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ABSTRACT
The q-rung orthopair fuzzy set (q-ROPFS) is a kind of fuzzy framework that is capable
of introducing significantly more fuzzy information than other fuzzy frameworks.
The concept of combining information and aggregating it plays a significant part in
the multi-criteria decision-making method. However, this new branch has recently
attracted scholars from several domains. The goal of this study is to introduce some
dynamic q-rung orthopair fuzzy aggregation operators (AOs) for solving multi-period
decision-making issues in which all decision information is given by decision makers
in the form of ‘‘q-rung orthopair fuzzy numbers’’ (q-ROPFNs) spanning diverse
time periods. Einstein AOs are used to provide seamless information fusion, taking
this advantage we proposed two new AOs namely, ‘‘dynamic q-rung orthopair fuzzy
Einstein weighted averaging (DQROPFEWA) operator and dynamic q-rung orthopair
fuzzy Einstein weighted geometric (DQROPFEWG) operator’’. Several attractive
features of these AOs are addressed in depth. Additionally, we develop a method
for addressing multi-period decision-making problems by using ideal solutions. To
demonstrate the suggested approach’s use, a numerical example is provided for
calculating the impact of ‘‘coronavirus disease’’ 2019 (COVID-19) on everyday living.
Finally, a comparison of the proposed and existing studies is performed to establish the
efficacy of the proposed method. The given AOs and decision-making technique have
broad use in real-world multi-stage decision analysis and dynamic decision analysis.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Optimization
Theory and Computation, Neural Networks
Keywords Aggregation operators, Dynamic decision-making

INTRODUCTION
Multi-criteria decision making (MCDM) is broadly used in the scientific disciplines of
societal structure, economic growth, strategic planning, engineering and among others. It
is a decision-making process that involves selecting a preferable solution from a finite set of
conceivable alternatives that have been evaluated on numerous qualitative or quantitative
features by multiple DMs. Due to the intricacy and unpredictability of the problem, the
time constraints, and the limited competence of the participants in the MCDM, DMs
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occasionally do not deliver their assessment conclusions in the form of accurate values.
Uncertainty is among the issues that have arisen as a result of dealing with genuine
circumstances in engineering and scientific knowledge. Zadeh’s ‘‘fuzzy set’’ (FS) theory is
an effective tool for depicting the world’s unpredictability and ambiguity (Zadeh, 1965).
To have a greater understanding of the objective world’s uncertainty and therefore to be
capable of explaining it, several extensions to this theory have been proposed. In 1986,
Atanassov modified Zadeh’s fuzzy set theory and introduced the ‘‘intuitionistic fuzzy
set’’ (IFS) theory (Atanassov, 1986). According to FSs, Atanassov’s IFS theory provides
a more powerful strategy for dealing with ambiguity and uncertainties. IFS offers two
types of degrees: ‘‘membership degree (MSD) and non-membership degree’’ (NMSD).
As a result, one may argue that IFS is better suited for representing DM’s perspectives in
decision-making. As a result, IFS has been used to a variety of MCDM issues, including
supply chain, medical diagnostics and decision-making. When the total of the MSD and
NMSD is not in the range [0,1], as in 0< 0.53+0.72= 1.25 6≤ 1, this sort of problem
cannot be handled using IFS. To address this type of challenge, Yager (2014) developed the
‘‘Pythagorean fuzzy set’’ (PyFS) as an extension of IFS, in which the sum of the squares of
theMSD andNMSD equals ‘‘<1’’ or ‘‘=1’’. Since then, PyFS has gained increasing attention
as a result of its characteristics. Rani, Mishra & Mardani (2020) investigated the evaluation
of pharmaceutical therapies for type 2 diabetes mellitus in PyFS data using the new entropy
and scoring functions.Garg, (2017) suggested an extended PyFS information accumulation
technique based on Einstein norms and used it to MCDM applications. Jana, Senapati &
Pal (2019) employed PyFS information-based solution principles and Pythagorean Dombi
AOs to solve MCDM challenges. Liang et al. (2019) designed a decision-making system
for evaluating product quality in the online banking sector based on Pythagorean fuzzy
operational scientific principles. Liang et al. (2018) implemented the expanded ‘‘Bonferroni
mean’’ AOs in PyFS and then constructed an algorithm to implement the proposed
strategy. While IFS and PyFS are capable of resolving some unclear circumstances, they
cannot handle all sorts of data completely. As seen in this example, when a DM employed
0.81 as the MSD and 0.72 as the NMSD, 0.812+0.722 = 1.1745 6≤ 1. As a result, PyFS
is incapable of dealing with such uncertainty. Yager (2017) proposed q-ROPFSs to solve
these challenges, which are more resilient and common than IFS and PyFS. q-ROPFSs
can be used to solve complex and uncertain problems in fuzzy frames. Additionally, Liu
& Wang (2018) presented q-ROPF aggregating functions and demonstrated their use in
solving the MCDM issue. Tang, Chiclana & Liu (2020) introduced the rough set approach
for q-ROPFSs with applications to stock investment evaluation.

AOs are useful mechanisms for combining all input arguments into a single fully
integrated value, notably in the MCDM analysis. Krishankumar et al. (2020) proposed
generalized ‘‘Maclaurin symmetric mean’’ AOs and Liu, Chen & Wang (2020) gave the
notion of ‘‘power Maclaurin symmetric mean’’ AOs for q-ROPFNs. Kumar & Gupta
(2023) introduced some q-ROPF normal basic AOs merging with confidence level concept.
Liu et al. (2022), Kumar & Chen (2022), Attaullah et al. (2022), Garg et al. (2022), Riaz et
al. (2021), Farid & Riaz (2021) and Wei, Gao & Wei (2018) proposed some extensive AOs
for q-ROPFSs and their hybrid structure.
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The prior work, in general, centred on the development of models for gathering
q-ROPF information over the same time span. However, in many difficult cases requiring
decision-making, it is necessary to take into account how various options perform over
the course of time. Due to the fact that these dilemmas include the assortment of data at
distinct time frames within a period, they are classified as multi-period decision-making
(MPDM) issues. In the last few decades, a large number of researchers have investigated
the temporal generalised variations (also frequently referred to as dynamic) of existing
fuzzy AOs and studied the efficiency with which they function in the MPDM. Yang et al.
(2017), Kamaci, Petchimuthu & Akcetin (2021), Peng & Wang (2014),Gumus & Bali (2017)
and Jana, Pal & Liu (2022) gave some dynamic AOs for the different extension of FS. Some
extensive work related to AOs can be seen in Dabic-Miletic & Simic (2023), Naseem et al.
(2023), Abid & Saqlain (2023). Jana & Pal (2021) proposed dynamical hybrid method to
design decision making process. Some AOs related to q-ROPF soft information can be
seen in Hayat et al. (2023), Yang et al. (2022). Linear Diophantine fuzzy soft-max AOs and
numerically validated approach to modeling water hammer phenomena is given in Riaz &
Farid (2023), Kausar, Farid & Riaz (2023). More work related to proposed idea can be seen
in Liu et al. (2023), Liu, Li & Lin (2023), Zhang et al. (2022b).

There are a number of different pairings of t-norms and t-conorms that may be found in
order to produce q-ROPFS intersections and unions. Einstein’s t-norms and t-conorms are
appropriate options for determining the product and sumof q-ROPFSs, respectively. Fluent
algebraic product and sum techniques may be obtained through the use of Einstein product
and sum, which are respectively characterised in terms of Einstein t-norms and t-conorms.
In addition, numerous different MCDM strategies integrate alternative evaluations within
the allotted window of time. In point of fact, the process of evaluation need to take into
consideration not only the performance of alternatives in the here and now, but also the
performance of alternatives in the past. The ideal choice is determined by considering both
the alternatives’ historical and their current performance in relation to specific MCDM
problems (Dong et al., 2024).

