
Submitted 9 June 2023
Accepted 9 November 2023
Published 18 January 2024

Corresponding author
Gökhan Erdemir,
gokhan-erdemir@utc.edu

Academic editor
Gui-Bin Bian

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.1730

Copyright
2024 Demirtaş et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Indoor surface classification for mobile
robots
Asiye Demirtaş1,2, Gökhan Erdemir3 and Haluk Bayram2

1Department of Electrical and Electronics Engineering, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
2 Field Robotics Laboratory-BILTAM, Department of Electrical and Electronics Engineering, Istanbul Medeniyet
University, Istanbul, Turkiye

3Department of Engineering Management & Technology, University of Tennessee - Chattanooga, Chattanooga,
TN, United States of America

ABSTRACT
The ability to recognize the surface type is crucial for both indoor and outdoor mobile
robots. Knowing the surface type can help indoor mobile robots move more safely
and adjust their movement accordingly. However, recognizing surface characteristics is
challenging since similar planes can appear substantially different; for instance, carpets
come in various types and colors. To address this inherent uncertainty in vision-based
surface classification, this study first generates a new, unique data set composed of 2,081
surface images (carpet, tiles, and wood) captured in different indoor environments.
Secondly, the pre-trained state-of-the-art deep learning models, namely InceptionV3,
VGG16, VGG19, ResNet50, Xception, InceptionResNetV2, and MobileNetV2, were
utilized to recognize the surface type. Additionally, a lightweight MobileNetV2-
modified model was proposed for surface classification. The proposed model has
approximately four times fewer total parameters than the original MobileNetV2model,
reducing the size of the trained model weights from 42 MB to 11 MB. Thus, the
proposed model can be used in robotic systems with limited computational capacity
and embedded systems. Lastly, several optimizers, such as SGD, RMSProp, Adam,
Adadelta, Adamax, Adagrad, and Nadam, are applied to distinguish the most efficient
network. Experimental results demonstrate that the proposed model outperforms all
other applied methods and existing approaches in the literature by achieving 99.52%
accuracy and an average score of 99.66% in precision, recall, and F1-score. In addition
to this, the proposed lightweight model was tested in real-time on a mobile robot in
11 scenarios consisting of various indoor environments such as offices, hallways, and
homes, resulting in an accuracy of 99.25%. Finally, each model was evaluated in terms
of model loading time and processing time. The proposed model requires less loading
and processing time than the other models.

Subjects Artificial Intelligence, Autonomous Systems, Computer Vision, Robotics
Keywords Indoor surface classification, MobileNetV2, Mobile robots, Convolutional neural
network, CNN

INTRODUCTION
With the rapid evolution of technology, robotics has moved from laboratories to almost all
aspects of industry, education, health, agriculture, and life in general (Niloy et al., 2021).
The contributions of robotics in relevant areas are remarkable in terms of mass production,
safe operation, quality of education, patient satisfaction, and so on. Due to their abilities,

How to cite this article Demirtaş A, Erdemir G, Bayram H. 2024. Indoor surface classification for mobile robots. PeerJ Comput. Sci.
10:e1730 http://doi.org/10.7717/peerj-cs.1730

https://peerj.com/computer-science
mailto:gokhan-erdemir@utc.edu
mailto:gokhan-erdemir@utc.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1730
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1730

mobile robots are one of the most rapidly growing technologies in the world today
(Stefek et al., 2020). Depending on their operating environment, mobile robots can be
divided into two categories: indoor mobile robots and outdoor mobile robots (Yasuda,
Martins & Cappabianco, 2020). Outdoor mobile robots are employed in various
applications, such as agriculture, military, search-and-rescue, safety, and more (Rubio,
Valero & Llopis-Albert, 2019). Due to their high capabilities and human-friendly interfaces,
indoor mobile robots have become increasingly prevalent daily. Indoor mobile robots
are capable of performing many tasks in a given indoor environment, including cleaning
rooms (Muthugala et al., 2020), providing efficient human services (Ruan, Wu & Xu,
2021), and serving meals (Guan et al., 2021). However, indoor mobile robots’ dexterous
and safe locomotion becomes challenging on surfaces with varying features. Indoor mobile
robots require environmental data to adjust their movements intelligently and react to a
changing environment. Therefore, timely recognition of surface types is crucial for mobile
robots to carry out a given mission successfully (Bai, Guo & Zheng, 2019).

