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ABSTRACT
Because many existing algorithms are mainly trained based on the structural features
of the networks, the results are more inclined to the structural commonality of the
networks. These algorithms ignore the rich external information and node attributes
(such as node text content, community and labels, etc.) that have important implications
for network data analysis tasks. Existing network embedding algorithms considering
text features usually regard the co-occurrence words in the node’s text, or use an
inducedmatrix completion algorithm to factorize the text featurematrix or the network
structure feature matrix. Although this kind of algorithm can greatly improve the
network embedding performance, they ignore the contribution rate of different co-
occurrence words in the node’s text. This article proposes a network embedding
learning algorithm combining network structure and co-occurrence word features,
also incorporating an attention mechanism to model the weight information of the
co-occurrence words in the model. This mechanism filters out unimportant words
and focuses on important words for learning and training tasks, fully considering the
impact of the different co-occurrence words to the model. The proposed network
representation algorithm is tested on three open datasets, and the experimental results
demonstrate its strong advantages in node classification, visualization analysis, and case
analysis tasks.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Text Mining, Neural Networks
Keywords Network Embedded Learning, Text Features, Attention Mechanism, Network
Representation Learning

INTRODUCTION
Network structure is a common research structure in the objective world, such as social
networks, citation networks, or chemical networks (Newman, 2010). Many studies, such
as image detection, personalized recommendation, or anomaly detection, use these large,
complex networks to obtain new knowledge (Cohen & Havlin, 2014; Qi et al., 2018). With
the rapid development of IT technology, social networks, such as WeChat, Weibo, and
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Facebook, have now surpassed hundreds of millions of nodes, requiring updated and
more complex research of large-scale networks. Network embedding approaches (Tu et al.,
2017a; Tu et al., 2017b; Zhang, Yin & Zhu, 2018; Yang, Xiao & Zhang, 2022) have emerged
to meet this challenge. These approaches avoid tedious feature engineering and combine
the original data in the network with other network applications. Network embedding (Cui
et al., 2019; Han et al., 2020) converts components into vector form, such as nodes, edges
or subgraphs in the network, and preserves the properties of the processed objects in the
network embeddings to the greatest extent. Network embedding also expresses complex
relationships of the original network in a more efficient and intuitive way.

Manual methods are usually required to obtain the structural features of the network
when constructing feature engineering in traditional network representation models, and
to use these featuers to represent the interaction relationships of nodes. These methods are
complex, not suitable for automation, and they use differentmethods for different domains,
so they are not universal. Some classical unsupervised network (graph) embedding learning
methods use eigenvalues and eigenvectors, and singular values and singular vectors, also
known as spectra of the input data matrix and called as the network embedding learning
model based on spectral methods (Kipf & Welling, 2017). From the perspective of linear
algebra, these methods, including multi-dimensional scaling (MDS; Venna & Kaski, 2006),
isometric mapping (IsoMap; Tenenbaum, Silva & Langford, 2000), local linear embedding
(LLE; Roweis & Saul, 2000), and Laplacian Eigenmaps (LE; Belkin & Niyogi, 2001), are
usually regarded as dimensionality reduction techniques. LLE assumes that each node is a
linear combination of adjacent nodes in the embedding space and uses the distance between
the weighted sum vector represented by the neighbouring node and the vector represented
by the central node as the loss function, which is obtained by minimizing the loss function.
Laplacian Eigenmapsmaintains the structure of the network by adding a penalty term to the
objective function, and it makes two nodes adjacent as much as possible in the embedded
vector space. Graph representations (GraRep; Cao, Lu & Xu, 2015) performs singular
value decomposition by defining the network topology information of the k-order nearest
neighbours, and then connects each of the obtained vector representations to reflect
the real network structure information. These methods have computational efficiency
limitations because they would like to use these simple models, for example they use the
K -nearest neighbour algorithm (KNN; Altman, 1992) to obtain an affinity matrix. The
eigenvector solution is used to learn the embedding of network nodes. The time complexity
of these model usually reaches O(|v|3) (Sun, Zhou & Zhao, 2021). Because these models are
calculation heavy and time consuming, it is difficult to apply them to largescale networks.

