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ABSTRACT
This study introduces a novel approach, Local Spatial Projection Convolution
(LSPConv), for point cloud classification and semantic segmentation. Unlike
conventional methods utilizing relative coordinates for local geometric information,
our motivation stems from the inadequacy of existing techniques for representing the
intricate spatial organization of unconsolidated and irregular 3D point clouds. To
address this limitation, we propose a Local Spatial Projection Module utilizing a
vector projection strategy, designed to capture comprehensive local spatial
information more effectively. Moreover, recent studies emphasize the importance of
anisotropic kernels for point cloud feature extraction, considering the distinct
contributions of individual neighboring points. To cater to this requirement, we
introduce the Feature Weight Assignment (FWA) Module to assign weights to
neighboring points, enhancing the anisotropy crucial for accurate feature extraction.
Additionally, we introduce an Anisotropic Relative Feature Encoding Module that
adaptively encodes points based on their relative features, further amplifying the
anisotropic characteristics. Our approaches achieve remarkable results for point
cloud classification and segmentation in several benchmark datasets based on
extensive qualitative and quantitative evaluation.

Subjects Artificial Intelligence, Neural Networks
Keywords Deep learning, Point cloud, Semantic segmentation, Classification, Anisotropic kernel,
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INTRODUCTION
With the development of 3D scanning technology and related sensors such as depth
cameras and vehicle-mounted LIDAR, 3D point cloud data has been playing an
irreplaceable role in many fields, such as robot navigation (Wang et al., 2021) and
autonomous cars (Liang et al., 2018; Wang et al., 2018; Shi et al., 2020; Deng et al., 2021;
Liang et al., 2022; Li et al., 2022; Liu et al., 2023; Yang et al., 2023; Chen et al., 2023b).
Compared with images, 3D point cloud data can represent the location, shape, and size of
objects in space more accurately, which means a stronger ability for spatial description.
However, analyzing 3D information from point clouds using deep learning techniques is
more challenging than that from 2D images due to its sparse, irregular, and unordered
structure. 2D convolution only applies to structured data, such as images. Because of these
characteristics, 2D convolution applied to dense structured image information cannot be
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directly applied to 3D point clouds to process it To address this issue, previous work has
been studied along two general lines. One transforms 3D point clouds into regular data,
such as projections onto 2D images (Su et al., 2015; Qi et al., 2016) or convert into 3D
voxels (Maturana & Scherer, 2015; Song et al., 2017; Riegler, Osman Ulusoy & Geiger,
2017), and use 2D or 3D convolution to extract features. This type of processing results in
spatial information being lost or repeatedly represented. Voxelization evenly divides the
space of the point cloud into several voxels of the same size, so there will be a case that
multiple points may fall on the same voxel, resulting in information loss. If converting a
point cloud into multiple views, some parts of the point cloud will appear in different
views, resulting in duplication of information. Such methods are not conducive to
objectively reflecting the information of the original object. The other process point cloud
data directly. As a pioneer, PointNet (Qi et al., 2017a) utilizes a shared weight multilayer
perceptron (MLP) to encode each point and extract global information. To extract fine-
grained point cloud local features, based on PointNet, the subsequent works (Qi et al.,
2017b; Wang, Samari & Siddiqi, 2018; Wang et al., 2019b; Zhao et al., 2019; Komarichev,
Zhong & Hua, 2019; Zhao et al., 2021; Xu et al., 2021; Xiang et al., 2021; Wu et al., 2022;
Qian et al., 2022;Ma et al., 2022; Lai et al., 2022; Wu et al., 2023; Park et al., 2023; Robert,
Raguet & Landrieu, 2023) suggest different grouping strategies for point cloud local feature
extraction, which significantly improves the ability of point cloud analysis.

However, we have found that previous methods often ignore the appropriate modeling
of local geometric feature representations in point clouds. On the level of geometric input
features, previous grouping strategies typically use the relative coordinates of neighboring
points around the central query point to represent the spatial information of a group of
local points. We argue that the local spatial information is not adequately represented
because such input data has an unconsolidated structure and lacks a comprehensive
description of spatial organization. To this end, we aim to devise a module with the
purpose of enhancing the local information representation of point clouds. Thus, a Local
Spatial Projection module is introduced by utilizing vector projection strategy and
regularization techniques to encode the whole region into a space shape feature and regard
the obtained space shape feature as the intrinsic information of the point cloud. We
employ this approach to obtain appropriate geometric feature representations for the point
cloud.

On the level of the strategy of local feature extraction, early approaches (Qi et al., 2017a,
2017b) commonly apply various homogeneous convolution kernels, in which all points are
processed by the same MLP, ignoring the individual contributions of different neighbor
points for the query point. Follow-up works’ adaptive/anisotropic kernels (Xu et al., 2018;
Thomas et al., 2019; Zhao et al., 2019, 2021; Xu et al., 2021; Zhou et al., 2021; Ma et al.,
2022; Wu et al., 2022; Deng et al., 2023; Park et al., 2023) designed according to the
corresponding relationship between the neighbor points and the center query point
demonstrate impressive local feature extraction capability. Therefore, we inherit this
design philosophy and construct anisotropic point cloud local feature extraction operators.
Our first main contribution is developing a radial basis function Feature Weight
Assignment (FWA) Module that adaptively assigns weights based on the relative distance
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of neighboring points. Furthermore, to obtain a qualified local feature extraction kernel, an
Anisotropic Relative Feature Encoding Module is introduced. It encodes points’ features
adaptively according to the relative coordinates and relative features. By incorporating
such a design, the convolution kernel shows more emphatic anisotropy when operating on
local regions, which automatically analyzes the variability of contributions due to
geometrical and feature distinctions. To sum up, we propose a novel operation called Local
Spatial Projection Convolution, namely LSPConv. As opposed to the methods based on
large-scale multilayer perceptrons and complexly designed structures for weight obtaining
that consume massive amounts of memory and computing resources, LSPConv is
lightweight and more efficient.