The nature of surfaces varies incredibly in ordinary indoor areas. Usually, indoor floors
are flat and thus easy to traverse. However, certain areas could be slippery or bumpy,
which may result in difficulties in the mobility of robots or hazardous incidents. Therefore,
knowledge of the floor type can aid mobile robots in traversing (moving) and adapting
their movement according to the surface to avoid undesirable incidents (Xue et al., 2022).
For instance, if the mobile robot identifies surfaces as wood floors, it can move at high
speed, as the wood floor is comparatively simple and safe for movement. Certain surfaces,
like carpets, are uneven and lofty, which affects movement; thus, mobile robots should
slow down their speed. Therefore, the methods for estimating the current or forthcoming
floors’ characteristics significantly contribute to the motion capabilities of indoor mobile
robots. Surface classification, depending on various sensing modes, can be divided into
two major categories: contact-based classification, which includes vibration and touch, and
contactless classification, which mainly makes use of vision and sound.

The classification of surface type or terrain using outdoor robots has gained attention
in recent years because of the growing utilization of unmanned ground vehicle (UGV)
and unmanned aerial vehicle (UAV) in both civilian and military applications; however, as
compared to outdoor robotics, the research for indoor surface classification requires more
attention. Researchers in prior studies used sensors, cameras, or a hybrid system (sensor
and camera both) to detect the surface type. For example, Tick et al. (2012) classified the
indoor surface using data collected from an inertial measurement unit (IMU) connected
to the robot. Unlike other sensor-based studies, they used additional attributes such as
velocity and acceleration to construct a dataset of 800 features which are later reduced
by exploiting sequential forward floating feature selector. Then, they used linear Bayes to
classify surfaces into five types (carpet, terrazzo, linoleum, ceramic tiles-A, ceramic tiles-B)
and obtained an accuracy of 90% for a robot moving for 20 min.

Similar to previous work, Bermudez et al. (2012) utilized vibration data obtained by an
IMU installed on a legged robot. The authors also incorporated magnetic encoders and
back-EMF sensors to generate motor control data for better surface classification. They
used 75% of collected data to train support vector machine (SVM) and attained an overall

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 2/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

accuracy of 93.8% in test phase to distinguish three types of surfaces (carpet, tile, and
gravel). Kertész (2016) performed several sensing modalities (ground contact force sensor,
motor force sensor, infrared sensor, accelerometer, etc.) on a Sony ERS-7 mobile robot to
identify six types of indoor terrains with the help of a random forest (RF) classifier. Beside
this, fast Fourier transformation scheme was exploited on obtained data and later system
was tested. The study achieved an overall accuracy of 94% while moving the robot with
barefoot and wearing socks.

On other hand, Giguere & Dudek (2011) used a low-speed wheeled robot with an
accelerometer to train an artificial neural network (ANN) classifier to classify ten types
of outdoor and indoor surfaces. They analyzed acceleration patterns with eight extracted
features in the time and frequency domain to obtain an accuracy of 94.6% and 89.9%
for windows of 4 s and 1 s, respectively. Unlike others, they distinguish between tiled and
untiled linoleum surfaces. Instead of using motion or vibration sensors, Bosworth et al.
(2016) utilized touch sensors to measure surface friction and impedance to enable the MIT
Super Mini Cheetah robot to move over variable terrains with better locomotion. Previous
studies used wheeled or legged robots with different combinations of sensing modalities
to classify indoor surfaces based on vibration. However, even an increasing number of
sensors does not significantly contribute to achieving higher performance. Moreover, most
of these works employed traditional machine learning algorithms, whereas vision-based
modalities with advanced deep learning-based models could be more effective for surface
classification. In addition to vibration and motion sensing modalities, researchers have also
leveraged vision-based data or hybrid datasets (vibration and images) to classify surfaces
and terrains.