Therefore, current network embedding learning methods require to reduce
computational complexity and improve its performance. Inspired by the Word2Vec
algorithm (Mikolov et al., 2013b;Mikolov et al., 2013a), DeepWalk (Perozzi, Rami & Skiena,
2014) obtains the sequence of nodes by random walk, and uses Word2Vec to learn the
embedding vector of the nodes. Node2vec (Grover & Leskovec, 2016) adopts a random
walk strategy with preference, and trades off the probability of occurrence of nodes in
the sequence obtained by random walk between breadth-first and depth-first search to
maintain high-order proximity. In order to prevent training from easily falling into local
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optimum, hierarchical representation (HARP; Chen et al., 2018) uses graphical coarsening
to aggregate the nodes of the upper layer in the hierarchical structure to create a hierarchical
structure of nodes, and divides the nodes and edges of the original network into a series of
network graphs with smaller hierarchical structure. HARP then uses DeepWalk or node2vec
to obtain high-performance embedding vectors for continuous feature extraction. Adaptive
similarity function (AdaSim; Zhang, Shang & Qiao, 2021) uses the features obtained by
embedding the network based on random walk to introduce the adaptive similarity
function, and obtains the node feature representation by optimizing the graph-based
objective function. Dong & Kaeli (2017) present DNNMark, a GPU benchmark suite that
consists of a collection of deep neural network primitives, covering a rich set of GPU
computing patterns.

Inspired by the above algorithms, this article proposes a joint network embedding
learning algorithm (TAMNR) that combines network structure and node text features,
adding a textual attention mechanism to improve network embedding learning. First, the
structural features of the network aremodeled. Then, the text features aremodeled. Because
different text features contribute different weights for themodel, an attentionmechanism is
introduced to assign different weights to the words in the nodes, identifying the important
words and reducing the weight of unimportant words. This leads to the ability to screen
relatively high-quality feature inputs from the text of the network nodes. In the network
structuremodeling, structure and text modeling are carried out at simultaneously. To verify
the effectiveness of the TAMNR model, experiments are conducted on several real-world
network datasets and the TAMNRmodel is compared with some current mainstream node
feature learning methods. The results show that the TAMNR model performs well in most
cases.

The main contributions of this article are as follows:
1. This article introduces an innovative approach that combines network structure

features and network text features with a joint modeling mechanism. The learned
network representation vectors contain both the network structure features and the
semantic feature between network nodes, enriching the network features that nodes
can express.

2. Unlike previous network representation learning methods, the proposed algorithm
in this article considers the impact of different words in the node text on the model
when embedding the text features of the network nodes. An attention mechanism is
used to model the weight information of co-occurrence words in the model, filtering
out useless words and focusing on important words for learning and training. This
mechanism greatly improves the performance of the proposed network representation
learning algorithm.

3. The proposed network representation algorithm is then tested on open datasets, and
the experimental results show that the proposed algorithm exhibits stronger advantages
in these tasks such as node classification, visualization analysis, and case analysis. The
proposed algorithm is also applicable to large-scale network representation learning
tasks.
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RELATED WORKS
There are a large number of the network embedding learning models that learn effective
low-dimensional representations. For example, DeepWalk obtains a series of node
sequences by performing random walk in the graph, then treats each node sequence
as a text sentence, which is then used as the input to the Skip-Gram model (Perozzi, Rami
& Skiena, 2014) resulting in a low-dimensional representation. The LINE (Tang et al.,
2015) probabilistically models all node pairs of first-order similarity and second-order
similarity in the network, and learns node representation by minimizing the Kullback
Leibler (KL) distance. The node2vec model improves DeepWalk’s random walk strategy.
structural deep network embedding (SDNE; Wang, Cui & Zhu, 2016) model first uses a
deep neural network, which uses the relationships in the first-order neighboring nodes
as supervised information of the self-encoding neural network and the second-order
neighboring relationships as the unsupervised information of the self-encoding neural
network to obtain the embedding vectors. In this way, the local structure and global
structure information is preserved, making this method robust to sparse networks. Graph
convolutional network (GCN; Bruna et al., 2018) proposes a convolutional neural network
for non-euclidean network data by encoding the local structure of the network and the
features of the nodes to obtain the embedding vector for the nodes. Because DeepWalk
actually decomposes a specific feature matrix, Text Associated DeepWalk (TADW; Yang
et al., 2015) embeds the textual information of nodes into the matrix decomposition
procedure. However, the matrix decomposition process consumes time and space, making
it difficult to scale to large networks. Context-enhanced network embedding (CENE; Tu
et al., 2017a; Tu et al., 2017b) regards textual content as a special kind of node and then
exploits the structural and textual information to learn network embeddings. Du et al.
(2022) adoptes the probabilistic topic model, such as LDA, Word2vec and Glove, to extract
text features, and then uses a classifier to automatically identify the topic category based
on the obtained text representation vectors.