We propose LSPConv as a way to achieve improved accuracy for 3D classification and
segmentation tasks. The proposed network architecture has the following contributions:

� Local Spatial Projection Module is constructed to model local spatial information about
the input point cloud, improving the network’s ability to capture the local geometry.

� LSPConv employs a Radial basis function Feature Weight Assignment Module to
dynamically assign weights to each neighboring point, encoding local neighbor points
anisotropically.

� In LSPConv, an adaptive operator called Anisotropic Relative Feature Encoding Module
is introduced, which encodes points adaptively according to the relative feature.

RELATED WORK
Voxelization-based and multi-view methods. To apply powerful CNNs in 2D vision to
3D point cloud analysis, there have been some strategies (Su et al., 2015; Qi et al., 2016;
Kanezaki, Matsushita & Nishida, 2018;Maturana & Scherer, 2015;Wang et al., 2017; Song
et al., 2017; Riegler, Osman Ulusoy & Geiger, 2017) representing point cloud by
voxelization or multi-view pictures. However, the method has two great problems which
are information loss and enormous computation costs. To solve the issue, OctNet (Riegler,
Osman Ulusoy & Geiger, 2017) and Kd-Net attempt (Klokov & Lempitsky, 2017) to use
more efficient data structures to cut down the cost and extract effective information as
much as possible. However, none of these methods can achieve the desired result because it
is fundamentally difficult to represent 3D information with one-sided 2D information,
especially in the case of large-scale scanning.

Point-based methods. Researchers have developed deep network structures that
manipulate raw point clouds directly, as sets embedded in continuous space, instead of
projecting or quantifying irregular point clouds onto regular grids in 2D or 3D. PointNet
(Qi et al., 2017a) is a novel deep net architecture suitable for the irregularity of point
clouds, which does not rely on the intermediate representation. Due to the disorder and
rotation invariance of the point cloud, it rotates the point cloud to a proper pose, and then
utilizes MLP on each point to map the information of the point clouds to higher
dimensions. Then, it applies a symmetric function to aggregate global features. However,
PointNet only considers global features and neglects the capture of local features. PointNet
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++ (Qi et al., 2017b) has been proposed to solve the issue by applying a local aggregator to
capture local correlations, which is called set abstraction (SA) in different scales. PointNet
and PointNet++ introduced a groundbreaking paradigm for point cloud analysis, paving
the way for subsequent methods. These methods adopt a similar network framework
structure, incorporating diverse local feature aggregation modules to enhance model
performance. They achieve this by leveraging graph neural networks (Verma, Boyer &
Verbeek, 2018; Wang, Samari & Siddiqi, 2018; Li et al., 2018a; Lei, Akhtar & Mian, 2020;
Wang et al., 2019b, 2019a; Lin, Huang & Wang, 2020), introducing meticulously designed
kernels (Xu et al., 2018; Thomas et al., 2019; Zhao et al., 2019; Hu et al., 2020; Xu et al.,
2021; Qian et al., 2022; Ma et al., 2022), or employing attention mechanisms (Zhao et al.,
2021; Wu et al., 2022; Lai et al., 2022; Guo et al., 2021; Wu et al., 2023; Park et al., 2023;
Robert, Raguet & Landrieu, 2023).

Anisotropic kernel design. A fixed convolution kernel is limited to detecting the most
relevant section in the neighborhood, so a qualified method should generate adaptive
kernels instead of the aforementioned isotropic kernels such as a fixed MLP applied in
PointNet/PointNet++. Many studies (Velicković et al., 2017; Verma, Boyer & Verbeek,
2018; Simonovsky & Komodakis, 2017; Wu, Qi & Fuxin, 2019; Wang et al., 2019a; Lin,
Huang & Wang, 2020) have been proposed to assign proper attentional weights to
different points or filters, which are defined as anisotropic kernels as opposed to isotropic
kernels. The study of the asymmetric anisotropic kernel has brought enlightenment to this
article. A typical example is KPConv (Thomas et al., 2019). KPConv updates the feature of
kernel points by setting kernel points with different weights and modifying the locations of
kernel points on the basis of deformable convolution. PAConv (Xu et al., 2021) designs a
Weight Bank and a ScoreNet to learn a score based on the position relationship of points
and use the score to assemble weight matrices for each point adaptively. By introducing
these two modules, the encoding process of each neighbor point can exhibit independence
and anisotropy. CurveNet (Xiang et al., 2021) introduces an operator to consolidate
hypothetical curves within point clouds. Sequences of connected points are grouped
through guided traversal of the point cloud. These grouped curves are then further
aggregated to enhance their individual point-wise features. The Point Transformer series
(Zhao et al., 2021; Wu et al., 2022) utilize neighborhood attention and updated grouped
vector attention to encode each neighbor point individually according to relevant features.
PointVector (Deng et al., 2023) proposes a vector-oriented point aggregation operator that
can aggregate neighboring features through higher-dimensional vectors. SPoTr (Park
et al., 2023) adopts local points attention (LPA) defined on a local group to learn local
shape context, which applies Channel-Wise Point Attention (CWPA) to make the features
of each point exhibit anisotropy.

Methods for rotational invariance. Recent advancements in 3D deep learning have
demonstrated the feasibility of designing specialized convolution operators for the direct
processing of point cloud data within neural networks. Nevertheless, a common limitation
lies in the lack of guaranteed rotation invariance, resulting in neural networks that struggle
to generalize effectively when confronted with arbitrary rotations. Zhang et al. (2019,
2020b) argue that convolution operators encounter greater complexity in capturing
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rotation-invariant features compared to handling coordinates. Consequently, their
approach involves the enhancement of convolution operators in point cloud learning by
harnessing low-level geometric features inherently invariant to rotation, such as distance
and angle measurements, along with incorporating global contextual information. Related
research endeavors have also concentrated on refining the representation of input features
and optimizing the local information modeling capabilities. Li et al. (2021), for instance,
has introduced a novel low-level representation that is entirely invariant to rotations,
serving as a substitute for the conventional 3D Cartesian coordinates as the input to neural
networks. Furthermore, Zhang et al. (2020a) have introduced a novel neural network called
Aligned Edge Convolutional Neural Network (AECNN), explicitly for learning feature
representations of point clouds with respect to Local Reference Frames (LRFs). This
framework improves the ability to model the same object from different angles. RIConv++
(Zhang, Hua & Yeung, 2022) has proposed a convolutional operator that takes into
account the relationships between points of interest and their neighboring points, as well as
the intra-neighborhood relationships. This holistic approach enhances feature
differentiation by constructing potent rotation-invariant features from localized regions,
further advancing the capabilities of point cloud processing within neural networks.

