Submitted 8 August 2023
Accepted 14 November 2023
Published 18 December 2023

Corresponding author
Carlos Alberto Hernandez-Nava,
cahn@xanum.uam.mx

Academic editor
Vimal Shanmuganathan

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.1740

() Copyright
2023 Hernandez-Nava et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Voice spoofing detection using a neural
networks assembly considering
spectrograms and mel frequency cepstral
coefficients

Carlos Alberto Hernandez-Nava', Eric Alfredo Rincon-Garcia?,
Pedro Lara-Velazquez?, Sergio Gerardo de-los-Cobos-Silva®,
Miguel Angel Gutiérrez-Andrade” and Roman Anselmo
Mora-Gutiérrez®

! Posgrado en Ciencias y Tecnologias de la Informacién, Universidad Auténoma Metropolitana,
Ciudad de México, Ciudad de México, México

% Departamento de Ingenierfa Eléctrica, Universidad Auténoma Metropolitana, Ciudad de
México, Ciudad de México, México

% Departamento de Sistemas, Universidad Auténoma Metropolitana de Azcapotzalco, Ciudad de
México, Ciudad de México, México

ABSTRACT

Nowadays, biometric authentication has gained relevance due to the technological
advances that have allowed its inclusion in many daily-use devices. However, this
same advantage has also brought dangers, as spoofing attacks are now more
common. This work addresses the vulnerabilities of automatic speaker verification
authentication systems, which are prone to attacks arising from new techniques for
the generation of spoofed audio. In this article, we present a countermeasure for these
attacks using an approach that includes easy to implement feature extractors such as
spectrograms and mel frequency cepstral coefficients, as well as a modular
architecture based on deep neural networks. Finally, we evaluate our proposal using
the well-know ASVspoof 2017 V2 database, the experiments show that using the final
architecture the best performance is obtained, achieving an equal error rate of 6.66%
on the evaluation set.

Subjects Artificial Intelligence, Multimedia, Natural Language and Speech, Security and Privacy,
Neural Networks

Keywords Spoof detection, Deep neural networks, Spectrograms, Mel Frequency Cepstral
Coefficients, Assembly

INTRODUCTION

The great growth of social networks in recent years is primarily attributed to the
widespread accessibility to many different devices that facilitate the exchange of biometric
information, such as computers, cell phones and tablets. These devices enable the
transmission of images of human faces, full body videos, as well as audio recordings. Such
information is used to train different tools capable of generating high-quality audiovisual
media, mainly for entertainment purposes; however, due to the vast amount of
information and the current power of these techniques, it is very difficult to distinguish
between generated and genuine content. This generated material has found beneficial
applications in a wide range of fields, including entertainment and, more recently, the
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generation of diverse digital media on social networks; unfortunately, as mentioned in Wu
et al. (2015), it is also being exploited for fraudulent activities.

Today, technology has reached a level of maturity that enables biometric authentication
across many different applications and devices. However, it is essential to make an effort to
safeguard against identity fraud attempts, especially considering the increasing number of
generated media as mentioned in Echizen et al. (2021). Specifically, automatic speaker
verification (ASV) systems, which are frequently used for speaker verification in telephony,
are prone to malicious authentication attempts since they rely solely on the received sound
as the means of authentication.

Several models based on neural networks have been developed for the detection of
generated or manipulated audios intended for identity theft. Initially, basic neural
networks were employed for this purpose. However, as technology progressed, more
sophisticated architectures were gradually adopted to enhance their performance in
fulfilling this task.

Nowadays, the detection of media created with the intention of being used for
counterfeiting has garnered significant attention from the community. As a result,
applications are being developed to detect these types of counterfeit files. This work
specifically focuses on the growing interest in developing countermeasures against identity
theft through automatic speaker verification. The remaining sections of this work are
organized as follows: the next subsection presents the most important works related to
spoof detection; “Materials and Methods” describes our proposed methodology for spoof
detection; “Results” outlines the experiments conducted; “Discussion” comprises the
discussion derived from the findings and “Conclusion” presents the conclusions.