Neural networks can fully explore the hidden features in data, the attention mechanism
can make the neural network to focus on the important features of its input data, and
it has been widely used in different fields and types of tasks such as image processing,
speech recognition, natural language processing, and network representation learning. The
attention mechanism is a general method that does not depend on a specific framework,
most attention models currently including the Encoder-Decoder framework (Ganea,
Bécigneul & Hofmann, 2018; Liu, Nickel & Kiela, 2019) adopts the attention to improve
the performance. Hyperbolic graph convolutional neural networks (HGCN; Chami
et al., 2019) applies the attention mechanism to the Encoder-Decoder framework in
machine translation, so that the output of the encoder is the weighted sum of each
hidden layer in the encoder process. For very long inputs, this model can alleviate the
long-distance dependency problem. With the wide application of attention mechanisms,
many attention-variant models have emerged to handle more complex tasks. Luong, Pham
&Manning (2015) designes three functions suitable for different downstream tasks, and
proposes global attention and local attention mechanisms. Global attention calculates
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the hidden layer vector and considers all the hidden states of the encoder, while local
attention only pays attention to a part of the hidden state of the encoder when calculating
the hidden layer vector. Vaswani et al. (2017) added a scaling factor to the attention
weight function for the possible minimal gradient problem of the SoftMax function in the
conventional method, speeding up model training. The Self-Attention method (Cheng,
Dong & Lapata, 2016) computes attention weights by correlating different locations of a
single input. Transformer (Vaswani et al., 2017) is the first model that completely discards
the recurrence of RNNs, the convolution of CNNs, and solely utilizes attention for feature
extraction. Graph attention networks (GAT; Veličković et al., 2018) uses the Self-Attention
method and then calculates the hidden state of each node by paying attention to the
neighbor nodes in the network, obtainning the embedding vectors. GeniePath (Liu et
al., 2019) is a graph neural network model that can learn adaptive sensory paths in a
scalable way. In the adaptive path layer, the breadth search functional unit is used to
introduce the attention mechanism to learn the weight of the first-order neighborhood
nodes in the adaptive routing layer, respectively. A deep search functional unit is used
for extracting and filtering the information converged in higher-order neighborhoods.
Context Attention Heterogeneous Network Embedding (CAHNE; Zhuo et al., 2019) learns
context embeddings for nodes by introducing the context node sequence. The attention
mechanism is also integrated into the model proposed in this article to better reflect the
impact of context nodes on the current node. Ji & Zhang (2022) proposes a similarity
calculation method combining semantics and the attention mechanism using prefix words.
First, the context information is extracted, and then the title word set is obtained. The
semantic enhanced representations for two sentences are obtained through the attention
mechanism and character splicing. Text-attention FactorizationMechanism (TAFM;Zhang
et al., 2022) can extract features through text components, text attention, and N-gram text
features, mine potential user preferences, and then it uses convolutional automatic encoder
to learn higher-level features. There are currently few textual attention models, and there
are relatively few works that apply textual attention models to network structure modeling.
This article considers the rich attribute information on network nodes and proposes an
attention-based network embedding learning model for the structural embedding of the
network to obtain a more accurate joint embedding vector.

ALGORITHM DESIGN
Problem description
Networks are also called graphs in data science and computer science, and are generally
represented by G= (V ,E), with V representing the set of all nodes in the network, E
representing the set of all edges in the network, and |V | representing the number of nodes
in the network. This article uses Rv ∈ Rk to represent the network embedding vector
obtained from training, which is a k-dimensional matrix, and each row in the matrix
represents a node’s k-dimensional network embedding vector, where k is expected to be
much smaller than |V |, and att is the attention parameter.

In real-world network structure data, there is usually a certain degree of similarity
between two connected nodes. Given a graph G= (V ,E), for any two nodes Vi, Vj , if there
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is an edge between the two nodes, that is ei,j ∈ E , then ViandVj are said to be similar to each
other. However, many nodes are far apart in terms of topology, but have similarities and
simply considering the network structure does not account for these nodes. Therefore, a
text-based feature is designed and attention is added for modeling, allowing this network
embedding model to incorporate the text features of the nodes. During the network
learning process, the network topology and text features of the nodes are preserved, so that
the nodes that are close to each other or have similar text features in the network topology.
In the subsequent model design procedures, an attention mechanism for text features is
added, so that text features with high contributions have a positive impact on network
structure modeling, avoiding the negative impact of unimportant features on network
structure modeling.