METHOD
We propose LSPconv, a novel point cloud feature encoder that exploits the local geometric
feature of the point cloud. An LSPconv block consists of three key modules. Feature
Weight Assignment module is proposed to dynamically assign weights to each neighbor
point, which aims at reinforcing heterogeneity across neighborhoods by leveraging relative
distance features. An asymmetrical local feature aggregator called Anisotropic Relative
Feature Encoding module is designed to aggregate local features, which takes full account
of the relative relationship between neighboring points and center points. Simultaneously,
a local point cloud geometry encoding module called Local Spatial Projection module is
proposed to obtain a better representation of the local geometric information. A detailed
module design for LSPConv is illustrated in Fig. 1.

Network architecture
We design the network architectures for point segmentation tasks and cloud classification
using the proposed LSPConv layer.

Segmentation. We design two network architectures for part segmentation tasks and
indoor segmentation using the proposed LSPConv layer. Both of them are encoder-
decoder residual architecture, which is composed of a network for extracting point cloud
information and a classification header for segmentation.

For part segmentation, the encoder is composed of four LSPConv layers with different
point resolutions, and each residual layer is stacked by one residual block. The decoder
utilizes the features from four different resolution point cloud layers and utilizes a shared-
MLP for classification.

For indoor segmentation, the encoder is composed of four LSPConv layers with
different point resolutions, and each residual layer is stacked with two residual blocks. The
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decoder is composed of four up-sampling layers with different resolutions and an
embedding layer as a classification header. Each-up sampling layer integrates the semantic
information from the residual blocks in the encoder with the same resolution, ensuring the
effective transmission of fine-grained semantic information.

Classifacation. The classification network has the same encoder component as the
segmentation model. We employ dynamic graph structures instead of downsampling and
interpolation for sparser point clouds in the ModelNet40 and ScanObjectNN classification
datasets. Specifically, rather than being fixed using geographical locations, the network
structure is changed in each layer based on feature similarity across points.

The network architecture is shown in Fig. 2.

Feature weight assignment module
In the previous process of local information aggregation, the strength of the relationship
between the feature vectors of different neighboring points and the feature vectors of the
central query point is not considered. To address this issue, we propose a scheme of
artificially setting a weight parameter to weigh the feature vectors of different neighbor
points depending on the relative distance of the pair of points. For a set of local point
clouds, its center query point is defined as point i and one of the neighbor points is denoted
as point j, j 2 NðiÞ. The feature of the j-th point after weighting can be represented in the
following formula:
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f 0j ¼ wijfj j 2 NðiÞ; (1)

where fj denotes the feature of the j-th neighbor point, wij denotes the weight relative to the
center point, and f 0j denotes the output feature of it after the process of the Feature Weight
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Assignment Module. Here, wij is a function of the distance between the j-th neighbor point
and the center point i. The corresponding j-th points are multiplied by wij to adjust the
feature of each neighbor point.

We have introduced a set of three Feature Weight Assignment modules, each designed
as a function of relative distance. This innovative approach allows for the effective
assignment of distinct weights to points located at varying distances from the central point.
This adaptability in weight assignment facilitates enhanced modeling of the point cloud’s
spatial characteristics.

Linear function distance weighting module. The linear function distance weighting
module utilizes the linear distance to weight the feature vector, which utilizes the L2 norm
of the relative coordinate position of each neighbor point as the weight of the feature vector
of each neighbor point, as shown in the following formula:

wij ¼ jpj � pi
�� ��j2 j 2 NðiÞ; (2)

where pi and pj denote the coordinates of the center point and its j-th neighbor point, j�j jj2
denotes the L2 norm of the vector. With this setting, points further away from the center
have greater weight, which means that the weight is positively correlated with the relative
distance, forcing the central point to collect information from distant points to enrich its
own features.

Exponential function distance weighting module. The exponential function distance
weighting module utilizes the exponential distance to weight the feature vector, which
utilizes the exponential function of the L2 norm of the relative coordinate position of each
neighbor point as the weight of the feature vector of each neighbor point, as shown in the
following formula:

wij ¼ e� jpj�pij jj2 j 2 NðiÞ: (3)

Radial basis function distance weighting module. The radial basis function distance
weighting module utilizes the radial basis function to weight the feature vector and utilizes
the radial basis function of the relative coordinate position of each neighbor point as the
weight of the feature vector of each neighbor point. The radial basis function is a kind of
scalar function that is symmetric in the radial direction, which is defined as a monotone
function of Euclidean distance from any point in space to a center. In our method, the
radial basis function is utilized as the weighting function, as shown in the following
formula:

wij ¼ k jpj � pi
�� ��j� � ¼ e�

pj�pij jj j22
2r2 j 2 NðiÞ; (4)

the variance of the radial basis function is determined by the parameter r. The larger the
value r, the wider the frequency band of the radial basis function and the better the
smoothness is. By adjusting the smoothness parameter r, a compromise can be achieved
between feature over-smoothing and under-smoothing. Due to the non-uniformity of the
density of the point cloud, the distribution from the neighboring points to the center point
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is different for different center points, therefore different parameters should be selected for
different center points to ensure that the Radial basis function will not produce over
smooth and under smooth. To select the appropriate r for different center points, the
learnable parameter r is designed according to the distribution from the neighbor point to
the center point. The expression of r is as follows:

r ¼ Linear max jpj � pi
�� ��j2� �� �

j 2 NðiÞ: (5)

The design of the exponential function distance weighting module and the radial basis
function distance weighting module is basically similar on a logical level, which means that
the weight is negatively correlated with the relative distance. The central point is required
to pay more attention to the features of its closer neighbors, for in common reality, the
closer points tend to be of the same type, which emphasizes the consistency of a set of
points. The weights of the above three methods as a function of distance are qualitatively
depicted in Fig. 3.