As a consequence of this, the major purpose of this article is to construct some dynamic
AOs based on Einstein operations on q-ROPFSs. We present the dynamic q-ROPF Einstein
averaging and geometric operators for this aim in this research. Einstein operations in q-
ROPFSs are used to collect data across a wide range of time periods and aggregate it into a
single value. This is what sets them apart from other approaches. We investigate important
facets of these operators, such as their idempotence, boundedness, and monotonicity,
among other things.

The remaining parts of the article are structured as described below. In ‘Fundamental
concepts’, we will cover the fundamentals of q-ROPFS, in addition to several other
significant concepts. In ‘Dynamic Q-rung orthopair fuzzy einstein AOS’, you’ll find
various dynamic q-ROPF Einstein AOs, each with their own set of alluring characteristics.
In the section ‘MCDMmethods with proposed AOS’, we build an MCDM technique using
the AOs that were described. In ‘Case study’, a comprehensive discussion of the case study
is presented, complete with numerical figures and a contrast to the AOs now in effect. The
most important findings of the study are discussed in ‘Conclusion’.
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FUNDAMENTAL CONCEPTS
This part provides an overview of the fundamental principles pertaining to q-ROPFSs.
Definition 2.1 (Yager, 2017) A q-ROPFS W on X is given as
W = {〈ℵ,µζW (ℵ),νζW (ℵ)〉 : ℵ ∈ X}
here µζW ,νζW :X→[0,1] denote the MSD and NMSD of the alternative ℵ∈X and ∀ℵ
we have
0 ≤ µζ

q
W (ℵ) + νζ

q
W (ℵ) ≤ 1.

Moreover, πW (ℵ)= q
√
1−µζ qW (ℵ)−νζ qW (ℵ) is called the ‘‘indeterminacy degree’’ of x

to W .

Liu & Wang (2018) proposed that several operations on q-ROPFNs be performed using
the provided concepts.
Definition 2.2 (Liu & Wang, 2018) Consider αℵ1 = 〈µ

ζ
1,ν

ζ
1〉 and αℵ2 = 〈µ

ζ
2,ν

ζ
2〉 are

the two q-ROPFNs and σ > 0, then
(1) (αℵ1 )

c
= 〈νζ 1,µ

ζ
1〉;

(2) αℵ1 ∧ αℵ2 = 〈min{µζ 1,νζ 1},max{µζ 2,νζ 2}〉;
(3) αℵ1 ∨ αℵ2 = 〈max{µζ 1,νζ 1},min{µζ 2,νζ 2}〉;

(4) αℵ1 ⊕ αℵ2 = 〈
q
√
µζ

q
1+µ

ζ q
2−µ

ζ q
1µ

ζ q
2,ν

ζ
1ν
ζ
2〉;

(5) αℵ1 ⊗ αℵ2 = 〈µ
ζ
1µ

ζ
2,

q
√
νζ

q
1+ν

ζ q
2−ν

ζ q
1ν
ζ q
2〉;

(6) σαℵ1 = 〈
q
√
1− (1−µζ q1)σ ,ν

ζ σ

1 〉;

(7) (αℵ1 )
σ
=〈µζ

σ

1 ,
q
√
1− (1−νζ q1)σ 〉.

Definition 2.3 (Liu & Wang, 2018) Assume that αℵ = 〈µζ ,νζ 〉 is the q-ROPFN, then its
‘‘score function’’ (SF) Sᵀ of αℵ is defined as
Sᵀ(αℵ)=µζ q−νζ q, Sᵀ(αℵ)∈ [−1,1].

Definition 2.4 (Liu & Wang, 2018) Assume that αℵ = 〈µζ ,νζ 〉 is the q-ROPFN, then its
‘‘accuracy function’’ (AF) Hᵀ of αℵ is characterized as
Hᵀ(αℵ)=µζ q+νζ q, Hᵀ(αℵ)∈ [0,1].

Riaz et al. (2020) presented the Einstein operations for q-ROPFNs and explored the
desired characteristics of these operations. They developedmultiple AOs with the assistance
of these operations.
Definition 2.5 (Riaz et al., 2020) Let αℵ1 =〈µ

ζ
1,ν

ζ
1〉 and αℵ2 =〈µ

ζ
2,ν

ζ
2〉 be q-ROPFNs,

ζ > 0 be real number, then
(1) αℵ1 = 〈νζ 1,µ

ζ
1〉

(2) αℵ1∨εα
ℵ

2 = 〈max{µζ 1,µζ 2},min{νζ 1,νζ 2}〉
(3) αℵ1∧εα

ℵ

2 = 〈min{µζ 1,µζ 2},max{νζ 1,νζ 2}〉

(4) αℵ1⊗εα
ℵ

2 =

〈
µζ 1.εµ

ζ
2

q
√

1+(1−µζ q1).ε(1−µζ
q
2)
, q

√
νζ

q
1+ν

ζ q
2

1+νζ q1.ενζ
q
2

〉
(5) αℵ1⊕εα

ℵ

2 =

〈
q

√
µζ

q
1+ν

ζ q
2

1+µζ q1.εµζ
q
2
, νζ 1.εν

ζ
2

q
√

1+(1−νζ q1).ε(1−νζ
q
2)

〉
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Table 1 Comparative analysis of q-ROPFNs.

Theories Merits Limitations

Fuzzy sets (Zadeh, 1965) Allocate MSD in [0,1] Can not allocate NMSD
IFSs (Atanassov, 1986) Allocate both MSD and NMSD, Fails when MSD+NMSD> 1
PyFSs (Yager, 2014) Allocate both MSD and NMSD, Fails when MSD2

+NMSD2> 1
superior than the IFNs

q-ROPFSs (Yager, 2017) Allocate both MSD and NMSD, Can not deal with MSDq
+NMSDq> 1

superior than IFNs, PFNs, and MSD=NMSD= 1
a broader space for MSD and NMSD &

(6) ζ .εα
ℵ

1 =

〈
q
√

(1+(µζ 1)q)ζ−(1−(µζ 1)q)ζ
(1+(µζ 1)q)ζ+(1−(µζ 1)q)ζ

,
q√2(νζ 1)ζ

q
√

(2−(µζ 1)q)ζ+((νζ 1)q)ζ

〉
(7) αℵ1 ζ =

〈
q√2(µζ 1)ζ

q
√

(2−(µζ 1)q)ζ+((µζ 1)q)ζ
, q
√

(1+(νζ 1)q)ζ−(1−(νζ 1)q)ζ
(1+(νζ 1)q)ζ+(1−(νζ 1)q)ζ

〉
Theorem 2.6 (Riaz et al., 2020) Let αℵ1 and αℵ2 be q-ROPFNs and ζ ,ζ1,ζ2≥ 0 be any real
number, then
(1) αℵ2⊗εα

ℵ

1 = αℵ1⊗εα
ℵ

2
(2) αℵ2⊕εα

ℵ

1 = αℵ1⊕εα
ℵ

2
(3) (αℵ2⊗εα

ℵ

1 )
ζ
= αℵ2 ζ⊗εα

ℵ

1 ζ

(4) ζ .ε(αℵ1⊕εα
ℵ

2 ) = ζ .εα
ℵ

1⊕εζ .εα
ℵ

2
(5) αℵ1 ζ1⊗εα

ℵ

1 ζ2 = αℵ1 ζ1 + ζ2

(6) ζ1.ε(ζ2.εαℵ1 ) = (ζ1.εζ2).εαℵ1
(7) (αℵ1 ζ1)ζ2 = (αℵ1 )ζ1.εζ2
(8) ζ1.εαℵ1⊕εζ2= (ζ1+ζ2).εαℵ1

Superiority of q-ROPFNs and comparison with other fuzzy numbers
An effective solution for problems requiring machine learning, fuzzy computing, and
MCDM may be found in the extended MSD and NMSD of q-ROPFNs. The performance
of a q-ROPFN is superior than that of other fuzzy numbers (FNs), IFNs and PFNs. The
advantages and disadvantages of q-ROPFNs in contrast to those of other fuzzy numbers
are outlined in detail in the Table 1. The geometrical depiction of q-ROPFS with IFS and
PFS is shown in Fig. 1.