CBOW (Continuous Bag-of-Words) model using negative sampling
Word2Vec has designed two models: CBOW and Skip-Gram, and provides two
optimizationmethods: negative sampling and hierarchical SoftMax. DeepWalk is a network
embedding algorithm proposed for large-scale networks based on the Word2Vec model,
and inherits the trainingmodel and optimizationmethod provided byWord2Vec. Although
the training accuracy of the CBOWadding negative sampling optimizationmodel is slightly
lower than that of the Skip-Gram adding hierarchical SoftMax optimization model, the
training speed of the former is much faster than that of the latter. Therefore, the negative
sampling optimized CBOW algorithm is used in the model proposed in this article to train
the embeddings in the model.

For the current node v , the context node of node v is vnb, node v is a positive sample,
other nodes are negative samples, and the negative sample set of node v is NEG(v),
NEG(v) 6= null . The sampling label of node v is L(v). For ∀u∈D, D is the node set. The
sampling result of node v by L(v) is defined as follows:

Lv (u)=

{
1,u= v,
0,u 6= v.

(1)

with the positive sample of Lv (u) being 1, and the negative sample of Lv (u) being 0.
For a node v and its context node vnb, its positive sample is (v,vnb), and the goal is to

maximize the following probability:

gc (v)=
∏

vi∈{v}∪NEG(v)

p(vi|vnb). (2)

And

p(vi|vnb)=
[
σ
(
eTv θ

vi
)]Lv (vi)

·
[
1−σ

(
eTv θ

vi
)]1−Lv (vi)

, (3)

where σ (x) is the sigmoid function. ev is the cumulative sum of vectors of each node in
vnb, and θ vi is the vector to be trained for node vi,

Therefore, gc (v) can be changed based on Eqs. (2) and (3) as follows:

gc (v)= σ
(
eTv θ

vi
) ∏
vi∈{v}∪NEG(v)

[
1−σ

(
eTv θ

vi
)]
. (4)
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For the entire node set C, the overall optimization objective function is as follows:

G=
∏
v∈C

gc (v). (5)

The objective function of the CBOW model based on negative sampling is to take the
following logarithmic operation:

L(v)= logG= log
∏
v∈C

gc (v)=
∑
v∈C

loggc (v)=∑
v∈C

∑
vi∈{v}∪NEG(v)

{
Lv(vi) · log

[
σ
(
eTv θ

vi
)]
+
(
1−Lv(vi)

)
· log

[
1−σ

(
eTv θ

vi
)]}

. (6)

L(v,vi)=
(
1−Lv(vi)

)
· log

[
1−σ

(
eTv θ

vi
)]
+Lv(vi) · log

[
σ
(
eTv θ

vi
)]
. (7)

Given the function L(v,vi) about θ vi , the gradient calculation is:

∂L(v,vi)
∂θ vi

=
∂

∂θ vi

{(
1−Lv(vi)

)
· log

[
1−σ

(
eTv θ

vi
)]
+Lv(vi) · log

[
σ
(
eTv θ

vi
)]}
. (8)

Using the derivative function optimization Eq. (8) of logσ (x) and log(1−σ (x)) results
in:
∂L(v,vi)
∂θ vi

= Lv (vi)
[
1−σ

(
eTv θ

vi
)]
ev−

[
1−Lv (vi)

]
σ
(
eTv θ

vi
)
ev ={

Lv (vi)
[
1−σ

(
eTv θ

vi
)]
−
[
1−Lv (vi)

]
σ
(
eTv θ

vi
)}
ev =

[
Lv (vi)−σ

(
eTv θ

vi
)]
ev . (9)

In Eq. (6), C is the corpus after random walk of nodes, which is optimized by the
stochastic gradient ascent method. This then leads to the update formula of the parameters.
The update formula of θ vi is:

θ vi := θ vi+µ
[
Lv(vi)−σ

(
eTv ·θ

vi
)]
ev . (10)

Considering the gradient of e in L(v,vi), and using ev and θ vi symmetry, the update
formula of the context total node embedding vector v(u) is:

v (u) := v (u)+µ
∑

vi∈{v}∪NEG(v)

[
Lv(vi)−σ

(
eTv ·θ

vi
)]
·θ vi (11)

Finally, Eq. (6) can be simplified as follows:

L(v)=
∑
v∈C

∑
vi∈{v}∪NEG(v)

logp(vi|vnb). (12)

TAMNR modeling
A simple and efficient joint learningmodel is needed tomeet the requirements of large-scale
network embedding learning tasks. This article proposes a joint network representation
learning framework based on the textual attention mechanism. The framework consists of
two parts: network node relationship modeling and node text relationship modeling. This
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Figure 1 TAMNR algorithmmodel.
Full-size DOI: 10.7717/peerjcs.1736/fig-1

model uses text as the input of the relationship model, ensuring that the relationship has
the same words in the node text when constructing the node relationship. Through these
improvements, the TAMNRmodel proposed in this article is expected to solve the problem
of joint modeling of network structure features and text features, and obtain better quality
vector representations. Specific information about the model is shown in Fig. 1.