Experiments show that the Feature Weight Assignment Module can significantly
improve the accuracy of the model, which will be described in detail in the Evaluation
section.

Anisotropic relative feature encoding module
The point cloud local feature aggregation module has the functions of information
combing and information collection, whose performance directly affects the effectiveness
of the network. Therefore, the construction of an effective point cloud local feature
aggregation module is the most important issue in building the whole network. In our
method, the proposed Anisotropic Relative Feature Encoding Module applies both relative
spatial coordinates and relative feature information to encode the feature of the neighbor
point, which significantly amplifies the heterogeneity of each neighboring point, effectively

Figure 3 Schematic diagram of weights assigned by the Feature Weight Assignment Module to
neighbor points at different distances. (A–C) denote linear function, exponential function, and
radial basis distance function weighting module respectively.

Full-size DOI: 10.7717/peerj-cs.1738/fig-3
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enhancing the model’s capacity to capture the diversity of information among adjacent
points. The general formula of the local aggregation operator is:

bfi ¼ R G Dpij;Dfij; fj
� � j j 2 NðiÞ� �� �

; (6)

where Gð�Þ represents the encoding function, which is used by the local aggregation layer
to encode the relative coordinates of each point i and the j-th point into a new feature
vector. To fuse all the transformed neighborhood features to form the output features of
point i, we use Rð�Þ as the reduction function, which can use the maximum, mean, or sum.
fj is defined as the feature of the j-th point, Dpij is defined as the coordinate of the j-th point

relative to the i-th point, and NðiÞ is defined as the neighborhood of the i-th point.
In order to calculate the aggregation weight of all adjacent points, a convolution filter is

defined at any relative position based on the adaptive weight method, as shown in the
following formula:

G Dpij;Dfij; fj
� � ¼ M H Dpij

� �� ðJ Dfij
� �� I fj

� �� �
: (7)

Here, Hð�Þ denotes a repetition function, which is introduced to repeat the coordinate
information of three dimensions several times until its dimension is approximately equal
to the feature dimension. � denotes the Hadamard product, Ið�Þ, Mð�Þ and Jð�Þ were
defined as the shared-MLP.

With the Feature Weight Assignment Module, the general formula of the local
aggregation operator finally becomes:

G Dpij;Dfij; fj
� � ¼ M H Dpij

� �� ðJ Dfij
� �� I f 0j

� �� �
: (8)

It can be seen from Eq. (8) that Dpij and Dfij assign different relative feature information
to different neighboring points, which distinct one certain neighbor point with others,
exhibiting anisotropy. At the same time, employing only relative coordinates instead of
absolute coordinates for encoding also ensures translation invariance, which is more
suitable for point cloud scenes under different spatial locations.

Local spatial projection module
In our method, a point in space and its neighbors found by the K-nearest neighbor (KNN)
algorithm is considered as a local point cloud block. Existing methods merely stack the
features of neighboring points together as input features. We argue that this kind of
approach is insufficient because it treats the local point cloud as a set of discrete points,
lacking a comprehensive description of the overall geometric characteristics of the local
point cloud. In order to analyze the integrity of local point cloud blocks, we designed a
point cloud local information extraction module called the Local Spatial Projection
Module, which models the geometric shape features of a point cloud through the
utilization of vector projection and reassembly methods.

In the construction of the point cloud shape information extraction module, the center
point of the local point cloud block is first used as the origin to build up a Cartesian
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coordinate system and regards the relative position of each point in the local point cloud
block to the origin as the relative position vector of each point. Then, we divide the space
Cartesian coordinate system into six axes: x positive semi-axis, x negative semi-axis, y
positive semi-axis, y negative semi-axis, z positive semi-axis, z negative semi-axis. In order
to obtain the complete representation of the local point cloud, the module projects the
vector represented by the relative coordinate of each neighbor point to the six axes and
sums the signals on each axis. The above process can be represented by the following
formula:

sliþ ¼
X

j
max 0;Dplij

� �
; j 2 NðiÞ; l ¼ x; y; z; (9)

sli� ¼
X

j
max 0;�Dplij

� �
; j 2 NðiÞ; l ¼ x; y; z; (10)

where pi and pj denote the coordinates of the center point and its j-th neighbor point, Dplij
denotes the components of the relative coordinate vector on the l-axis, l ¼ x; y; z, and

sliþ/s
l
i� denote the signal obtained by the summation operator on the l positive/negative

semi-axis.
After the projection operation, the original space shape is obtained. To reduce the

sensitivity of the network to the change in point cloud density, the original space shape
composition of signals projected on the six axes is normalized.

We proposed three normalization methods:
L2 normalization The first method utilized L2 normalization to normalize the original

space shape, as shown below:

sli� ¼
sli�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m sm 2
iþ þP

m sm2
i�

p m ¼ x; y; z � ¼ þ=�; (11)

where sli� denotes the signal obtained by the summation operator on the l positive/negative
semi-axis and sli� is defined as the normalized signal on the l positive/negative semi-axis.

Adaptive normalization. The second method utilized a multilayer perceptron to
adaptively adjust the length of each axis of the original space shape to achieve a better
spatial representation, as shown below:

si ¼ LeakReLuðBNðLinearðsiÞÞÞ; (12)

si ¼ ReLuðBNðLinearðsiÞÞÞ; (13)

si is the initial input, si is the middle represents and si is the final result obtained. Here
we employ the ReLu activation function to ensure that the output signal of each axis is
non-negative.

Sharp normalization. The third method is called sharp normalization. This method
normalizes all the non-zero signals to 1 and remains the zero signal, which can be easily
represented by the following formula:
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sli� ¼ 0; sli� ¼ 0
1; sli� . 0



: (14)

By this design, the network is principally devoted to the distinction between points on
the boundary and points in the interior. The sharp normalization method is proven to be
efficient for indoor segmentation.