For instance, Weiss, Tamimi & Zell (2008) utilized imaging data and vibration
measurements to classify 14 types of surfaces, including mix grass-gravel, mowed grass,
medium grass, short grass, small bushes, dirt, clay, circular, paving, quadratic paving, tiles,
coarse gravel, fine gravel, asphalts, and indoor surfaces. They first trained an SVM model
on the given datasets individually and later widened the research by combining vibration
data with imaging data for better classification. It is noted from the conclusion that the
SVM model trained on the fused dataset outperformed the models trained on individual
datasets, achieving an overall accuracy of 87.04%. Even though they used the camera to
capture the images, the paper focuses only on outdoor surface classification as they grouped
all types of indoor surfaces into one label (‘indoor’). In contrast, we aim to classify indoor
surfaces into three different labels.

Similarly, Kurobe et al. (2021) used audio features beside images to identify indoor and
outdoor surfaces. They clustered surface types by training the convolutional neural network
(CNN)-based ResNet50 model using audio-visual modality with the help of a microphone
and camera installed beneath the mobile platform. Their developed scheme achieved an
overall accuracy of 80%. Nonetheless, including audio modality does not enable the model
to outperform vibration-based classificationmodels. Therefore, there is a need to suggest an
accurate indoor surface classification system with minimal equipment and computational
cost.Guan et al. (2022) proposed a framework that utilizes visual and inertial perception by
using camera and IMU sensors to classify multiple outdoor and some indoor surfaces, such

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 3/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

as carpet and tile, for mobile robot navigation. The presented framework uses CNN-based
EfficientNet-B0 model to extract the image features. The obtained results demonstrate the
efficacy of the proposed model for surface classification tasks. However, the indoor surface
types in our study are more diverse, including a wide range of carpet, tile, and wood types
in various colors and patterns. Additionally, our dataset consists of samples collected from
different indoor environments, unlike previous studies which focused on a single site.

Figure 1 illustrates our approach to solving the problem, where the collected dataset is
pre-processed and divided into train, test, and validation sets. We trained the dataset with
eight models, including seven state-of-the-art models and our proposed modified model.
The best model weights were determined by training each model with seven different
optimizers.

Previous studies on surface classification have certain limitations. Firstly, the
generalization of the trained classification networks is not specified, whereas models
were trained over finite samples that may cause over-fitting or underfitting. Secondly, most
works did not present the time analysis to detect the sudden changes in the surface. Thirdly,
they lack a discussion of model efficiency regarding training time. Fourthly, the presented
results include limited performance evaluation metrics. Fifthly, most studies exploited
specific machine learning algorithms. Still, they lack a comparative analysis of the proposed
model with state-of-the-art models, which may perform better than the suggested ones.
This study aims to improve surface recognition to stabilize the mobile robot’s movements
so that it performs the given task more comprehensively. Besides exploiting pre-trained
state-of-the-art deep learning models, the study proposed a modified MobileNetV2 to
classify the surface efficiently. The key contributions include:
• Generation of a unique dataset that is composed of surface images captured in different
environmental conditions.
• Unlike prior studies, our new dataset includes carpet surfaces besides wood floors and
tiles.
• Comparison and analysis of the pre-trained deep-learning models for a surface
classification task on the new dataset.
• Proposing a modified MobileNetV2 to establish its impact on the classification
performance of robotic systems with limited computational capacity.
• Comparison and analysis by examining the effect of several optimizers (SGD, RMSProp,
Adam, Adadelta, Adamax, Adagrad, Nadam) to distinguish the most efficient network
for the problem of surface recognition.
• Providing a systematic evaluation of each utilized model using various optimizers based
on accuracy, precision, recall, and F1-score.

The article is further organized as follows: In the next section, we explore detailed
information about the generated dataset and deep learning techniques. In the comparison
section, we present a comprehensive comparison of the models used. In the last section,
we conclude the article with future works.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 1 Problem illustration.
Full-size DOI: 10.7717/peerjcs.1730/fig-1

CNN BASED SURFACE CLASSIFICATION
This section presents a detailed description of the dataset generated in this study, along with
an in-depth discussion about the selection and architecture design of pre-trained state-of-
the-art feature-extraction models, as well as the application of various optimization
algorithms. It specifically focuses on the generation of a new dataset, pre-processing steps,
implementation of CNN-based models, and the selection of the appropriate optimization
algorithms. The overview of the proposed approach is illustrated in Fig. 2.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 5/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-1
http://dx.doi.org/10.7717/peerj-cs.1730

1The reason behind why we chose
299× 299 resolution for images in our
dataset is that the Inception model we
used in our paper requires specifically
this resolution (Google Cloud TPU,
2023). Furthermore, based on the Keras
documentation (Sayak, 2023), it is a
typical practice to downsize images to
smaller dimensions (such as 224× 224 or
299× 299, etc.) both to facilitate mini-
batch learning and to accommodate
computational constraints.

