor for PeerJ Computer Science.

Author Contributions
� Ferhat Arat conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
� Sedat Akleylek conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source codes are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1743#supplemental-information.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 26/28

http://dx.doi.org/10.7717/peerj-cs.1743#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1743#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1743#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

REFERENCES
Al-Turjman F, Alturjman S. 2018. Context-sensitive access in industrial internet of things (IIoT)

healthcare applications. IEEE Transactions on Industrial Informatics 14(6):2736–2744
DOI 10.1109/TII.2018.2808190.

Arat F, Akleylek S. 2023a. Attack path detection for IIoT enabled cyber physical systems: revisited.
Computers & Security 128(5):103174 DOI 10.1016/j.cose.2023.103174.

Arat F, Akleylek S. 2023b. A new method for vulnerability and risk assessment of IoT. Computer
Networks 237:110046 DOI 10.1016/j.comnet.2023.110046.

Boyes H, Hallaq B, Cunningham J, Watson T. 2018. The industrial internet of things (IIoT): an
analysis framework. Computers in Industry 101(8):1–12 DOI 10.1016/j.compind.2018.04.015.

Brewster C, Roussaki I, Kalatzis N, Doolin K, Ellis K. 2017. IoT in agriculture: designing a
Europe-wide large-scale pilot. IEEE Communications Magazine 55(9):26–33
DOI 10.1109/MCOM.2017.1600528.

CVE. 2023. Common Vulnerabilities and Exposures. Available at https://www.cve.org/ (accessed 19
June 2023).

Da Xu L, He W, Li S. 2014. Internet of things in industries: a survey. IEEE Transactions on
Industrial Informatics 10(4):2233–2243 DOI 10.1109/TII.2014.2300753.

George G, Thampi SM. 2018. A graph-based security framework for securing industrial IoT
networks from vulnerability exploitations. IEEE Access 6:43586–43601
DOI 10.1109/ACCESS.2018.2863244.

Jaidka H, Sharma N, Singh R. 2020. Evolution of IoT to IIoT: applications & challenges. In:
Proceedings of the International Conference on Innovative Computing & Communications
(ICICC).

Javaid M, Haleem A, Rab S, Pratap Singh R, Suman R. 2021. Sensors for daily life: a review.
Sensors International 2(12):100121 DOI 10.1016/j.sintl.2021.100121.

Jing H, Wang J. 2022. Detection of DDoS attack within industrial IoT devices based on clustering
and graph structure features. Security and Communication Networks 2022(1–2):1–9
DOI 10.1155/2022/1401683.

Mosteiro-Sanchez A, Barcelo M, Astorga J, Urbieta A. 2020. Securing IIoT using defence-in-
depth: towards an end-to-end secure industry 4.0. Journal of Manufacturing Systems 57(5):367–
378 DOI 10.1016/j.jmsy.2020.10.011.

Mouratidis H, Diamantopoulou V. 2018a. A security analysis method for industrial internet of
things. IEEE Transactions on Industrial Informatics 14(9):4093–4100
DOI 10.1109/TII.2018.2832853.

Mouratidis H, Diamantopoulou V. 2018b. A security analysis method for industrial internet of
things. IEEE Transactions on Industrial Informatics 14(9):4093–4100
DOI 10.1109/TII.2018.2832853.

Nandhini P, Mehtre B. 2019. Directed acyclic graph inherited attacks and mitigation methods in
RPL: a review. In: International Conference on Sustainable Communication Networks and
Application. Cham: Springer, 242–252.

Nguyen TN, Ngo Q-D, Nguyen H-T, Giang NL. 2022. An advanced computing approach for IoT-
botnet detection in industrial internet of things. IEEE Transactions on Industrial Informatics
18(11):1 DOI 10.1109/TII.2022.3152814.