DYNAMIC Q-RUNG ORTHOPAIR FUZZY EINSTEIN AOS
Following is a discussion of certain dynamic q-ROPF Einstein AOs and their attractive
characteristics.

DQROPFEWA operator
Definition 3.1 Consider αℵ(גk)=

(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k = 1,...,d) the assortment of q-

ROPF values for d distinct time periods (k = 1,2,...,d).
γ β(k)=

[
γ β (m1),γ

β (m2),...,γ
β (md)

]T is the weight vector (WV) of the periods, where∑d
k=1γ

β (mk)= 1 and let DQROPFEWA :Xn
→X . If DQROPFEWA

(
αℵ(m1),α

ℵ(m2),

Farid et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1742 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1742


Figure 1 Geometrical representation of q-ROPFS.
Full-size DOI: 10.7717/peerjcs.1742/fig-1

...,αℵ(md)
)

=

⊕d

g=1

(
γ β
(
mg
)
·
ε
αℵ
(
mg
))

= γ β(m1)·εα
ℵ(m1)⊕ε,...,⊕εγ

β(md)·εα
ℵ(md)

then DQROPFEWA is called ‘‘dynamic q-rung orthopair fuzzy Einstein weighted averaging
(DQROPFEWA) operator’’.

Theorem 3.2 Let αℵ(mk) =
(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k =1 ,...,d) be the assortment of

q-ROPF values for d distinct time periods) (k = 1 ,2,...,d). We can also find the
DQROPFEWA operator by,

DQROPFEWA
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
= q

√√√√√√√
∏d

g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
−
∏d

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)

∏d
g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
+
∏d

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)
,

q
√
2
∏d

g=1

(
νζ αℵ(mg)

)γ β(mg)

q

√∏d
g=1

(
2−νζ q

αℵ(mg)

)γ β(mg)
+
∏d

g=1

(
νζ

q
αℵ(mg)

)γ β(mg)
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Here, γ β(k)=
[
γ β (m1),γ

β (m2),...,γ
β (md)

]T is the WV of the d distinct time periods
and

∑d
k=1γ

β (mk)= 1.

This theorem is proven using mathematical induction.
For g = 2
DQROPFEWA(αℵ(m1),α

ℵ(m2))= γ β (m1).εα
ℵ(m1)⊕εγ

β (m2).εα
ℵ(m2)

As we know that both γ β (m1).εα
ℵ(m1) and γ β (m2).εα

ℵ(m2) are q-ROPFNs, and also
γ β (m1).εα

ℵ(m1)⊕εγ
β (m2).εα

ℵ(m2) is q-ROPFN.

γ β (m1).εα
ℵ(m1)=

 q

√√√√(1+µζ q
αℵ(m1)

)γ β (m1)− (1−µζ q
αℵ(m1)

)γ β (m1)

(1+µζ q
αℵ(m1)

)γ β (m1)+ (1−µζ q
αℵ(m1)

)γ β (m1)
,

q
√
2(νζ 1)γ

β (m1)

q
√
(2−νζ q

αℵ(m1)
)γ β (m1)+ (νζ q

αℵ(m1)
)γ β (m1)


γ β (m2).εα

ℵ(m2)=

 q

√√√√(1+µζ q
αℵ(m2)

)γ β (m2)− (1−µζ q
αℵ(m2)

)γ β (m2)

(1+µζ q
αℵ(m2)

)γ β (m2)+ (1−µζ q
αℵ(m2)

)γ β (m2)
,

q
√
2(νζ 2)γ

β (m2)

q
√
(2−νζ q

αℵ(m2)
)γ β (m2)+ (νζ q

αℵ(m2)
)γ β (m2)


Then
DQROPFEWA(αℵ1 ,α

ℵ

2 )

= γ β (m1).εα
ℵ

1⊕εγ
β (m2).εα

ℵ

2

=

 q

√√√√(1+µζ q
αℵ(m1)

)γ β (m1)− (1−µζ q
αℵ(m1)

)γ β (m1)

(1+µζ q
αℵ(m1)

)γ β (m1)+ (1−µζ q
αℵ(m1)

)γ β (m1)
,

q
√
2(νζ 1)γ

β (m1)

q
√
(2−νζ q

αℵ(m1)
)γ β (m1)+ (νζ q

αℵ(m1)
)γ β (m1)


⊕ε

 q

√√√√(1+µζ q
αℵ(m2)

)γ β (m2)− (1−µζ q
αℵ(m2)

)γ β (m2)

(1+µζ q
αℵ(m2)

)γ β (m2)+ (1−µζ q
αℵ(m2)

)γ β (m2)
,

q
√
2(νζ 2)γ

β (m2)

q
√
(2−νζ q

αℵ(m2)
)γ β (m2)+ (νζ q

αℵ(m2)
)γ β (m2)



=

 q

√√√√√√√√√
(1+µζ q

αℵ(m1)
)γ β (m1)−(1−µζ q

αℵ(m1)
)γ β (m1)

(1+µζ q
αℵ(m1)

)γ β (m1)+(1−µζ q
αℵ(m1)

)γ β (m1)
+

(1+µζ q
αℵ(m2)

)γ β (m2)−(1−µζ q
αℵ(m2)

)γ β (m2)

(1+µζ q
αℵ(m2)

)γ β (m2)+(1−µζ q
αℵ(m2)

)γ β (m2)

1+
(

(1+µζ q
αℵ(m1)

)γ β (m1)−(1−µζ q
αℵ(m1)

)γ β (m1)

(1+µζ q
αℵ(m1)

)γ β (m1)+(1−µζ q
αℵ(m1)

)γ β (m1)

)
.ε

(
(1+µζ q

αℵ(m2)
)γ β (m2)−(1−µζ q

αℵ(m2)
)γ β (m2)

(1+µζ q
αℵ(m2)

)γ β (m2)+(1−µζ q
αℵ(m2)

)γ β (m2)

) ,
(

q√2(νζ 1)γ
β (m1)

q
√
(2−νζ q

αℵ(m1)
)γ β (m1)+(νζ q

αℵ(m1)
)γ β (m1)

)
.ε

(
q√2(νζ 2)γ

β (m2)

q
√
(2−µζ q

αℵ(m2)
)γ β (m2)+(νζ q

αℵ(m2)
)γ β (m2)

)

q

√
1+

(
1−

2(νζ q
αℵ(m1)

)γ β (m1)

(2−νζ q
αℵ(m1)

)γ β (m1)+(νζ q
αℵ(m1)

)γ β (m1)

)
.ε

(
1−

2(νζ q
αℵ(m2)

)γ β (m2)

(2−νζ q
αℵ(m2)

)γ β (m2)+(νζ q
αℵ(m2)

)γ β (m2)

)
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=

 q

√√√√(1+µζ q
αℵ(m1)

)γ β (m1).ε(1+µζ
q
αℵ(m2)

)γ β (m2)− (1−µζ q
αℵ(m1)