Related work

Interest in biometric recognition of speech and speakers is not new. In 2007, a liveness
verification system, based on lip movement, was proposed in Faraj ¢ Bigun (2007) as a
means of protection against identity theft attempts, particularly through the generation of
videos for this purpose.

Given the importance of the problem, the establishment of a standardized database
became necessary. In 2015, the National Institute of Informatics initiated two challenges,
namely the Voice Conversion Challenge and the ASVspoof Challenge, with the aim of
providing an evaluation platform and metrics to facilitate a fair comparison among the
proposed techniques related to media cloning and detection.

The Voice Conversion Challenge (Toda et al., 2016) is a biennial event that started in
2016, in this challenge participants are provided with a database and tasked with
developing voice converters using their own methods. The organizers then evaluate and
classify the transformed speech submitted by the participants.

The ASVspoof challenge (Wu et al., 2015), which is also a biennial event, is highly
relevant to this work. The challenge provides a database comprising pairs of genuine and
false or generated audios, which participant’s models must accurately classify. Since the
release of the ASVspoof challenge databases, investigations have yielded remarkably
favorable results. The latest version of the databases was published in 2021.
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In Zhang, Yu ¢ Hansen (2017), the authors propose an architecture that combines
convolutional neural networks (CNN) and recurrent neural networks (RNN)
simultaneously. To evaluate the effectiveness of their method, they utilized the ASVspoof
2015 database, where the input of their model consisted of spectrograms extracted from
the audios. Due to the widely varying durations in this database, the authors decided to
standardize the duration to four seconds for all audio samples. Through their experiments,
they achieved an equal error rate (EER) of 1.47%.

It is worth highlighting the efforts made to create new detection models. For instance, in
Lavrentyeva et al. (2017), the authors proposed a simplified version of the Light CNN
architecture that employs Max Feature Map (MFM) activation. The authors implemented
this network to classify audios into two possible outcomes: genuine or false, specifically to
prevent spoofing, they reported an equal error rate of 6.73% in the ASVspoof 2017
database.

In addition to proposing novel models, another factor to consider is the level of
complexity required for the proposals. In Pang ¢» He (2017), the authors demonstrated that
the implementing very deep or complicated neural networks is not necessarily essential for
impersonation detection in identity verification. They explained that satisfactory results
can be achieved with simple models. Their model consisted of an input layer, two CNN
layers, a gated recurrent unit (GRU) layer, and a final layer. Despite its apparent simplicity,
this model yielded excellent performance, with an EER of 0.77% on a corpus of 28,000
audios extracted from the APSRD (Authentic and Playback Speaker Recognition
Database).

The alternative approach involves employing increasingly deeper neural networks;
however, this can give rise to the vanishing gradient problem. To address this difficulty,
residual neural networks (ResNet) have emerged. They have proven to be successful in
image recognition, as demonstrated in Chen et al. (2017), where their effectiveness for
spoofed audio detection was investigated. The evaluation of this research was conducted
using the ASVspoof 2017 dataset, revealing that Resnet achieved one of the best
performances among the systems employing a single model.

So far, it has not been mentioned whether high-quality audio is truly essential to
carrying out an audio attack. However, Lorenzo-Trueba et al. (2018) explored the potential
of utilizing solely low-quality data to train models against spoofing. For this purpose, they
developed a system based on generative adversarial networks (GAN), to enhance the
quality of audio files accessible on the internet.

Understanding the significance of audio quality is crucial to comprehend the nature of
the challenges at hand. This is particularly relevant because voice-controlled devices
(VCDs) including popular examples like Alexa, Siri, and others are increasingly prevalent.
These devices are primarily utilized for automating home appliances and other
entertainment tools. Since voice attacks do not necessitate high-quality audio, it can be
inferred that these devices might be vulnerable to such attacks.