Figure 2 The overview of the surface classification structure.
Full-size DOI: 10.7717/peerjcs.1730/fig-2

Pre-processing
Carrying out a few pre-processing steps before feeding the data into DL models plays
a critical role in improving performance and feasibility. To meet the fixed-size input
requirement of applied and proposed CNN models, we resized the input size of the
samples to 299× 299 pixels.1 We then performed min-max normalization, which reduced
the values of a given set to a ratio between 0 and 1. Min-max normalization is expressed
by Eq. (1) (Rajendran et al., 2020):

Iout = (Iin−Min)
newMax−newMin

Max−Min
+newMin (1)

where Iin denotes the original surface image, Min, and Max demonstrates the minimum
and maximum intensity values, which are in the range between 0 and 255; after the
min-max normalization, the resulting image is denoted by Iout , and the new minimum and
maximum values are represented by newMin and newMax , respectively.

Dataset
Datasets play a significant role in deep learning (DL)-based techniques, and accurate and
precise results cannot be achieved without consistent and meaningful data. As there is
a lack of an open-source indoor surface image dataset, we generated a new dataset that
includes three distinct floor types: carpet, tiles, and wood. We captured dataset samples
with cameras in various indoor environments and lighting conditions. Before building the
dataset, we analyzed the overall dimensions of the indoor robots. Thus, while generating
the dataset, we took images from different angles to ensure convenience for the indoor
mobile robot’s camera position. According to our literature review, the generated dataset is
one of the most comprehensive datasets used in such studies. In particular, to prevent the
lack of datasets in which the diversity of indoor surfaces is limited, samples in our dataset
were captured in more than 20 indoor environments, including various carpet, tile, and
wood floors. The samples from the generated dataset are shown in Fig. 3. The dataset can
be downloaded from Demirtas, Erdemir & Bayram (2023).

The generated dataset consists of a total of 2,081 samples, of which 870 samples are
carpet, 638 tiles, and 573 wood floors. All the images are RGB, and the size of the collected

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 6/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-2
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 3 Samples from the different surface types.
Full-size DOI: 10.7717/peerjcs.1730/fig-3

Table 1 Details of the generated dataset.

Dataset Carpet Tiles Wood Total

Train 698 510 457 1,665
Test 86 64 58 208
Validation 86 64 58 208
Total 870 638 573 2,081

images varies, but before feeding to the CNN models, samples are resized to an equivalent
dimension. Note that 80% of the dataset was used for training, 10% for validation, and the
remaining 10% for testing. Detailed information about the generated dataset is presented
in Table 1.

Surface classification using CNN-based models
Convolutional neural networks (CNNs) are a deep learning (DL) based approach that is
extensively adopted for image recognition and classification tasks in various areas (Huang
et al., 2017; Szegedy et al., 2015). Instead of manually extracting certain features, as is the
case with traditional methods, CNNs can automatically learn specific features from original
images without the need for human supervision. Generally, a CNN architecture consists
of three main layers: the convolutional layer, the pooling layer, and the dense layer. The
descriptions of each layer are given in the following.

Convolutional layers
The most crucial part of CNN is the convolutional layer, which uses various convolution
kernel sizes to extract the particular features of a given image. A set of feature maps can be
obtained by applying a convolutional layer in a given image a few times. Assuming that Fi

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 7/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-3
http://dx.doi.org/10.7717/peerj-cs.1730

represents the CNN feature map for the ith layer, Fi is given as:

Fi=φ(Fi−1Wi+bi) (2)

where Fi indicates the current network layer’s feature map, Fi−1 represents the previous
layer’s convolution feature,Wi represents ith layer’s weight, bi is the offset vector of the ith
layer, and φ represents the rectified linear unit (ReLU) activation function.