Different normalization methods are qualitatively depicted in Fig. 4. After the
normalization, the normalized space shape, the relative position coordinate information,
and color information are input into the neural network as the basic information of the
point cloud for training. Note Local Spatial Projection Module exclusively captures the
local shape of the original point cloud and is not applied to the downsampled point cloud.
This design is because, while downsampling aggregates neighboring features and expands

Figure 4 The effect of Local Spatial Projection module. (A) Demonstrate a set of local points. The blue point indicates the center query point, and
the red points indicate its neighbor points found by the KNN algorithm. (B) Is the original space shape attained by the neighbor points projection
and (C–E), demonstrate the space shapes obtained by L2 normalization, adaptive normalization and sharp normalization methods.

Full-size DOI: 10.7717/peerj-cs.1738/fig-4
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the receptive field, it also disrupts fine-grained geometric structures and appearances.
Therefore, it is advisable to use this module exclusively at the highest resolution. In the
Evaluation section, it is proved that adding space shape can effectively improve the
network’s ability to capture the local information of the point cloud compared with simply
inputting the relative position coordinate information.

EVALUATION
In this section, we evaluate our model on four different datasets to achieve point cloud part
segmentation, indoor segmentation, and classification tasks including ShapeNetPart,
Stanford 3D Indoor Space (S3DIS) ModelNet40, and ScanObjectNN datasets.
Comprehensive network configuration and comparisons are available for each task.

Part segmentation
Data. In order to improve our model, we do more things. On the ShapeNetPart dataset (Yi
et al., 2016), we further test our model for the part segmentation task. A total of 16,881
shapes totaling 16 categories make up this dataset, with 14,006 used for training and 2,874
for testing. Each point has a label assigned from a pool of 50 parts, and each point cloud
has between two and six parts. We replicate Qi et al. (2017b)’s experimental setup and use
their supplied data for benchmarking. Each form has 2,048 points sampled from it. In
addition to the 3D coordinates, the input attributes also include the point normal.

Implementation. We select L2 normalization for Local Spatial Projection Module to
normalize the space shape and select radial basis function distance weighting module for
Feature Weight Assignment Module to assign weights to different neighbor points for part
segmentation task. Based on Pointnet (Qi et al., 2017a), a one-hot vector representing the
different categories for each point is used to compute the segmentation results. Other
training parameters are the same as for classification. All layers take 20 for the number k of
neighborhood size. To obtain the global feature, the max-pooling function is chosen. We
select LeakyReLU for the activation function with a negative slope setting to 0.1 and batch
normalization. We use SGD optimizer with momentum setting to 0.9 (Wang et al., 2019b).
We apply a cosine annealing schedule to adjust the learning rate during the training. The
initial learning rate is 0.1 and is decreased until 0.001 (Loshchilov & Hutter, 2016). The
batch size for the training models is 32. We use PyTorch implementation and train the
network on a Tesla A40 GPU.

Results. In Table 1, we present the mean instance IoU (mIoU) and mean class IoU
(mcIoU). The IoU of a shape is calculated by averaging the IoU of each part, in accordance
with the evaluation scheme of Qi et al. (2016). By averaging the IoUs overall testing
instances, the mean IoU (mIoU) is calculated. The mean IoU across all form categories is
known as the class IoU (mcIoU). The mean IoU of LSPconv on ShapeNetPart dataset
reaches 86.6%, surpassing the previous competitive methods PointMLP (Ma et al., 2022)
and Kpconv (Thomas et al., 2019) 0.2% and 0.3% respectively. We also exhibit the results
of class-based segmentation. Comparing LSPconv to other approaches, it performs at the
cutting edge.
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Indoor segmentation
Data. We evaluate our model on Stanford Large-Scale 3D Indoor Spaces Dataset (Armeni
et al., 2016) (S3DIS). This dataset consists of 271 rooms in total. Each room includes six 3D
scan point clouds for indoor areas, belonging to 13 semantic categories. For a common
evaluation protocol (Tchapmi et al., 2017; Qi et al., 2017a; Thomas et al., 2019), we select
Area 5 to test our model because it is not in the same building as other areas.

Implementation. We select Sharp normalization for Local Spatial Projection Module to
normalize the space shape and select radial basis function distance weighting module for
Feature Weight Assignment Module to assign weights to different neighbor points for
indoor segmentation task. The massive indoor scene datasets lead to further challenges,
including the larger scale of the scene in a real environment with a lot of further noise and
distinct outlines. Therefore, we follow the experimental settings of KPConv (Thomas et al.,
2019), and train our network by applying randomly sample clouds in spheres. The
subclouds consist of more points with various sizes and are stacked into batches for
training our network much further. During the test phase, spheres are equably picked in
the scenes. To ensure the accuracy of the test, we ensure that every point is examined
several times by using a voting scheme. The input point attributes contain the RGB colors
and the original heights. We use SGD optimizer with momentum set to 0.98 and an initial
learning rate of 0.01. The learning rate decays by multiplying 0:10:02 in each epoch. To
prevent gradient explosion, the gradient clipping threshold value is set to 100. We use
PyTorch implementation and train the network on a Tesla A40 GPU. Differing from the
part segmentation setting, we omit the J Dfij

� �
in Anisotropic Relative Feature Encoding

Module for such a setting that attains better performance in the experiment.

Table 1 Part segmentation results on ShapeNet dataset evaluated as the mean class IoU (mcIoU) and mean instance IoU (mIoU). The bold text
indicates the best result.