As shown in Fig. 1, for the current central node vi, the network modeling uses its former
two nodes vi−2 and vi−1, and its next two nodes vi+1 and vi+2 to predict the probability of the
current central node vi appearing. The network modeling part of the model continuously
adjusts the values in the network vector so that the node pairs with connected edges have a
closer vector distance to each other, and the node pairs with multi-hop edges or no edges
have a farther vector distance. The node text relationship modeling models relationships
between node pairs with common text features, and introduces an attention mechanism
to give more learning opportunities for node pairs with same words, so that node pairs
with the same words have a closer vector distance. Network node relationship modeling
and node text feature modeling share a node representation vector in the TAMNR model,
allowing these two parts of the model to obtain and exchange feature information through
the shared vector, so that the TAMNR algorithm can be used in the modeling learning
process. TAMNR can have stronger generalization ability in various tasks by obtaining
valuable feature information from neighbor nodes and node text features.

The CBOWmodel only considers the local contextual information of words, thus failing
to effectively capture the quantity and importance of co-occurring words in the text of
neighboring nodes. To address this problem, an attention mechanism is added to the
TAMNR model to incorporate co-occurring word information, aiming to maximize the
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appearance probability of the co-occurring words. The overall objective function proposed
is, as follows:

L(v)=
∑
v∈C

(
loggc (v)+ρ loggw (v)

)
. (13)

The left part of the function is the objective function of the relational modeling, the
right part is the objective function of the text attention modeling, and ρ is the harmonic
coefficient that balances the network structure modeling and the text feature modeling. The
goal of this article is to maximize Eq. (13) by using the stochastic gradient ascend method
to update each parameter, where gc (v) and gw (v) have the same form, and the left term
in the above equation is the objective function of CBOW, and its parameters are updated
in Eqs. (10) and (11). The network structure model and the text feature model share the
same node representation vectors, so they can obtain information from each other through
shared representations, enabling the node representation vectors to comprehensively utilize
multiple features during training, thereby obtaining higher-quality node representation
vectors. The right term of the above equation is the objective function of the text attention
model, which is essentially a CBOW model with an attention mechanism added, so the
optimization solution is the same as the right term. The right term is defined, as follows:

F1=α ·
∑
v∈C

∑
u∈wv

log
(
gw (u)

)
=α ·∑

v∈C

∑
u∈w

∑
vi∈{v}∪NEG(u)

{
Lvi (u) · log

[
σ
(
eu ·θ vi

)]
+
(
1−Lvi (u)

)
log
[
1−σ

(
eu ·θ vi

)]}
. (14)

The left term is defined, as follows:

f1= Lvi (u) · log
[
σ
(
eu ·θ vi

)]
+
(
1−Lvi (u)

)
log
[
1−σ

(
eu ·θ vi

)]
. (15)

In Eq. (14), the target node is a positive sample, and the remaining nodes are negative
samples, and then f1 is used to obtain partial derivatives of θ vi and eu respectively, and the
parameter update formula is obtained, as follows:

θ vi := θ vi+µ
[
Lvi (u)−σ

(
eu ·θ vi

)]
·eu. (16)

The update formula of the embedding vector w(u) of each word is as follows:

w (u) :=w (u)+µ
∑

vi∈{v}∪NEG(v)

[
Lvi(u)−σ

(
eu ·θ vi

)]
·θ vi . (17)

with µ representing the learning rate. After obtaining the updated values of θ vi and eu,
the objective function can be iteratively optimized. Weight α needs to be multiplied into
Eqs. (13) and (14) µ before balancing the network structure model and text feature model.
eu is the sum of the expression vectors of the text words, and w(u) is the representation
vector of the word u in the target node text. The attention function att is used to weigh the
contribution rate of different text words to the model.

When context words act as context nodes, the sum of context vectors is eu, and its
calculation is as follows:

eu=
|S|∑
j=1

att
(
wj
)
·dj . (18)
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Table 1 Dataset description.