)γ β (m1).ε(1−µζ
q
αℵ(m2)

)γ β (m2)

(1+µζ q
αℵ(m1)

)γ β (m1).ε(1+µζ
q
αℵ(m2)

)γ β (m2)+ (1−µζ q
αℵ(m1)

)γ β (m1).ε(1−µζ
q
αℵ(m2)

)γ β (m2)
,

q
√
2(νζ γ

β (m1)
1 νζ

γ β (m2)
2 )

q
√
(2−νζ q

αℵ(m1)
)γ β (m1).ε(2−νζ

q
αℵ(m2)

)γ β (m2)+ (νζ q
αℵ(m1)

)γ β (m1).ε(νζ
q
αℵ(m2)

)γ β (m2)



=

 q

√√√√√√√
∏2

g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
−
∏2

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)

∏2
g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
+
∏2

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)
,

q
√
2
∏2

g=1

(
νζ αℵ(mg)

)γ β(mg)

q

√∏2
g=1

(
2−νζ q

αℵ(mg)

)γ β(mg)
+
∏2

g=1

(
νζ

q
αℵ(mg)

)γ β(mg)


which proves for g = 2.
Assume that result is true for g = r , we have
DQROPFEWA

(
αℵ(m1),α

ℵ(m2),...,α
ℵ(mr)

)

=

 q

√√√√√√√
∏r

g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
−
∏r

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)

∏r
g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
+
∏r

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)
,

q
√
2
∏r

g=1

(
νζ αℵ(mg)

)γ β(mg)

q

√∏r
g=1

(
2−νζ q

αℵ(mg)

)γ β(mg)
+
∏r

g=1

(
νζ

q
αℵ(mg)

)γ β(mg)


Now we will prove for g = r+1,
DQROPFEWA

(
αℵ(m1),α

ℵ(m2),...,α
ℵ(mr+1)

)
=DQROPFEWA

(
αℵ(m1),α

ℵ(m2),...,α
ℵ(mr)

)
⊕γ β (mr+1).εα

ℵ(mr+1)

=

 q

√√√√√√√
∏r

g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
−
∏r

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)

∏r
g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
+
∏r

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)
,

q
√
2
∏r

g=1

(
νζ αℵ(mg)

)γ β(mg)

q

√∏r
g=1

(
2−νζ q

αℵ(mg)

)γ β(mg)
+
∏r

g=1

(
νζ

q
αℵ(mg)

)γ β(mg)



⊕

 q

√√√√√√
(
1+µζ q

αℵ(mr+1)

)γ β (mr+1)

−

(
1−µζ q

αℵ(mr+1)

)γ β (mr+1)

(
1+µζ q

αℵ(mr+1)

)γ β (mr+1)

+

(
1−µζ q

αℵ(mr+1)

)γ β (mr+1)
,
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q
√
2
(
νζ αℵ(mr+1)

)γ β (mr+1)

q

√(
2−νζ q

αℵ(mr+1)

)γ β (mr+1)

+

(
νζ

q
αℵ(mr+1)

)γ β (mr+1)



=

 q

√√√√√√√
∏r+1

g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
−
∏r+1

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)

∏r+1
g=1

(
1+µζ q

αℵ(mg)

)γ β(mg)
+
∏r+1

g=1

(
1−µζ q

αℵ(mg)

)γ β(mg)
,

q
√
2
∏r+1

g=1

(
νζ αℵ(mg)

)γ β(mg)

q

√∏r+1
g=1

(
2−νζ q

αℵ(mg)

)γ β(mg)
+
∏r+1

g=1

(
νζ

q
αℵ(mg)

)γ β(mg)


thus the result holds for g = r+1. This proves the required result.
Theorem 3.3 Let αℵ(mk)=

(
µζ αℵ(mk)

,νζ αℵ(mk)

)
be the family of q-ROPFNs. Aggregated

value using DQROPFEWA operator is q-ROPFN.

Suppose αℵ(mk)=
(
µζ αℵ(mk)

,νζ αℵ(mk)

)
is the family of q-ROPFNs. By definition of

q-ROPFN,

0≤µζ
q
αℵ(mk)

+νζ
q
αℵ(mk)

≤ 1.

Therefore,∏d
k=11+ (µ

ζ q
αℵ(mk)

)γ
β (mk)−

∏d
k=1(1− (µ

ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)

= 1−
2
∏d

k=1(1− (µ
ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)

≤ 1−
d∏

k=1

(1− (µζ
q
αℵ(mk)

)q)γ
β (mk)≤ 1

and

(1+ (µζ
q
αℵ(mk)

)q)γ
β (mk)≥ (1− (µζ

q
αℵ(mk)

)q)γ
β (mk)

d∏
k=1

(1+ (µζ
q
αℵ(mk)

)q)γ
β (mk)≥

d∏
k=1

(1− (µζ
q
αℵ(mk)

)q)γ
β (mk)

d∏
k=1

(1+ (µζ
q
αℵ(mk)

)q)γ
β (mk)−

d∏
k=1

(1− (µζ
q
αℵ(mk)

)q)γ
β (mk)≥ 0

∏d
k=1(1+ (µ

ζ q
αℵ(mk)

)q)γ
β (mk)−

∏d
k=1(1− (µ

ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)
≥ 0

So, we get 0≤µζDQROPFEWA≤ 1. For νζDQROPFEWA, we have

2
∏d

k=1(ν
ζ q
αℵ(mk)

)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)
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≤

2
∏d

k=1(1− (µ
ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)

≤

d∏
k=1

(1− (µζ
q
αℵ(mk)

)q)γ
β (mk)

≤ 1

Also,
2
∏d

k=1(ν
ζ q
αℵ(mk)

)γ
β (mk)∏d

k=1(1+(µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1−(µζ
q
αℵ(mk)

)q)γ β (mk)
≥ 0⇐⇒

∏d
k=1(ν

ζ q
αℵ(mk)

)γ
β (mk) ≥ 0

Moreover,

µζ
q
DQROPFEWA+ν

ζ q
DQROPFEWA=

∏d
k=1(1+ (µ

ζ q
αℵ(mk)

)q)γ
β (mk)−

∏d
k=1(1− (µ

ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)
+

2
∏d

k=1(ν
ζ q
αℵ(mk)

)γ
β (mk)∏d

k=1(2−νζ
q
αℵ(mk)

)γ β (mk)+
∏d

k=1(νζ
q
αℵ(mk)

)γ β (mk)

≤ 1−
2
∏d

k=1(1− (µ
ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)
+

2
∏d

k=1(1− (µ
ζ q
αℵ(mk)

)q)γ
β (mk)∏d

k=1(1+ (µζ
q
αℵ(mk)

)q)γ β (mk)+
∏d

k=1(1− (µζ
q
αℵ(mk)

)q)γ β (mk)

≤ 1

Thus, DQROPFEWA∈ [0,1]. Consequently, q-ROPFNs gathered by the DQROPFEWA
operator also are q-ROPFNs. We can easily show that following properties.
Theorem 3.4 Let αℵ(mk)=

(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k =1 ,...,d) be the assortment of q-ROPF

values for d distinct time periods (k = 1,2,...,d) and all αℵ(mk)=
(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k

=1 ,...,d) are equal, i.e., αℵ(mk) = αℵ for all k, then
DQROPFEWA

(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
=αℵ.