Method mcIoU mIoU Air
plane

Bag Cap Car Chair Ear
phone

Guitar Knife Lamp Laptop Motor
bike

Mug Pistol Rocket Skate
board

Table

PointNet (Qi et al., 2017a) 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ (Qi et al., 2017b) 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN (Wang et al., 2019b) 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

PointASNL (Yan et al., 2020) – 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

3D-GCN (Lin, Huang &
Wang, 2021)

82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8

KPConv (Thomas et al., 2019) 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

AGConv (Zhou et al., 2021) 83.4 86.4 84.8 81.2 85.7 79.7 91.2 80.9 91.9 88.6 84.8 96.2 70.7 94.9 82.3 61.0 75.9 84.2

PAConv (Xu et al., 2021) 84.2 86.0 – – – – – – – – – – – – – – – –

Point Trans. (Zhao et al., 2021) 83.7 86.6 – – – – – – – – – – – – – – – –

PointMLP (Ma et al., 2022) 84.6 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3

PointNeXt (Qian et al., 2022) 84.4 86.7 – – – – – – – – – – – – – – – –

StratifiedTransformer
(Lai et al., 2022)

85.1 86.6 – – – – – – – – – – – – – – – –

SPoTr (Park et al., 2023) 85.4 87.2 – – – – – – – – – – – – – – – –

APES (Wu et al., 2023) 83.7 85.8 – – – – – – – – – – – – – – – –

Ours 84.2 86.6 84.9 84.4 88.8 81.6 91.9 76.6 91.8 87.5 85.9 96.4 76.4 95.4 82.5 64.5 76.2 83.2
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Results. In Table 2, we present the average classwise intersection over union (mIoU),
average classwise accuracy (mAcc), and average classwise accuracy (OA). Each class’s IoU
result is also supplied. LSPconv reaches 90.2%, 74.0%, and 68.2% under OA, mAcc, and
mIoU metrics respectively. The performance exceeds that of previous classic models such
as KPConv (Thomas et al., 2019), PAconv (Xu et al., 2021) and AGConv (Zhou et al.,
2021). The remarkable performance on difficult large scene semantic segmentation
datasets further demonstrates the effectiveness of the proposed local spatial projection
module, anisotropic kernel, and weight assignment module.

Point cloud classification
Data. We test our model using two datasets: ModelNet40 (Wu et al., 2015) and
ScanObjectNN (Uy et al., 2019) to Validate the classification ability of LSPConv.

ModelNet40 is subdivided into 40 categories and consists of 12,311 meshed CAD
models. A total of 9,843 CAD models are intended to train our model, while 2,468 CAD
models are intended to test it. We sample 2,024 points uniformly for each object and use
the ðx; y; zÞ coordinates of them as input.

While ModelNet40 has long been considered the standard benchmark for point
cloud analysis, the rapid evolution of point cloud analysis techniques may render it
inadequate for assessing the capabilities of modern methods. In light of this, we have also
undertaken experiments using the ScanObjectNN benchmark. ScanObjectNN comprises
approximately 15,000 real-world scanned objects, meticulously classified into 15 distinct
categories, with a total of 2,902 unique object instances. The presence of occlusions and
noise in ScanObjectNN presents formidable challenges to existing point cloud analysis

Table 2 Semantic segmentation results on S3DIS dataset evaluated on Area 5. The bold text indicates the best result.

Method OA mAcc mIoU Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

PointNet (Qi et al., 2017a) – 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2

SegCloud (Tchapmi et al., 2017) – 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

PointASNL (Yan et al., 2020) 87.7 68.5 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1

PointCNN (Li et al., 2018b) 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

PointWeb (Zhao et al., 2019) 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

KPConv (Thomas et al., 2019) – 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9

PosPool (Liu et al., 2020) – – 66.7 – – – – – – – – – – – – –

PAConv (Xu et al., 2021) – 73.0 66.6 94.6 98.6 82.4 0.0 26.4 58.0 60.0 89.7 80.4 74.3 69.8 73.5 57.7

BAAF-Net (Qiu, Anwar & Barnes,
2021c)

88.9 73.1 65.4 – – – – – – – – – – – – –

AGConv (Zhou et al., 2021) 90.0 73.2 67.9 93.9 98.4 82.2 0.0 23.9 59.1 71.3 91.5 81.2 75.5 74.9 72.1 58.6

PointNeXt-L (Qian et al., 2022) 90.0 – 69.0 – – – – – – – – – – – – –

StratifiedTransformer (Lai et al.,
2022)

91.5 78.1 72.0 – – – – – – – – – – – – –

SPoTr (Park et al., 2023) 90.7 76.4 70.8 – – – – – – – – – – – – –

SPT (Robert, Raguet & Landrieu,
2023)

– – 68.9 – – – – – – – – – – – – –

Ours 90.2 74.0 68.2 94.4 98.4 83.0 0.0 26.0 60.2 71.4 90.4 81.1 75.5 70.0 74.9 61.6
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approaches. For our experiments, we have chosen to tackle the most challenging perturbed
variant, denoted as PB_T50_RS.

Implementation. We select L2 normalization for the Local Spatial Projection Module to
normalize the space shape and select the radial basis function distance weighting module
for the Feature Weight Assignment Module to assign weights to different neighbor points
for the point cloud classification task. We recompute the graph in accordance with the
network configurations (Wang et al., 2019b) based on the similarity of the feature sets in
each layer. For all layers, the k of neighborhood size is set to 20. The multiscale features are
aggregated using shortcut connections and fed forward to a shared fully connected layer.
Max-pooling is used to acquire the global feature. LeakyReLU and batch normalization are
used on all levels. We utilize AdamW optimizer and apply a cosine annealing schedule to
adjust the learning rate during the training. The initial learning rate is 0.001 and is
decreased until 0.0001 (Loshchilov & Hutter, 2017). Each training model has a batch size of
32. We train the network on a Tesla A40 GPU using the PyTorch implementation. The
data augmentation procedure includes point shifting, scaling, and perturbation.

Results The mean class accuracy (mAcc) and total accuracy (OA) are the evaluation
metrics for both datasets. In Tables 3 and 4, we display the classification results on the
ModelNet40 dataset and the ScanObjectNN dataset respectively. For the ModelNet40
dataset, we compare the input data types and the number of points connected to each
method. With a limited input size of 2 k points, our model obtains a desirable outcome on

Table 3 Classification results on Modelnet40 dataset. The bold text indicates the best result.