In an analysis conducted by Malik et al. (2020), multi-hop replay attacks were shown to
be a vulnerability since they are carried out using VCDs with the intention of accessing
other VCDs connected to the internet. For example, a device could be used to replicate the
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voice of the speaker, giving an order or command to a second VCD, and the latter would
tulfill its function without verifying whether the instruction truly originates from the
speaker or is simply a repetition of the voice of the user.

After establishing the vulnerability of VCDs, (Gong, Yang ¢ Poellabauer, 2020) presents
another concern regarding the number of channels employed in attacks on these devices.
They present a neural network-based model designed for the specific purpose of detecting
multichannel audio. The proposed model allows for an arbitrary number of input
channels, in addition, what can be highlighted is that their model is fully developed in a
neural network framework, enabling potential integration with other neural network-
based models in the future.

Combinations of neural networks are frequently employed in recent and advanced
studies. In Dua, Jain ¢ Kumar (2021), the authors examined the performance of various
architectures, incorporating deep neural networks (DNNs), long short-term memory
(LSTM) layers, temporal convolution (TC), and spatial convolution (SC). To evaluate the
performance of their proposal, they used ASVspoof 2015 and ASVspoof 2019 databases,
achieving good results in both, with particularly impressive results in the latter.

It is worth mentioning that there are two main research approaches for spoof detection.
The first approach involves using diverse architectures and classification models, including
the Gaussian mixture model (GMM), support-vector machines (SVM), neural networks
such as CNN, RNN, LSTM, GAN, ResNet, and even autoencoders.

The second research approach involves using diverse techniques for audio feature
extraction, including different types of spectrograms or coefficients such as mel frequency
cepstral coefficients (MFCC), inverse mel-frequency cepstral coefficients (IMFCC),
complex cepstral coefficients (CCC), linear frequency cepstral coefficients (LFC), constant
Q cepstral coefficients (CQCC), teager energy cepstral coefficients (TECC), linear
predictive cepstral coefficients (LPCC), as well as various combinations thereof.

Although some of the extraction techniques and proposed architectures are highly
efficient, they can be complex to comprehend and replicate. Therefore, we believe it is
crucial to propose a technique that is both easily understandable and reproducible, while
maintaining high precision in the specific task of audio spoof detection.

MATERIALS AND METHODS

To accurately classify genuine and spoofed audio, it is necessary to identify and extract
useful information from them. In this study, we found that combining the use of
spectrograms and mel-frequency cepstral coefficients is sufficient to achieve higher
accuracy that the state-of-the-art methods.

Spectrograms

To obtain the spectrograms, samples are taken through a time window to calculate the
frequency content of the samples using the short time Fourier transform (STFT). This
process involves extracting and analyzing several signal frames at each window
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Figure 1 Spectrogram. Full-size &l DOT: 10.7717/peerj-cs.1740/fig-1

displacement over time. Each frame is added to a matrix that represents the variation in the
spectrum and energy of the signal. As new frames are obtained, they are consecutively
added to the first position in the array. In this way, the variation of the signal's spectrum
and energy can be represented as a function of time.

After conducting tests, it became clear that linear spectrograms alone did not capture all
the necessary information to distinguish between a spoof audio and a genuine one.
Therefore, we decided to use spectrograms with a logarithmic scale to better capture audio
information. As expected, after performing additional experiments, we found that both
linear and logarithmic spectrograms were necessary to achieve high accuracy. In the
following paragraphs, we provide more details on these findings.

Although there are many representations available, for this work, we considered the
time on the abscissa axis as consecutive sequences of Fourier transforms, with the
frequency expressed in Hz on the ordinate axis, and finally the representation of the energy
expressed in dB represented with a color palette, Fig. 1 illustrates a linear spectrogram with
time on the horizontal axis and frequency on the vertical axis.