Since αℵ(mk)= α
ℵ, for all k = 1,...,p, i.e., µζ αℵ(mk)

=µζ αℵ and νζ αℵ(mk)= ν
ζ
αℵ,k =

1,...,p, then

DQROPFEWA
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
=


∏d

g=1

(
1+µζ αℵ(mg)

)γ β(mg)
−
∏d

g=1

(
1−µζ αℵ(mg)

)γ β(mg)

∏d
g=1

(
1+µζ αℵ(mg)

)γ β(mg)
+
∏d

g=1

(
1−µζ αℵ(mg)

)γ β(mg)
,

2
∏d

g=1

(
νζ αℵ(mg)

)γ β(mg)

∏d
g=1

(
2−νζ αℵ(mg)

)γ β(mg)
+
∏d

g=1

(
νζ αℵ(mg)

)γ β(mg)



=


(
1+µζ αℵ(mg)

)∑d
g=1γ

β(mg)
−

(
1−µζ αℵ(mg)

)∑d
g=1γ

β(mg 〉

(
1+µζ αℵ(mg)

)∑d
g=1γ

β(mg)
+

(
1−µζ αℵ(mg)

)∑d
g=1γ

β(mg)
,
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2
(
νζ αℵ(mg)

)∑d
g=1γ

β(mg)

(
2−νζ αℵ(mg)

)∑d
g=1γ

β(mg)
+

(
νζ αℵ(mg)

)∑d
g=1γ

β(mg)


=


(
1+µζ αℵ(mg)

)
−

(
1−µζ αℵ(mg)

)
(
1+µζ αℵ(mg)

)
+

(
1−µζ αℵ(mg)

) , 2
(
νζ αℵ(mg)

)
(
2−νζ αℵ(mg)

)
+

(
νζ αℵ(mg)

)


=

(
µζ αℵ(mg),ν

ζ
αℵ(mg)

)
=αℵ.

Theorem 3.5 Assume that αℵ(mk)=〈µ
ζ
αℵ(mk)

,νζ αℵ(mk)〉 be the family of q-ROPFNs, then

αℵmin≤DQROPFEWA
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
(2)

≤αℵmax
where,
αℵmin=min(αℵ(mk)), αℵmax =max(αℵ(mk))

Theorem 3.6 (Monotonicity) Assume that αℵ(mk)=〈µ
ζ
αℵ(mk)

,νζ αℵ(mk)〉 and αℵ
∗
(mk)=

〈µζ
∗

αℵ(mk)
,νζ
∗

αℵ(mk)
〉 are the families of q-ROPFNs. If µζ ∗αℵ(mk)

≥µζ αℵ(mk)
and νζ

∗

αℵ(mk)
≤

νζ αℵ(mk) for all j, then

DQROPFEWA
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
≤

DQROPFEWA
(
αℵ
∗
(m1),α

ℵ∗(m2),...,α
ℵ∗(md)

)
DQROPFEWG operator
Definition 3.7 Let αℵ(mk)=

(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k =1 ,...,d) be the assortment of q-

ROPF values for d distinct time periods (k= 1,2,...,d).γ β(k)=
[
γ β (m1),γ

β (m2),...,γ
β (md)

]T
is the WV of the periods, where

∑d
k=1γ

β (mk)= 1 and let DQROPFEWG : Xn
→ X. If

DQROPFEWG
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
=

⊕d

g=1

(
γ β
(
mg
)
·
ε
αℵ
(
mg
))

= γ β(m1)·εα
ℵ(m1)⊕ε,...,⊕εγ

β(md)·εα
ℵ(md)

then DQROPFEWG is called ‘‘dynamic q-rung orthopair fuzzy Einstein weighted geometric
(DQROPFEWG) operator’’.

Theorem 3.8 Let αℵ(mk)=
(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k =1 ,...,d) be the assortment of q-

ROPF values for d distinct time periods (k= 1,2,...,d). We can also find the DQROPFEWG
operator by,

DQROPFEWG
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
q
√
2
∏d

g=1

(
µζ αℵ(mg)

)γ β(mg)

q

√∏d
g=1

(
2−µζ q

αℵ(mg)

)γ β(mg)
+
∏d

g=1

(
µζ

q
αℵ(mg)

)γ β(mg)
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q

√√√√√√√
∏d

g=1

(
1+νζ q

αℵ(mg)

)γ β(mg)
−
∏d

g=1

(
1−νζ q

αℵ(mg)

)γ β(mg)

∏d
g=1

(
1+νζ q

αℵ(mg)

)γ β(mg)
+
∏d

g=1

(
1−νζ q

αℵ(mg)

)
γ β
(
mg
) ,

Here, γ β(k)=
[
γ β (m1),γ

β (m2),...,γ
β (md)

]T is the WV of the d distinct time periods
and

∑d
k=1γ

β (mk)= 1.
This is same as Theorem 3.2.

Theorem 3.9 Let αℵ(mk)=
(
µζ αℵ(mk)

,νζ αℵ(mk)

)
be the family of q-ROPFNs. Aggregated

value using DQROPFEWG operator is q-ROPFN.

This is same as Theorem 3.3.
Theorem 3.10 Let αℵ(mk) =

(
µζ αℵ(mk)

,νζ αℵ(mk)

)
(k =1 ,...,d) be the assortment

of q-ROPF values for d distinct time periods (k = 1,2,...,d) and all αℵ(mk) =(
µζ αℵ(mk)

,νζ αℵ(mk)

)
k =1 ,...,d are equal, i.e., αℵ(mk) = α

ℵ for all k, then
DQROPFEWG

(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
=αℵ.

This is same as Theorem 3.4.
Theorem 3.11 Assume that αℵ(mk)= 〈µ

ζ
αℵ(mk)

,νζ αℵ(mk)〉 be the family of q-ROPFNs,
then

αℵmin≤DQROPFEWG
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
(3)

≤αℵmax
where,
αℵmin=min(αℵ(mk)), αℵmax =max(αℵ(mk))

Theorem 3.12 (Monotonicity) Assume that αℵ(mk) = 〈µ
ζ
αℵ(mk)

,νζ αℵ(mk)〉 and
αℵ
∗
(mk)= 〈µ

ζ ∗

αℵ(mk)
,νζ
∗

αℵ(mk)
〉 are the families of q-ROPFNs. If µζ

∗

αℵ(mk)
≥ µζ αℵ(mk)

and νζ
∗

αℵ(mk)
≤ νζ αℵ(mk) italic for all j ,then

DQROPFEWG
(
αℵ(m1),α

ℵ(m2),...,α
ℵ(md)

)
≤DQROPFEWG

(
αℵ
∗
(m1),α

ℵ∗(m2),...,α
ℵ∗(md)

)
MCDM METHODS WITH PROPOSED AOS
Consider ξη=

{
ξ
η
1 ,ξ

η
2 ,...,ξ

η
m
}
is the discrete set of m alternatives and ℵ= {ℵ1,ℵ2,...,ℵn}

a discrete set of n criteria and whose weights vector isW = [�1,�2,...,�n]. k= 1,2,...,d
is a discrete set of d periods and whose WV is γ β (mk)=

[
γ β (m1),γ

β (m2),...,γ
β (md)

]T ,
where γ β (mk) > 0,

∑d
k=1γ

β (mk)= 1. Let R(mk)=
(
rkij
)
m×n
=

(
µζ
′

ij (mk),ν
ζ ′

ij (mk)
)
m×n

is the decision matrix with q-ROPF values, where µζ ij (mk) represents the degree that ith

alternative satisfies the j th criterion at kth periods, νζ ij (mk) represents the degree that ith

alternative doesn’t satisfy the j th criterion at kth periods such that 0≤µζ ′ij (mk)≤ 1, 0≤
νζ
′

ij (mk)≤ 1, µζ
q
ij (mk)+ν

ζ q
ij (mk)≤ 1 for i= 1,2,...,m,j = 1,2,...,n,k= 1,2,...,p.