Method mAcc (%) OA (%)

VoxNet (Maturana & Scherer, 2015) 83.0 85.9

Subvolume (Qi et al., 2016) 86.0 89.2

PointNet (Qi et al., 2017a) 86.0 89.2

PointNet++ (Qi et al., 2017b) – 91.9

Kd-Net (Klokov & Lempitsky, 2017) – 90.6

SpidcrCNN (Xu et al., 2018) – 92.4

PointCNN (Li et al., 2018b) 88.1 92.2

SO-Net (Li, Chen & Lee, 2018) – 93.4

DGCNN (Wang et al., 2019b) 90.2 92.9

KPConv (Thomas et al., 2019) – 92.9

3D-GCN (Lin, Huang & Wang, 2020) – 92.1

PointASNL (Yan et al., 2020) – 93.2

Point Trans. (Zhao et al., 2021) 90.6 93.7

PointMLP (Ma et al., 2022) 91.4 94.5

PointNeXt (Qian et al., 2022) 90.8 93.2

Point2Vec (Abou Zeid et al., 2023) – 94.8

APES (Wu et al., 2023) – 93.8

DeLA (Chen et al., 2023a) 92.2 94.0

Ours 90.5 93.2
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the ModelNet40 dataset. The accuracy achieves 90.5% and 93.2% under mAcc and OA
metrics respectively, almost on par with the advanced PointNeXt algorithm. For the
ScanObjectNN dataset, accuracy has reached 76.7% and 80.0% in terms of mAcc and OA
metrics respectively under a lightweight and simple model design. The experimental
results conducted on these two datasets indicate that our algorithm has a satisfactory
performance in classification tasks and exhibits a competitive edge.

Efficiency
We provide the parameter values and corresponding network performances in Table 5 to
contrast the complexity of our model with previous influential methods. These models are
for the classification task on ModelNet40. LSPconv has very few additional learnable

Table 4 Classification results on ScanObjectNN (PB_T50_RS) dataset. The bold text indicates the best
result.

Method mAcc (%) OA (%)

PointNet (Qi et al., 2017a) 63.4 68.2

SpiderCNN (Xu et al., 2018) 69.8 73.7

PointNet++ (Qi et al., 2017b) 75.4 77.9

DGCNN (Wang et al., 2019b) 73.6 78.1

PointCNN (Li et al., 2018b) 75.1 78.5

BGA-DGCNN (Uy et al., 2019) 75.7 79.7

BGA-PN++ (Uy et al., 2019) 77.5 80.2

DRNet (Qiu, Anwar & Barnes, 2021a) 78 80.3

GBNet (Qiu, Anwar & Barnes, 2021b) 77.8 80.5

SimpleView (Goyal et al., 2021) – 80.5 � 0.3

PRANet (Cheng et al., 2021) 79.1 82.1

MVTN (Hamdi, Giancola & Ghanem, 2021) – 82.8

PointMLP (Ma et al., 2022) 83.9 � 0.5 85.4 � 0.3

PointNeXt (Qian et al., 2022) 85.8 � 0.6 87.7 � 0.4

Point2Vec (Abou Zeid et al., 2023) – 87.5

SPoTr (Park et al., 2023) 86.8 88.6

Ours 76.7 80.0

Table 5 The comparison of parameters number and overall accuracy of previous methods and ours.
The bold text indicates the best result.

Method #Parameters OA (%)

PointNet (Qi et al., 2017a) 0.6 M 89.2

PointNet++ (Qi et al., 2017b) 1.5 M 91.9

DGCNN (Wang et al., 2019b) 1.8 M 92.9

KPConv (Thomas et al., 2019) 14.3 M 92.9

PointMLP (Ma et al., 2022) 13.2 M 94.5

PointNeXt (Qian et al., 2022) 1.4 M 93.2

Ours 1.8 M 93.2
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parameters because the L2 normalization in Local Spatial Projection Module does not
introduce learnable parameters and the radial basis function Feature Weight Assignment
Module just requires training an MLP to attain r. From the table, it is evident that our
model achieves a commendable performance, delivering an overall accuracy of 93.2%
while utilizing only 1.8M parameters. This balance between accuracy and efficiency is
comparable to leading-edge algorithms.

ABLATION STUDIES
We describe some architectural choices in our network and compare LSPConv to several
other ablation networks. Ablation studies are conducted on the ShapeNet dataset.

The effect of each proposed module
To verify the specific contribution of each module, we tested each module item by item.
The results are summarized in Table 6. When introducing Feature Weight Assignment
Module, wij will be applied to fj, f 0j will be utilized instead of the original fj. When
introducing Anisotropic Relative Feature Encoding Module, H Dpij

� �
and J Dfij

� �
will be

applied Hadamard product to Iðf 0j Þ. When introducing Local Spatial Projection Module,
the L2 normalized space shape will be modeled for the first layer instead of just utilizing
Dpij for local geometric information description. The first line exhibits the experimental

results of applying a symmetric kernel without introducing any of the proposed modules.
The second row shows that equipped with the proposed Feature Weight Assignment
(FWA) Module, the performance of the network has been boosted from 81.8% and 85.2%
to 83.2% and 85.7% under mcIoU and mIoU on ShapeNet dataset. The third row
demonstrates that including the proposed Anisotropic Relative Feature Encoding (ARFE)
Module into the network improves the result to 83.8% and 86.4% in terms of mcIoU and
mIoU, demonstrating its effectiveness of anisotropy kernel for enhancing the performance
of the network. Finally, as shown in the fourth row, when applying Local Spatial Projection
Module (LSP) for building a better representation of local spatial information, the results
are improved to 84.2% and 86.6% in terms of mcIoU and mIoU.

Feature weight assignment module
We discuss the different designs of the Feature Weight Assignment Modules. Three
different Feature Weight Assignment Modules are designed to assign weights to each
neighbor point. We tested the performance of these modules separately. The introduction

Table 6 Ablation study on ShapeNet dataset. The bold text indicates the best result.