Dataset Nodes Edges Average Degree

CiteSeer 4610 5923 2.57
DBLP 17725 105781 11.926
SDBLP 3119 39516 25.339

In Eq. (15), att (wj) is the attention weight of the word wj to the target node, dj is the
expression vector of the word wj , and |S| is the number of words in the node text.

The attention function att is calculated as follows:

att
(
wj
)
=

exp(dj ·w(u))∑|S|
k=1exp(dj ·w(u))

. (19)

The attention weight in Eq. (16) is calculated by the vector of words in the text and the
vector of context nodes.

EXPERIMENTS
Dataset
To evaluate the effectiveness of the TAMNRmodel, three citation network datasets are used:
the academic network dataset CiteSeer (M10), Data Base systems and Logic Programming
(DBLP; V4), and Simplified Data Base systems and Logic Programming (SDBLP). SDBLP
is used to remove the nodes with less than three references in the DBLP. The average degree
of the CiteSeer (M10) dataset is only 2.57, making it a typical sparse dataset; DBLP (V4) has
an average degree of 11.297, making it a relatively dense dataset; and SDBLP has an average
degree of 25.337, making it to be a denser dataset. These three datasets are selected to test
the model on a variety of dataset sizes and to simulate different types of network types
in real life, verifying that the model has good machine learning performance in various
networks.

Dataset descriptions can be found in Table 1.

Introduction to comparison algorithms
DeepWalk: DeepWalk originates from the Word2Vec algorithm. The DeepWalk algorithm
is the most classic network embedding learning algorithm based on neural networks. Most
subsequent network embedding learning algorithms are based on the DeepWalk algorithm.
DeepWalk can use the CBOW model with fast training speed and the Skip-Gram model
with high training accuracy to train the representation learning model based on the neural
network, and can also use negative sampling and hierarchical SoftMax to accelerate the
network training process. In this article, DeepWalk is trained using CBOW and negative
sampling.

LINE: LINE is a network representation algorithm that encodes the network structure
of a very large-scale network into a low-dimensional network by sacrificing accuracy.
Therefore, the training speed of LINE is very fast, but the accuracy is low, especially in
sparse networks. LINE’s speed improvement comes from only considering the first-order
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similarity or second-order similarity of the network, and the concatenated representation
of the two.

GraRep: The GraRep algorithm is based on the idea that the high-order similarity
between nodes is important in generating the global representation of nodes. The
algorithm uses k-step similarity and calculates its state transfer matrix for different k
values. The algorithm transforms the optimization problem of the loss function into a
matrix decomposition problem, and directly obtains the global representationmatrix of the
graph through SVD decomposition, with each row representing the global representation
vector of a node.

MFDW: Because DeepWalk decomposes the matrix M= (A+A2)/2, MFDW uses the
SVD algorithm to decompose the matrix M, and uses W=U ·S0.5 as the embedding vector
of the network.

Text Feature (TF): TF converts the text content of the network node into a co-occurrence
matrix, and then uses SVD to decompose this co-occurrence matrix to obtain a text feature
vector with a column dimension of 100. The TF method is a content-based contrast
algorithm.

TADW: TADW is a matrix factorization algorithm that decomposes a matrix M and
text matrix T. TADW does not consider context information, and its T matrix cannot
preserve the order of words.

CAHNE: CAHNE learns context embeddings for nodes by introducing the context node
sequence, and the attention mechanism is also integrated into the model to better reflect
the impact of context nodes on the current node.

Experimental setup
The network node classification task is used to evaluate the algorithm proposed in this
article against the comparison algorithms introduced in this article, with Liblinear as the
baseline classifier. To verify the generalization ability of the algorithm, the training set is
set to 0.1∼0.9, and the remaining network nodes are used as the test set. The network
embedding vector obtained by the network embedding learning algorithm is uniformly set
to 100 dimensions, the random walk length is set to 40, the number of random walks to
10, the window size to 5, the negative sampling to 5, the minimum node frequency to 5,
and the learning rate of the neural network is set to 0.05. All experiments in this article are
repeated 10 times and then averaged for the final result.

Analysis of experimental results
Three real network datasets, CiteSeer, DBLP, and SDBLP, are used as evaluation datasets,
with 10% to 90% of the dataset used as the training set, and the remaining data used as the
test set. Table 2 lists the network node classification accuracy.