__________________________________________________________________
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Algorithm
_____________________________________________________________________
Step 1:
Obtain the decision matrices R(mk)=

(
rkij
)
m×n
=

(
µζ
′

ij (mk),ν
ζ ′

ij (mk)
)
m×n

for the d
distinct time periods.

Step 2:
The decision matrix discusses two types of criterion: (τc) cost form key indicators

and (τb) benefit form criteria. If all indicators are from the same category, no need
for normalisation; nevertheless, in MCDM, there may be two types of parameters. In this
scenario, thematrix was updated to the transforming responsematrixN (mk)=

(
nkij
)
m×n
=(

µζ ij (mk),ν
ζ
ij (mk)

)
m×n using the normalization formula Eq. (4).

(
nkij
)
m×n
=


((

rkij
)
m×n

)c
;j ∈ τc(

rkij
)
m×n
;j ∈ τb.

(4)

where
((

rkij
)
m×n

)c
show the compliment of

(
rkij
)
m×n

.
Step 3:
In this step, we utilized one of the suggested AOs to concentration all the ‘‘normalized

decision matrices’’ N (mk)=
(
nkij
)
m×n
=
(
µζ ij (mk),ν

ζ
ij (mk)

)
m×n into one cumulative

q-ROPF matrix Z =
(
zij
)
m×n=

(
µζ ij,ν

ζ
ij
)
m×n.

zij =DQROPFEWA
(
nij (m1),nij (m2),...,nij (md)

)
=

 q

√√√√√√
∏d

k=1

(
1+µζ qnij (mk)

)γ β (mk)

−
∏d

k=1

(
1−µζ qnij (mk)

)γ β (mk)

∏d
k=1

(
1+µζ qnij (mk)

)γ β (mk)

+
∏d

k=1

(
1−µζ qnij (mk)

)γ β (mk)
, (5)

q
√
2
∏d

k=1ν
ζ γ

β (mk)
nij (mk)

q

√∏d
k=1

(
2−νζ qnij (mk)

)γ β (mk)

+
∏d

k=1

(
νζ

q
nij (mk)

)γ β (mk)


or

zij =DQROPFEWG
(
nij (m1),nij (m2),...,nij (md)

)
=

 q
√
2
∏d

k=1µ
ζ γ

β (mk)
nij (mk)

q

√∏d
k=1

(
2−µζ qnij (mk)

)γ β (mk)

+
∏d

k=1

(
µζ

q
nij (mk)

)γ β (mk)
, (6)

q

√√√√√√
∏d

k=1

(
1+νζ qnij (mk)

)γ β (mk)

−
∏d

k=1

(
1−νζ qnij (mk)

)γ β (mk)

∏d
k=1

(
1+νζ qnij (mk)

)γ β (mk)

+
∏d

k=1

(
1−νζ qnij (mk)

)γ β (mk)
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Step 4:
Define A+ = (αℵ+1,αℵ+2,...,αℵ+m)T and A− = (αℵ−1,αℵ−2,...,αℵ−m)T as the ‘‘q-

ROPF positive ideal solution (q-ROPFPIS) and the q-ROPF negative ideal solution (q-
ROPFNIS)’’ respectively, where αℵ+i= (1,0,0),i=1 ,2,...,m are the m largest q-ROPFNs
and αℵ− i= (0,1,0),i=1 ,2,...,m are the m smallest q-ROPFNs. Furthermore, we denote
the alternatives ξηi i =1 ,2,...,n by ξηi = (ni1,ni2,...,rim)T ,i =1 ,2,...,n.

Step 5:
Calculate the distance between the alternative ξηi and the q-ROPFPISA+ and the distance

between the alternative ξηi and the q-ROPFNIS A− respectively:
d
(
ξ
η
i ,A
+
)
=

∑m

j=1
�jd

(
zij,ξηj+

)
=

1
2

∑m

j=1
�j
(∣∣µζ ij−1∣∣+ ∣∣νζ ij−0∣∣+ ∣∣πij−0∣∣)

=
1
2

∑m

j=1
�j
(
1−µζ ij+νζ ij+π ij

)
=

1
2

∑m

j=1
�j
(
1−µζ ij+νζ ij+1−µζ ij−νζ ij

)
=

∑m

j=1
�j
(
1−µζ ij

)
d
(
ξ
η
i ,A
−
)
=

∑m

j=1
�jd

(
zij,αℵj−

)
=

1
2

∑m

j=1
�j
(∣∣µζ ij−0∣∣+ ∣∣νζ ij−1∣∣+ ∣∣πij−0∣∣)

=
1
2

∑m

j=1
�j
(
1+µζ ij−νζ ij+πij

)
=

1
2

∑m

j=1
�j
(
1+µζ ij−νζ ij+1−µζ ij−ν

ζ ij
)

=
1
2

∑m

j=1
�j
(
1−νζ ij

)
.

Step 6:
Calculate the closeness coefficient of each alternative:

c
(
ξ
η
i
)
=

d
(
ξ
η
i ,A
−
)

d
(
ξ
η
i ,A+

)
+d

(
ξ
η
i ,A−

) , i= 1,2,...,n (7)

Since
d
(
ξ
η
i ,A
+
)
+d

(
ξ
η
i ,A
−
)
=

∑m

j=1
�j
(
1−µζ ij

)
+

∑m

j=1
�j
(
1−νζ ij

)
=

∑m

j=1
�j
(
2−µζ ij−ν

ζ
ij
)

=

∑m

j=1
�j
(
1+πij

)
Equation (7) can be transformed as:

c
(
ξ
η
i
)
=

∑m
j=1�j

(
1−νζ ij

)∑m
j=1�j

(
1+πij

) , i= 1,2,...,n (8)

Step 7:
Rank all the alternatives ξηi (i =1 ,2,...,n) according to the closeness coefficients c

(
ξ
η
i
)

(i =1 ,2,...,n): the greater the value c
(
ξ
η
i
)
, the better the alternative ξηi .
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Figure 2 Pictorial view of proposed Algorithm.
Full-size DOI: 10.7717/peerjcs.1742/fig-2

The pictorial view of proposed Algorithm is given in Fig. 2.

CASE STUDY
The majority of the nation’s population lives in metropolitan areas, which are hubs
of commercial development and ingenuity. Furthermore, cities’ dense population and
activity render them susceptible to a variety of pressures, including environmental and
man-made calamities. In light of the fact that this is the case, a significant portion of the
research that has been carried out over the course of the past several years has focused on
the effects that a variety of disasters have had on cities, as well as the essential management,
restoration, and adaptive strategies that must be implemented in order to deal with such
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disasters. Prior to the outbreak of the COVID-19 epidemic, there was a paucity of study on
the relationship between cities and pandemics, despite the fact that this was not the first
time in the history of humankind that pandemics had harmed cities. Since the beginning
of the COVID-19 emergency, the science-based society has been working tirelessly to shed
some light on a variety of issues, including the mechanisms that are driving the spread of
the disease, its ecological and cultural consequences, and the retrieval and modification
plans and policies that are necessary to address the situation (Li et al., 2020). Some of
the issues that the science-based society has been working to shed some light on include:
Cities are typically designated as ‘‘hotspots’’ for COVID-19 infections because of the high
population and economic activity levels that are seen in these places. As a consequence of
this, a great number of researchers are striving to study the dynamics of the epidemic in
urban places in order to gain a better understanding of the impact that COVID-19 has had
on urban populations (Peng, Zhao & Hu, 2023).