The main modification for logarithmic spectrograms involves changing the scale of the
ordinate axis from a linear to a logarithmic scale. For this study, we considered two
different areas of interest. The first area includes values between 10* and 10*, as shown in
Fig. 2A. This interval was selected because it represents the range where the greatest
amount of sound wave energy is concentrated for human voice. The second zone was
reduced to values between 10° and 10* to focus on the zone that corresponds to the highest
frequencies and exclude the lowest ones, as shown in Fig. 2B.
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The most commonly reported feature extraction technique for spoof detection in the
specialized literature is the mel frequency cepstral coefficients, originally proposed by
Davis & Mermelstein (1980). These are the widely used features to represent the human
voice and have shown good results in various environments.

Prior to the extraction of MFCCs, an analog signal is converted into a digital signal
through sampling at a specific sample rate. The digital signal is subjected to a series of
processes, as illustrated in Fig. 3, to extract the MFCC features.

After dividing the analog signal into overlapping frames, the Discrete Fourier
Transform (DFT) of the signal is calculated. Subsequently, the signal is filtered using the
Mel filter bank, and the output is log compressed. It is then transformed into the cepstral
domain using the Discrete Cosine Transform (DCT), preserving the first 13 coefficients
while discarding the higher ones. As mentioned in Kuamr, Dua ¢» Choudhary (2014), this
is because 13 coefficients are sufficient for representing the speech signal.

In this work, MFCCs are used in two different ways. First, 13 coefficients are extracted
for each window, resulting in a 13 x 298 matrix. Subsequently, the matrix is reduced to a
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vector of 13 coordinates, by calculating the average of all the windows. Both the matrix and
the vector are used for audio classification.

Models for spectrograms
To extract information from the spectrograms and properly classify the audios, we propose
using two models based in convolutional neural networks.

The first model comprises four 2-D convolutional layers with 32, 64, 96, and 96 filters,
respectively. After each convolution, batch normalization and max-pooling are performed.
Finally, a flatten layer and two dense layers are included, as shown in Fig. 4. We trained two
copies of model 1: one with linear spectrograms and the other with logarithmic
spectrograms with values between 10” and 10*,

For the linear spectrogram version, we used five epochs, a batch size of 200, a binary
cross-entropy loss function, and RMSprop optimizer. In contrast, the logarithmic
spectrogram version required 10 epochs, a smaller batch size of 20, the same loss function,
and the Adam optimizer.

The second model was trained using logarithmic spectrograms with values between 10°
and 10*. The network comprises three time-distributed 2-D convolutional layers with 32,
64, and 96 filters respectively. After each convolution, time-distributed max-pooling is
performed. Next, a flatten layer, a dense layer and a dropout layer are included. Finally, a
dense layer completes the model, as shown in Fig. 5, 10 epochs were required to achieve
good convergence with a batch size of 10, we used a binary cross-entropy loss function and
the Adam optimizer.

Models for MFCCs

For the MFCCs coefficients, we used two additional models.

Model 3 takes the vector representation of the MFCCs as input and passes the 13
coefficients through three time distributed 1-D dense layers with 24, 13 and 10 units,
respectively, along with a dropout layer. Next, we added three LSTM layers with 10, 15 and
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30 units, followed by a second dropout layer. Finally, a dense layer with 30 units was
included, as can be seen in Fig. 6.

Model 4 receives the two-dimensional MFCCs as input. The network comprises a time
distributed 2-D convolutional layer with 36 filters, followed by a batch normalization layer,
a second 2-D convolutional layer with 64 filters, and a max pooling layer. We then
included two dense layers with 24 units each, followed by a flatten layer and a dense layer,
as can be seen in Fig. 7.

For the models using MFCCs, more epochs could be used due to the reduced feature
extraction size. For the model that uses a vector, we employed 60 epochs, a batch size of
200, the binary cross-entropy loss function, and the Adam optimizer. As for the version
using MFCCs in matrix form, it required 30 epochs for better convergence, a large batch
size of 300, the same loss function, and the RMSprop optimizer, it should be noted that for
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all these models, whether using spectrograms or MFCCs, a learning rate of 0.001 was

applied.
For each audio, the linear spectrogram, the two logarithmic spectrograms described
above, and the MFCC coefficients are calculated and introduced into their respective

models. The classification results from each model are concatenated in a vector, which is

used as input for a new neural network. This provides the final classification prediction, as

depicted in Fig. 8.