As shown in Table 2, the network node classification performance of the LINE algorithm
is the worst. MFDW is the matrix factorization form of DeepWalk, and its network node
classification performance is better than the DeepWalk algorithm in the training sets of
various proportions. On the CiteSeer dataset, the MFDW text features of network nodes
outperformed the the DeepWalk algorithm in the node classification task. The TAMNR
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Table 2 Contrast experimental results of node classification task.

Dataset Contrast
methods

Dataset percentage (%)

10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 55.89 59.30 60.89 61.48 62.19 62.30 62.62 62.33 63.95
LINE 42.64 47.06 48.04 49.57 50.43 51.02 51.18 53.07 53.63
GraRep 39.38 53.09 57.85 59.75 59.97 61.05 61.57 62.09 60.89
MFDW 57.62 60.79 62.33 63.05 62.96 63.00 63.00 63.48 64.30
TF 57.69 61.30 62.76 63.05 63.48 63.30 62.87 62.19 63.95
CAHNE 59.12 63.55 64.85 65.49 65.94 68.05 69.52 68.72 69.63

CiteSeer

TAMNR 64.96 67.60 68.92 69.58 69.56 70.03 69.78 70.02 71.26
DeepWalk 62.26 64.34 65.42 65.98 66.24 66.18 66.60 67.03 66.77
LINE 64.49 66.53 67.49 67.87 67.98 68.30 69.03 68.89 68.86
GraRep 58.92 65.92 67.26 67.92 68.77 68.88 69.26 69.56 69.79
MFDW 65.02 74.68 74.88 75.02 75.05 75.13 75.22 74.57 75.51
TF 66.17 69.46 70.49 71.15 71.29 71.44 71.54 71.57 71.83
CAHNE 65.42 67.38 68.87 69.26 71.29 72.67 73.83 74.07 74.73

DBLP

TAMNR 71.10 72.88 73.75 73.88 74.52 74.67 74.59 74.79 75.16
DeepWalk 79.76 80.65 81.88 81.49 82.56 82.35 82.73 82.71 83.37
LINE 73.79 77.01 78.11 81.49 79.31 78.97 79.63 78.82 78.77
GraRep 80.99 82.52 84.14 84.78 84.97 84.17 85.36 85.27 84.95
MFDW 79.79 83.08 84.38 84.12 84.53 84.29 84.70 84.55 84.53
TF 65.03 71.23 72.64 73.86 74.54 75.07 75.14 76.00 75.33
CAHNE 66.87 68.28 69.85 70.31 71.17 72.33 73.86 74.35 74.88

SDBLP

TAMNR 84.55 84.96 84.93 85.19 85.00 85.36 85.50 86.02 85.14

model proposed in this article adds the node text feature relationship, so its performance
is also better than the DeepWalk algorithm.

In the DBLP and SDBLP networks, the network node classification performance of
DeepWalk is slightly inferior to that of LINE and GraRep. The MFDW algorithm based
on DeepWalk performed better than DeepWalk. As the training set ratio increased, the
network node classification performance of Text Feature surpassed DeepWalk. Since
DBLP and SDBLP are denser networks, the TAMNR algorithm performed better than the
comparison algorithms on these networks.

On the CiteSeer dataset, the average classification accuracy of the TAMNR algorithm is
69.59%, and the average classification accuracy of the DeepWalk algorithm is 61.88%. On
the DBLP dataset, the average classification accuracy of the TAMNR algorithm is 73.92%,
and the average classification accuracy of the DeepWalk algorithm is 65.64%. On the
SDBLP dataset, the average classification accuracy of the TAMNR algorithm is 85.18%,
and the average classification accuracy of the DeepWalk algorithm is 81.94%.

The comparison graph of these results is shown, as follows:
As shown in Fig. 2, the network node classification accuracy value span of these

algorithms on the CiteSeer and DBLP datasets are larger than on the SDBLP dataset.
On the SDBLP dataset, the network node classification accuracy of the six comparison
algorithms showed a significant upward trend. However, on the CiteSeer and DBLP
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Figure 2 Performance comparisons of six algorithms on three datasets.
Full-size DOI: 10.7717/peerjcs.1736/fig-2
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datasets, the accuracy curve showed a relatively slower upward trend. The main reason
for this observed difference is that the features obtained by different algorithms are quite
different on a sparse network. If an algorithm can obtain features that fully reflect the
network structure, its network classification performance is better. On sparse networks,
the network representation learning algorithm based on joint learning can make up for the
insufficient training caused by the sparse edges. On dense networks, different algorithms
can also obtain effective network structure features from sufficient edge connections, so
the difference between the classification performance is smaller.