The features of the surrounding ecosystem can impact the kinetics of dissemination
by altering the virus’s survival on contaminated sites and/or its airborne spread. The
research has examined the effects of many ambient and meteorology characteristics such as
weather, dampness, wind velocity, and industrial pollution. Due to the article’s urban focus,
only outcomes pertaining to the outside environment will be covered (Xie et al., 2022).
The evidence comes from nations with varying climatic circumstances, including China,
Germany, the United States, Argentina, Azerbaijan, Sweden, and Greece. As a consequence
of the situationally nature of the study and the large number and sophistication of the
elements involved, the results addressing the effect of environmental variables on COVID-
19 are not consistent across countries and towns. The pandemic’s societal repercussions
have been examined in both emerging and advanced countries. While the majority of
research focus on negative consequences, there are those that address beneficial social
activities sparked by the crisis. The majority of research have concentrated on challenges
arising from lengthy structural inequities prevalent in many nations (Sun et al., 2023b).
Ancient times, epidemics have significantly affected minorities and persons at the bottom
of the social ladder. They frequently suffer more from preexisting illnesses as a result of
increased risk exposure, financial distress, and restricted access to care. The protracted
economic downturn caused by the COVID-19 epidemic has had a devastating effect on
the metropolitan economy. The repercussions are diverse and manifest themselves in a
variety of ways and at a variety of scales (Sun et al., 2023a). While study on this subject
is still ongoing, preliminary findings indicate that the epidemic had a substantial impact
on city taxation, citizen earnings, entertainment and tourists, medium enterprises, the
urban primary sector, and migratory labour. Additionally, a growing body of research has
examined the pandemic’s consequences’ uneven and unequal socioeconomic and regional
distribution (Li, Peng & Wang, 2018).

Explanation of problem
Assume a high-level commission has been established to evaluate the influence of COVID-
19 on ordinary living in five major cities in a country: ξη1 ,ξ

η
2 ,ξ

η
3 ,ξ

η
4 and ξη5 . This review

panel is composed of members of the COVID-19 board of directors who have been
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Table 2 Assessment matrix acquired for d1.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.657,0.432) (0.654,0.345) (0.575,0.155) (0.435,0.244) (0.675,0.422)
ξ
η

2 (0.457,0.674) (0.430,0.340) (0.355,0.225) (0.234,0.653) (0.435,0.765)
ξ
η

3 (0.232,0.321) (0.234,0.555) (0.765,0.355) (0.763,0.256) (0.665,0.432)
ξ
η

4 (0.754,0.453) (0.975,0.265) (0.465,0.543) (0.245,0.532) (0.745,0.643)
ξ
η

5 (0.643,0.556) (0.423,0.465) (0.265,0.215) (0.674,0.245) (0.432,0.653)

Table 3 Assessment matrix acquired for d2.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.674,0.245) (0.535,0.323) (0.855,0.345) (0.457,0.355) (0.425,0.245)
ξ
η

2 (0.355,0.215) (0.640,0.535) (0.445,0.570) (0.745,0.635) (0.242,0.330)
ξ
η

3 (0.643,0.460) (0.265,0.335) (0.235,0.545) (0.253,0.572) (0.732,0.225)
ξ
η

4 (0.567,0.754) (0.255,0.356) (0.215,0.130) (0.570,0.562) (0.879,0.125)
ξ
η

5 (0.341,0.426) (0.570,0.784) (0.465,0.532) (0.674,0.472) (0.243,0.536)

Table 4 Assessment matrix acquired for d3.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.424,0.564) (0.425,0.265) (0.575,0.543) (0.543,0.335) (0.452,0.543)
ξ
η

2 (0.532,0.356) (0.345,0.135) (0.434,0.255) (0.753,0.320) (0.424,0.324)
ξ
η

3 (0.424,0.245) (0.421,0.255) (0.325,0.890) (0.753,0.335) (0.532,0.543)
ξ
η

4 (0.256,0.674) (0.643,0.365) (0.455,0.245) (0.545,0.445) (0.425,0.254)
ξ
η

5 (0.135,0.356) (0.575,0.285) (0.600,0.145) (0.435,0.245) (0.573,0.535)

chosen by the minister of healthcare, commerce, and environment. The panel is tasked
with investigating cities depending on five critical criteria. ℵ1 = environmental factors,
ℵ2 = urban water cycle, ℵ3 = rate of poverty, ℵ4 =social impacts and ℵ5 =economic
impacts throughout the three significant lockdown periods d1, d2 and d3. Assume that
W = (0.10,0.15,0.20,0.25,0.30) represents the weighting of the criterion ℵ1, ℵ2, ℵ3, ℵ4
and ℵ5, and that γ β (mk)= (0.35,0.30,0.35) represents the weighting of the time periods
d1, d2 and d3. Assume experts construct an decision matrix table with dynamic q-ROPFNs.
COVID-19 affects the majority of cities in daily life. It is carried out in the following order:
Step 1 through Step 7 of Algorithm.

Decision-making process
Step 1:Acquire a decision/assessmentmatrixR(mk)=

(
rkij
)
m×n
=

(
µζ
′

ij (mk),ν
ζ ′

ij (mk)
)
m×n

for the d distinct time periods, given in Tables 2, 3 and 4.
Step 2: Normalize the decision matrices acquired by DMs using (5). Here we have two

types of criterion. ℵ3 is cost type criteria and others are benefit type criterion. Normalized
decision matrices given in Tables 5, 6 and 7.
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Table 5 Normalized assessment matrix for d1.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.657,0.432) (0.654,0.345) (0.155,0.575) (0.435,0.244) (0.675,0.422)
ξ
η

2 (0.457,0.674) (0.430,0.340) (0.225,0.355) (0.234,0.653) (0.435,0.765)
ξ
η

3 (0.232,0.321) (0.234,0.555) (0.355,0.765) (0.763,0.256) (0.665,0.432)
ξ
η

4 (0.754,0.453) (0.975,0.265) (0.543,0.465) (0.245,0.532) (0.745,0.643)
ξ
η

5 (0.643,0.556) (0.423,0.465) (0.215,0.265) (0.674,0.245) (0.432,0.653)

Table 6 Normalized assessment matrix for d2.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.674,0.245) (0.535,0.323) (0.345,0.855) (0.457,0.355) (0.425,0.245)
ξ
η

2 (0.355,0.215) (0.640,0.535) (0.570,0.445) (0.745,0.635) (0.242,0.330)
ξ
η

3 (0.643,0.460) (0.265,0.335) (0.545,0.235) (0.253,0.572) (0.732,0.225)
ξ
η

4 (0.567,0.754) (0.255,0.356) (0.130,0.215) (0.570,0.562) (0.879,0.125)
ξ
η

5 (0.341,0.426) (0.570,0.784) (0.532,0.465) (0.674,0.472) (0.243,0.536)

Table 7 Normalized assessment matrix for d3.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.424,0.564) (0.425,0.265) (0.543,0.575) (0.543,0.335) (0.452,0.543)
ξ
η

2 (0.532,0.356) (0.345,0.135) (0.255,0.434) (0.753,0.320) (0.424,0.324)
ξ
η

3 (0.424,0.245) (0.421,0.255) (0.890,0.325) (0.753,0.335) (0.532,0.543)
ξ
η

4 (0.256,0.674) (0.643,0.365) (0.245,0.455) (0.545,0.445) (0.425,0.254)
ξ
η

5 (0.135,0.356) (0.575,0.285) (0.145,0.600) (0.435,0.245) (0.573,0.535)

Step 3:
In this step we utilized proposed DQROPFEWA operator to aggregate all the normalized

decision matrices N (mk)=
(
nkij
)
m×n
=
(
µζ ij (mk),ν

ζ
ij (mk)

)
m×n into one cumulative

q-ROPF matrix Z =
(
zij
)
m×n=

(
µζ ij,ν

ζ
ij
)
m×n, given in Table 8.