All models were individually trained and subsequently assembled to form the final

architecture, as illustrated in Fig. 9. This design offers a significant advantage because it
allows for the seamless addition of new models and feature extractions to the architecture.
This flexibility arises from the way they are integrated to produce the final classification for

each audio.
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RESULTS

To evaluate the performance of our proposed methodology, we utilized the ASVspoof 2017
V2 database, which is the second version of the database used in the ASVspoof 2017
challenge (Kinnunen et al., 2017; Delgado et al., 2018). This database is focused on replay
attacks, which are generated by recording the voice of a genuine speaker and then
replaying it to an ASV system, instead of using the genuine speech of the person.

The genuine audios are a subset of the RedDots4 corpus (Lee et al., 2015), collected by
volunteers using Android smartphones. In contrast, the spoofed audios result from playing
and recording authentic audios using a variety of devices and within different acoustic
environments, that is, the physical space in which the recording process occurs.

The ASVspoof 2017 V2 database comprises recordings collected with various replay
configurations, each involving a playback device, an acoustic environment, and a recording
device. This database includes 61 different configurations, created by combining 26
environments, 26 playback devices, and 25 recording devices, these configurations were
applied to the speech of 42 speakers, as detailed in Table 1.

The corpus consists of 18,030 audio files of varying durations, divided into three
datasets, the first dataset contains 1,507 genuine and 1,507 generated audios for training.
The second dataset consists of 760 genuine and 950 generated audios for development.
Finally, the third dataset includes 1,298 genuine and 12,008 generated audio files for
evaluation.

To homogenize the audios, we decided to make them all have a duration of 3 s. This
decision is based on the findings of Zhang, Yu ¢» Hansen (2017), where it was mentioned
that if the audios have a duration of less than 2.5 s, favorable results are not obtained.
Furthermore, after analyzing the database, we found that most of the audios have a
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Table 1 Description of the ASVspoof 2017 V2 database.

Subset Speakers Replay sessions Replay config Genuine audio Spoof audio
Training 10 6 3 1,507 1,507
Development 8 10 10 760 950
Evaluation 24 161 57 1,298 12,008

Table 2 Accuracy and EER for each model.

Feature extraction Training accuracy (%) Evaluation accuracy (%) EER (%)
Linear spectrograms 99.41 72.67 22.67
Log spectrograms (107, 10%) 93.20 64.02 23.13
Log spectrograms (10%, 10% 92.20 70.71 26.12
MECC (vector) 98.11 68.98 21.06
MEFCC (matrix) 87.93 81.42 22.80

Table 3 Accuracy and EER for assembly.
Model Evaluation accuracy (%) EER (%)
Assembly 96.46 6.66

duration close to 3 s, therefore, we determine that a duration of 3 s is sufficient to achieve a
good performance.

In this work, when an audio was shorter, silence was added, and for longer audios only
the initial 3 s were used. This strategy served as a preprocessing step for all the feature
extraction techniques discussed in this document. A similar strategy is employed by Pang
¢ He (2017), where if the sample is too long, they simply cut the excess part, and if the
sample is too short, they concatenate the original sample with itself to obtain a desired
length.

The periods of silence or 0 values in some of the original RedDots database audio files
could potentially impact the performance of detection systems. During the creation of
playback attacks, these periods of silence were distorted into other values, making the task
more difficult, this issue was mitigated with the release of the ASVspoof 2017 V2 database.

In this context, both truncation and addition of repeated audio or silence can indeed
affect the results. Kwak et al. (2021) demonstrate in their experiments that a minimum of 3
s is necessary to achieve optimal system performance. However, for this specific proposal,
we also needed to establish a fixed duration to ensure consistent spectrogram scales and
maintain image homogeneity.