Polatidis N, Pavlidis M, Mouratidis H. 2018. Cyber-attack path discovery in a dynamic supply
chain maritime risk management system. Computer Standards & Interfaces 56:74–82
DOI 10.1016/j.csi.2017.09.006.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 27/28

http://dx.doi.org/10.1109/TII.2018.2808190
http://dx.doi.org/10.1016/j.cose.2023.103174
http://dx.doi.org/10.1016/j.comnet.2023.110046
http://dx.doi.org/10.1016/j.compind.2018.04.015
http://dx.doi.org/10.1109/MCOM.2017.1600528
https://www.cve.org/
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/ACCESS.2018.2863244
http://dx.doi.org/10.1016/j.sintl.2021.100121
http://dx.doi.org/10.1155/2022/1401683
http://dx.doi.org/10.1016/j.jmsy.2020.10.011
http://dx.doi.org/10.1109/TII.2018.2832853
http://dx.doi.org/10.1109/TII.2018.2832853
http://dx.doi.org/10.1109/TII.2022.3152814
http://dx.doi.org/10.1016/j.csi.2017.09.006
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

Poolsappasit N, Dewri R, Ray I. 2012. Dynamic security risk management using Bayesian attack
graphs. IEEE Transactions on Dependable and Secure Computing 9(1):61–74
DOI 10.1109/TDSC.2011.34.

Pretorius B, van Niekerk B. 2020. Cyber-security for ICS/SCADA: a South African perspective. In:
Cyber Warfare and Terrorism: Concepts, Methodologies, Tools, and Applications. Pennsylvania:
IGI Global, 613–630.

Prostov IA, Amfiteatrova SS, Butakova NG. 2021. Construction and security analysis of private
directed acyclic graph based systems for internet of things. In: 2021 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (ElConRus). Piscataway: IEEE, 2394–
2398.

Qureshi KN, Rana SS, Ahmed A, Jeon G. 2020. A novel and secure attacks detection framework
for smart cities industrial internet of things. Sustainable Cities and Society 61(1):102343
DOI 10.1016/j.scs.2020.102343.

Stellios I, Kotzanikolaou P, Grigoriadis C. 2021. Assessing IoT enabled cyber-physical attack
paths against critical systems. Computers & Security 107(2):102316
DOI 10.1016/j.cose.2021.102316.

Sukiasyan A, Badikyan H, Pedrosa T, Leitao P. 2022. Secure data exchange in industrial internet
of things. Neurocomputing 484(4):183–195 DOI 10.1016/j.neucom.2021.07.101.

Sun Y, Bashir AK, Tariq U, Xiao F. 2021. Effective malware detection scheme based on classified
behavior graph in IIoT. Ad Hoc Networks 120(8):102558 DOI 10.1016/j.adhoc.2021.102558.

Szwed P, Skrzyński P. 2014. A new lightweight method for security risk assessment based on fuzzy
cognitive maps. International Journal of Applied Mathematics and Computer Science 24(1):213–
225 DOI 10.2478/amcs-2014-0016.

Wang H, Chen Z, Zhao J, Di X, Liu D. 2018. A vulnerability assessment method in industrial
internet of things based on attack graph and maximum flow. IEEE Access 6:8599–8609
DOI 10.1109/ACCESS.2018.2805690.

Wu Y, Dai H-N, Wang H, Xiong Z, Guo S. 2022. A survey of intelligent network slicing
management for industrial IoT: integrated approaches for smart transportation, smart energy,
and smart factory. IEEE Communications Surveys & Tutorials 24(2):1175–1211
DOI 10.1109/COMST.2022.3158270.

Arat and Akleylek (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1743 28/28

http://dx.doi.org/10.1109/TDSC.2011.34
http://dx.doi.org/10.1016/j.scs.2020.102343
http://dx.doi.org/10.1016/j.cose.2021.102316
http://dx.doi.org/10.1016/j.neucom.2021.07.101
http://dx.doi.org/10.1016/j.adhoc.2021.102558
http://dx.doi.org/10.2478/amcs-2014-0016
http://dx.doi.org/10.1109/ACCESS.2018.2805690
http://dx.doi.org/10.1109/COMST.2022.3158270
http://dx.doi.org/10.7717/peerj-cs.1743
https://peerj.com/computer-science/

	Modified graph-based algorithm to analyze security threats in IoT
	Introduction
	Preliminaries
	The proposed idea
	Experiments
	Conclusion and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