Step 4:
Define A+ = (αℵ+1,αℵ+2,...,αℵ+m)T and A− = (αℵ−1,αℵ−2,...,αℵ−m)T as the q-

ROPF positive ideal solution (q-ROPFPIS) and the q-ROPF negative ideal solution
(q-ROPFNIS) as

A+=
(
(1,0,0),(1,0,0),(1,0,0),(1,0,0),(1,0,0)

)
,

A−=
(
(0,1,0),(0,1,0),(0,1,0),(0,1,0),(0,1,0)

)
.

and
ξ
η
1 =

(
(0.603705,0.402249,0.894200),

(0.556216,0.308500,0.927800),(0.412201,0.654471,0.866100),
(0.484348,0.305253,0.950200),(0.549099,0.393372,0.918000)

)
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Table 8 Aggregated values.

ℵ1 ℵ2 ℵ3 ℵ4 ℵ5

ξ
η

1 (0.603705, 0.402249) (0.556216, 0.308500) (0.412201, 0.654471) (0.484348, 0.305253) (0.549099, 0.393372)
ξ
η

2 (0.463707, 0.387514) (0.496206, 0.283795) (0.403923, 0.328960) (0.660179, 0.509706) (0.391021, 0.448084)
ξ
η

3 (0.482519, 0.325964) (0.330856, 0.365182) (0.708360, 0.363422) (0.683976, 0.359841) (0.651186, 0.386867)
ξ
η

4 (0.601855, 0.611763) (0.837205, 0.324042) (0.396317, 0.367519) (0.490435, 0.508572) (0.739610, 0.288521)
ξ
η

5 (0.475750, 0.440266) (0.530132, 0.466380) (0.368453, 0.420480) (0.612943, 0.299050) (0.462450, 0.574853)

ξ
η
2 =

(
(0.463707,0.387514,0.944300),

(0.496206,0.283795,0.949100),(0.403923,0.328960,0.965000),
(0.660179,0.509706,0.833900),(0.391021,0.448084,0.947400)

)
ξ
η
3 =

(
(0.482519,0.325964,0.948400),(0.330856,0.365182,0.970900),

(0.708360,0.363422,0.841800),(0.683976,0.359841,0.858800),
(0.651186,0.386867,0.873300)

)
ξ
η
4 =

(
(0.601855,0.611763,0.820800),(0.837205,0.324042,0.723800),

(0.396317,0.367519,0.965900),(0.490435,0.508572,0.908800),
(0.739610,0.288521,0.829800)

)
ξ
η
5 =

(
(0.475750,0.440266,0.931000),(0.530132,0.466380,0.908400),

(0.368453,0.420480,0.956700),(0.612943,0.299050,0.905700),
(0.462450,0.574853,0.892600)

)
Step 5 and Step 6:
Calculate the distance between the alternative ξηi and the q-ROPFPIS A+ and the

distance between the alternative ξηi and the q-ROPFNIS A−respectively. Then we calculate
the closeness coefficient of each alternative:
c(ξη1 ) = 0.307235
c(ξη2 ) = 0.307432
c(ξη3 ) = 0.336204
c(ξη4 ) = 0.324206
c(ξη5 )= 0.289676

Step 7:
Rank all the alternatives ξηi i =1 ,2,...,n according to the closeness coefficients c

(
ξ
η
i
)

(i= 1,2,...,n)
ξ
η
3 >ξ

η
4 >ξ

η
2 >ξ

η
1 >ξ

η
5 .

Limitations of the proposed method
In order to highlight the inadequacy of the presented methodologies, we undertake a
rigorous study of the Algorithm and identify its flaws.

• In the examples that came before, logical relationships between the arguments were not
taken into account.
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Table 9 Comparison of proposed operators with some exiting operators.

Authors AOs Ranking of alternatives The optimal alternative

Riaz et al. (2020) q-ROPFEWA ξ
η

3 >ξ
η

4 >ξ
η

1 >ξ
η

2 >ξ
η

5 ξ
η

3

q-ROPFEOWA ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

5 >ξ
η

1 ξ
η

3

Liu & Wang (2018) q-ROPFWA ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

1 >ξ
η

5 ξ
η

3

q-ROPFWG ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

5 >ξ
η

1 ξ
η

3

Jana, Muhiuddin & Pal (2019) q-ROPFDWA ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

1 >ξ
η

5 ξ
η

3

q-ROPFDWG ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

5 >ξ
η

1 ξ
η

3

Peng, Dai & Garg (2018) q-ROPFEWA ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

1 >ξ
η

5 ξ
η

3

q-ROPFEWG ξ
η

3 >ξ
η

1 >ξ
η

2 >ξ
η

4 >ξ
η

5 ξ
η

3

Farid & Riaz (2023) q-ROPFAAWA ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

1 >ξ
η

5 ξ
η

3

q-ROPFAAWG ξ
η

3 >ξ
η

1 >ξ
η

2 >ξ
η

4 >ξ
η

5 ξ
η

3

Proposed DQROPFEWA ξ
η

3 >ξ
η

4 >ξ
η

2 >ξ
η

1 >ξ
η

5 ξ
η

3

DQROPFEWG ξ
η

3 >ξ
η

2 >ξ
η

4 >ξ
η

5 >ξ
η

1 ξ
η

3

• It is not typically accurate to assert that each parameter in theMPDMmay be considered
independent of the others when working with real data. Any one of the MPDM’s
parameters might be dependent on or related to a different set of parameters.
• The objectivity of judgements made using the offered MPDM approaches should be
improved by the evaluation of the interdependence between parameters. It’s possible
that the quality of the decision-making framework might be improved by taking reliance
into account in the q-ROPF MPDM.

Comparative study
In this part of the article, we will contrast the proposed operators with specific AOs that
are already being utilised. The fact that both of these approaches end up with the same
outcome indicates why our proposed AOs are preferable. By resolving the information
data with several AOs that are already in use, we are able to compare our results and
arrive at the same optimal conclusion. This illustrates both the soundness and coherence
of the paradigm that we proposed. We receive a rating of ξη3 > ξ

η
4 > ξ

η
2 > ξ

η
1 > ξ

η
5 from

our suggested AOs; in order to confirm our best choice, we analyse this problem using
other AOs that are already in place. The fact that we both arrive at the same option that
is optimal suggests that the AOs that we have provided are correct. The Table 9 compares
the AOs available with certain existing AOs.

CONCLUSION
To aggregate the q-ROPF information acquired over time, several dynamic q-rung
orthopair fuzzy AOs are developed. These include the dynamic q-rung orthopair fuzzy
Einstein weighted averaging (DQROPFEWA) operator and the dynamic q-rung orthopair
fuzzy Einstein weighted geometric (DQROPFEWG) operator. All of the operators include
time into the aggregate process, and hence are time dependent operators, which solve some
of the shortcomings of conventional static q-ROPF aggregation operators. The suggested
operators are shown to have a number of desired features. Additionally, using the suggested
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dynamic q-ROPF operators, we proposed a method for solving MPDM issues in which all
decision information is in the form of q-ROPFNs acquired over time. Finally, an example
is shown to demonstrate the suggested dynamic operators and established technique. Later,
a comparative analysis with the previous research results was conducted to determine the
efficiency of the suggested approach. The primary advantage of this suggested strategy
is that it is more broad than others in terms of accumulating q-ROPF information. The
proposed method can be used to develop future dynamic decision-making methods such
as light field depth estimation (Cui et al., 2023), multiscale feature extraction (Lu et al.,
2023), adapting feature selection (Liu et al., 2023), situation-aware dynamic service (Cheng
et al., 2017) and random optimization (Zhang et al., 2023).
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