The performance of the proposed methodology was evaluated using the Equal Error
Rate or Crossover Error Rate (CER), which represents the point at which the false rejection
rate (FRR) and the false acceptance rate (FAR) are equal. It is expected that higher accuracy
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Table 4 Comparison of proposed approach with existing techniques, in the ASVspoof 2017 V2 database.

Approach Feature extraction Classifier Eval EER (%)
Proposed assembly Spectrograms + MFCC DNN 6.66
Wickramasinghe et al. (2019) CF + CM GMM 8.58
Das & Li (2018) CQCC + IFCC, DCTILPR + RMFCC GMM 9.01
Suthokumar et al. (2019) PPRFWS_LR GMM 9.28
Jelil et al. (2018) CQCC + CILPR GMM 9.41
Kamble & Patil (2021) CQCC + LFCC + MFCC + TECC GMM 10.45
Balamurali et al. (2019) MFCC + IMFCC + CQCC + CCC + RFCC + LFCC + LPCC + GMM 10.80
Spectrogram + Autoencoder Features
Delgado et al. (2018) CQCC (baseline) GMM 12.24
Kamble, Tak & Patil (2020) CQCC + ESA-IFCC GMM 12.93
Tapkir et al. (2018) CQCC + PNCC GMM 12.98
Yang, Das & Li (2018) eCQCC-DA DNN 13.38

Note:

The result for the proposed assembly is shown in bold.

will result in a lower EER, as optimal performance is achieved with 100% accuracy or an
EER equal to 0.

As previously mentioned, all models were individually trained and tested before being
assembled into the final architecture. Table 2 presents the accuracy and EER (expressed as
a percentage) achieved by each proposed model.

The next step involves assembling the five feature extraction processes and their
corresponding models to establish a correspondence rule between the audios and their
respective classification. As expected, the final architecture outperforms the individual
models when they work independently, as evidenced by the results in Table 3, where an
accuracy of 96.46% and an EER of 6.66% were achieved.

DISCUSSION

To properly evaluate our proposal, we compared it with other models reported in literature
that used the ASVspoof 2017 V2 database. Table 4 presents the EER reported by different
authors, along with the extraction techniques and the classifiers used by them. Our
proposal achieved the lowest EER among all the models compared. Thus, our
methodology, which incorporates mel frequency cepstral coefficients and linear and
logarithmic spectrograms, along with CNNs, exceeds state-of-the-art results.

Individually, the proposed models exhibit adequate but not outstanding behavior. Most
of the models in this research extract an image directly from the audio files, specifically
spectrograms. Although MFCCs are not images, they generate a matrix that can be treated
as an image, enabling us to harness the capabilities of CNNs for tasks involving image
processing, such as segmentation and recognition.

It is worth highlighting the importance of preprocessing the audio files to obtain a more
homogeneous database to perform the feature extraction. This ensures that the features
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serve their intended purpose in training the models, even when dealing with the
unbalanced ASVspoof 2017 V2 database used in this work.

The quality of performance can be verified by examining the EER metric, where the final
architecture achieves a value of 6.66%. This value allow us to gauge our performance in
relation to other works and proposals. It can also be described as a classification accuracy
of 96.46% out of the eighteen thousand audio samples.

CONCLUSIONS

As artificial intelligence continues to improve, it becomes increasingly easier to generate
spoofed audio that is more challenging to detect. In this article, we describe a methodology
that can be easily implemented and achieves high accuracy in detecting spoofed audio. Our
findings suggest that MFCCs and linear and logarithmic spectrograms are sufficient to
achieve outstanding performance, and the advantage is that these features can be easily
calculated using established libraries. Finally, the information is processed using either
CNN or DNN, and the classification is completed with only a small number of
misclassified audio files.

The strength of this proposal is achieved not only by combining various techniques for
extracting useful information from audio, but also by proposing different neural network
architectures to be used with each technique, which highlights the importance of using a
tailored approach for each technique.

Indeed, the truly outstanding result is achieved by the architecture of the final assembly,
which merges the predictions given by each proposed model and generates a final
classification. This assembly has not only proven to have an adequate behavior but also is
above the cutting-edge results.
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