Four main results are obtained from this comparison study: (1) On the CiteSeer sparse
network, the classification performance of GraRep based on high-order representation is
not as good as that of DeepWalk, but on dense network datasets, such as DBLP and SDBLP,
the classification performance of GraRep is better than that of DeepWalk. (2) On dense
network datasets, such as DBLP and SDBLP, the network representation learning algorithm
based on matrix decomposition is more effective than the network representation learning
algorithm based on a shallow neural model, and the former performed slightly better than
the latter in the network node classification task. (3) There are many ways to integrate the
text features of network nodes. The simple vector concatenate method cannot bring about
significant performance improvement in network representation tasks. Induced matrix
completion is a very effective text feature integration framework, and it achieved excellent
network representation performance on the three real datasets. The text feature integration
framework proposed in this article overcomes the computational limitation of matrix
decomposition, and uses node text features to constrain the DeepWalk training procedure,
so that the network embedding vectors contain more semantic information. (4) On sparse
networks, such as CiteSeer, the classification performance of TAMNR model proposed in
this article is better than the comparison algorithms, but as the average degree of network
nodes increased, this difference in performance became smaller. On the DBLP and SDBLP
datasets, the classification performance difference between TAMNR and DeepWalk is
small.

Network embedding visualization
The main purpose of network representation visualization is to check whether the
representation vectors obtained by training show a significant clustering phenomenon.
The clustering phenomenon shows whether the network representation has learned the
community information of the network. If the community division based on the network
representation obtained is more accurate, it has better reliability in the network node
classification task. In this experiment, four classes of nodes are randomly selected from the
CiteSeer dataset, and 150 nodes are randomly selected for each class. The t-SNE algorithm
is used to visualize the learned network representation. The results are shown in Fig. 3.

DeepWalk performed poorly in network representation classification tasks, soDeepWalk
also displayed the worst results in visualization tasks. The network representation learning
performance of the TAMNR model on the three data sets demonstrated its excellent node
classification performance, so the embedding vectors obtained by TAMNR showed obvious
clustering phenomenon and clustering boundaries. This visualization experiment shows
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Figure 3 (A–F) Network node visualization using DeepWalk and TAMNR. (A) Visualization of Deep-
Walk on Citeseer. (B) Visualization of TAMNR on Citeseer (C) Visualization of DeepWalk on DBLP.
(D) Visualization of TAMNR on Citeseer. (E) Visualization of DeepWalk on SDBLP. (F) Visualization of
DeepWalk on Citeseer.

Full-size DOI: 10.7717/peerjcs.1736/fig-3

that the proposed strategy of combining node text features can improve the performance
of network embedding.

Case analysis
In order to verify the feasibility of the TAMNR model proposed in this article, the target
node ‘‘Quantum Field Theory as Dynamical System’’ is randomly selected on the CiteSeer
dataset. Three nodes with higher similarity with the target node are obtained by cosine
calculation. The result is shown in Table 3.
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Table 3 Case analysis.

Algorithm Vertex Title

On the pct-theorem in the theory of local observables
In the theory of local observablesDeepWalk

Modular covariance PCT spin and statistics
Remarks on causality in relativistic quantum field theory
Quantum field theory as eigenvalueTADW
Kam theorem and quantum field theory
On the pct-theorem in the theory of local observables
Statistics localization regions and modular symmetries in
quantum field theoryTAMNR
Charged sectors spin and statistics in quantum field theory
on curved spacetimes

As shown in Table 3, the DeepWalk model only considers the similarity of network
structure features, and does not consider the similarity of text features, so similar nodes
did not reflect the text feature similarity. The TAMNR model takes both the network
structure features and the text features into account, so the returned similar nodes showed
word co-occurrence. Both the TADW algorithm and the TAMNR algorithm proposed
in this article consider the text feature information, but the returned nodes are different.
The main reason for this difference is that the two algorithms have different mechanisms
for modeling text features, so the TADW or TAMNR algorithms are likely best suited to
different tasks.

SUMMARY
This article proposes a new algorithm, called TAMNR, that can encode text information and
has a textual attentionmechanism added. The goal of thismodel is to addmore information
as network features in the modeling procedure. To consider the semantic relationships
between nodes, text features in network nodes are introduced in this model. The added
attention model ensures that the more important text features have higher weights. In
different machine learning tasks, the results of the TAMNR model are significantly better
than other comparison models. Adding text features with an attention mechanism can
significantly improve the performance of network embedding learning. Future research
should focus on how to add new features for joint learning.
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