FWA ARFE LSP mcIoU (%) mIoU (%)

EXP1 81.8 85.2

EXP2 ✓ 83.2 85.7

EXP3 ✓ ✓ 83.8 86.4

EXP4 ✓ ✓ ✓ 84.2 86.6

Note:
FWA, feature weight assignment module; ARFE, anisotropic relative feature encoding module; LSP, local spatial

projection module.
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of exponential function can improve the segmentation accuracy by 0.2% under the mcIoU
index, and the introduction of radial basis function can improve the segmentation
accuracy by 0.5% and 0.2% under the mcIoU and mIoU indexes, respectively. This proves
that the strategy of assigning different weights to the features of different neighbor points
according to their distance is effective. Generally, the weight is negatively correlated with
the distance. The learnable parameter r set by the radial basis function adaptively adjusts
the smoothness of the weight distribution function, which can better find better weights for
different neighbor points. As shown in Table 7, LSPConv can efficiently assign weights and
obtain the best performance when the radial basis function distance weighting module is
applied.

Relative information selection
In LSPConv, we imply relative information Dpij and Dfij for local feature modeling. As
shown in Table 8, Dpij and Dfij are both utilized in order to enhance the difference between
different neighbor points, which means the kernel could show anisotropy to model the
local feature of the point cloud. We explore the performance of different inputs of relative
information. When only Dfij is introduced, the accuracy is achieved 82.6% and 85.6%
under mcIoU and mIoU indexes, respectively. Similarly, when only Dpij is introduced, the
accuracy is achieved 84.0% and 86.3% under the mcIoU and mIoU indexes respectively.
The experimental results exhibit that compared with utilizing J Dfij

� �
and H Dfij

� �
alone,

simultaneously applying two relative information, Dpij and Dfij, is the best way to encode
the features of each point, with the mcIoU and mIoU indexes achieving 84.2% and 86.6%
respectively.

Table 7 Results of part segmentation network with different Feature Weight Assignment modules.
‘Without’means omitting the FeatureWeight Assignment module. The bold text indicates the best result.

Weighting module mcIoU (%) mIoU (%)

Without 83.7 86.4

Linear function 83.7 86.2

Exponential function 83.9 86.4

Radial basis function 84.2 86.6

Table 8 Results of part segmentation network with different relative information input for
anisotropic relative feature encoding. The bold text indicates the best result.

Relative information mcIoU (%) mIoU (%)

J Dfij
� �� I f 0j

� �
82.6 85.6

H Dpij
� �� I f 0j

� �
84.0 86.3

H Dpij
� �� J Dfij

� �� I f 0j
� �

84.2 86.6
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Notice that the module exhibits the strongest anisotropy when all relative features are
utilized and consequently the best results are obtained.

Local shape information representation
Furthermore, we discuss the different designs of the local shape information
representation. There are three different Local Spatial Projection modules designed to
model the local shape of the point cloud. We tested the performance of these three
modules separately, as shown in Table 9. Experiments were carried out on different Local
Spatial Projection modules. The adaptive normalization based Local Spatial Projection
module is trained to adaptively scale the original space shape, compared to just using Dpij,
The performance of part segmentation is improved by 0.3% and 0.2% under mcIoU and
mIoU indexes. L2 regularization of original space shape based on the local spatial
projection module of L2 normalization, the performance of part segmentation is improved
by 0.5% and 0.4% under mcIoU and mIoU indexes. The Sharp normalization method is
more appropriate for scene semantic segmentation, but embedding it in part segmentation
tasks still works, and the performance of part segmentation has improved by 0.2% and
0.1% under the mcIoU and mIoU metrics. The test results show that the proposed Local
shape information representation module can better represent the local spatial
information of the point cloud compared with simple Dpij. The experimental results based
on ShapeNet dataset show that all three proposed local spatial projection modules are
effective, among which the L2 normalization is the most effective. Notice that the L2
normalization method performs better than the sharp normalization method on ShapeNet
dataset, while The experiment shows the opposite results on S3DIS dataset. To this end, the
L2 normalization method is applied for part segmentation and classification while the
sharp normalization method is selected for indoor segmentation.

Table 9 Results of part segmentation network with different local shape information representation.
‘Dpij only’ means replacing local spatial projection information with relative coordinates. The bold text
indicates the best result.

Local shape information mcIoU (%) mIoU (%)

Dpij only 83.7 86.2

Adaptive normalization 84.0 86.4

L2 normalization 84.2 86.6

Sharp normalization 83.9 86.3

Table 10 Results of part segmentation network on ShapNet with different numbers k of nearest
neighbors. The bold text indicates the best result.

Number k of neighbors mcIoU (%) mIoU (%)

5 81.6 85.2

10 83.3 86.1

20 84.2 86.6

40 84.0 86.4
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Number of neighbor points
We conduct experiments to find out the influence of the number of nearest neighbors, as
shown in Table 10. The result shows that the model achieving 84.2% and 86.6% under
mcIoU and mIoU indexes, performs best when the number of neighbor points k = 20.
When the number of neighbors is too small, such as k = 5 or k = 10, the receptive field is
insufficient and the local semantic information cannot be fully mined. We find that when k
is too large (k = 40), the performance of the model deteriorates to 84.0% and 86.4% under
mcIoU and mIoU indexes. It is mainly because a large receptive field introduces noise from
other parts, resulting in ambiguous local information and a lack of consistency in the point
cloud. This result confirms that appropriately increasing the number of neighbor points
can expand the receptive field, which improves the ability of the operator to capture the
geometric structure and represent local information.

CONCLUSION
In this article, we present a network for point cloud semantic segmentation, named
LSPConv. LSPConv constructs a Local Spatial Projection Module to model local geometry
information, which has been proven to be effective for irregular and disordered point
clouds. Meanwhile, we designed a radial basis function distance feature weight assignment
module to assign weights for the different points according to relative distance.
Additionally, an adaptive operator called the Anisotropic Relative Feature Encoding
module was introduced, which is able to encode points adaptively according to the relative
feature, which forces the module to exhibit anisotropy on the basis of satisfying translation
invariance. The proposed approach aims to represent point clouds more accurately and
improve the local modeling capability, which can better handle irregular and disordered
point clouds. Our approaches achieve impressive results for classifying and segmenting
point clouds in several benchmark datasets based on the extensive qualitative and
quantitative evaluation.
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