Pooling layers
After applying a convolutional layer, pooling layers reduce the feature dimensionality,
thus drastically minimizing the computational complexity. In addition, pooling layers
effectively control the risk of over-fitting. The output feature of the hth local receptive field
in the lth pooling layer can be calculated as follows:

x lh= downsample(x l−1h ,s) (3)

where downsample indicates the down-sampling function, x l−1h represents the feature
vector of the previous layer, and s denotes the pooling size.

Dense layers
Finally, a fully connected layer to perform the classification task collects all the features
extracted by previous layers. The Softmax function generally performs class prediction
with all the gathered features. The Softmax function can be expressed mathematically as:

softmax(z)j = ezj/
K∑
k=1

ezk ,∀j ∈ {1,...,K } (4)

where K denotes the dimension of vector z .

CNN-based models
In this study, several CNN-based models were used to perform the surface classification
tasks, including InceptionV3, VGG16, VGG19, ResNet50, Xception, InceptionResNetV2,
MobileNetV2, and a modified version of MobileNetV2. The description of each model is
presented in detail below.

InceptionV3
The InceptionV3 is a CNNbasedDLmodel that is used for image recognition tasks (Szegedy
et al., 2016). It is an improved version of the main Inception V1 model. In the InceptionV3
model developed by Google, a group normalization layer and a fully connected layer have
been added to make the network more efficient. This architecture has shown promising
results on the ImageNet dataset and is widely used for image classification. The improved
version aims to perform well even on applications with limited computational costs. For
instance, a 3× 3 convolution is divided into 3× 1 and 1× 3 convolutions, which allows for
more effective extraction of specific details present in the image and reduces the numerical
parameters of the model, resulting in shorter training times. The total depth of the model
is 47 layers. Despite its more profound architecture than previous versions, InceptionV3,
with the new factorization ideas, reduces the parameters without decreasing the network
performance.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

VGG16
VGG16 as a CNN-based model, was ranked among the top 5 models in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) competition
on ImageNet dataset in 2014 with a 7.3% error rate (Simonyan & Zisserman, 2014). The
architecture comprises 16 layers with approximately 130 million parameters, applying
3 × 3 filters. VGG16 focuses on 3 × 3 filtered convolution layers with a stride of 1 and
a 2 × 2 filtered max-pool layer instead of many hyper-parameters. The architecture’s
fundamental components are convolutional layers with varying depths, followed by three
fully connected layers. The first and second dense layers contain 4,096 neurons, while the
third has 1,000 neurons. Finally, the last layer is the softmax layer, where classification is
performed.

VGG19
The overall concept of the VGG19 architecture is the same as VGG16, except for the
adoption of three additional convolutional layers. In this case, the first 16 convolutional
layers extract features, while the following three fully connected layers are used for
classification. The feature extraction layers are divided into five groups, each followed
by a max pooling layer. The input image size of the VGG19 model is the same as VGG16,
which is 224 × 224 pixels.

ResNet50
The classification accuracy of deepCNNmodels increases correspondingly with the number
of network layers. However, as the network depth increases, the model’s training and test
error rate also increases. This phenomenon is referred to as the ‘‘vanishing gradient’’. To
overcome this problem, the Residual Network was introduced (He et al., 2016). ResNet50
deploys a technique called skip connections, allowing the network to link directly to the
output by skipping several training layers. The main architecture of ResNet50 is inspired
by the VGG architecture, consisting of five phases, each with an identity block with
three convolutional layers and a convolutional block with three convolutional layers.
A downsampling convolutional layer with a stride of 2 performs down-sampling. The
network finalizes with fully connected layers.

Xception
As an inspired version of the Inception model, Xception architecture was introduced
by Chollet (2017) in 2017. The architecture of the Xception model consists of deep and
comprehensive convolutional layers which operate in a collateral manner. Thus, the
feature extraction process of the network is realized with a total of 71 convolutional layers.
In Xception, the convolutional layers are arranged into modules and encircled by linear
residual connections, making it a stack of depthwise separate convolutional layers covered
by residual connections. This makes the architecture very simple to describe and perform,
unlike Inception V2 or V3, which are substantially more difficult to specify. The pre-trained
model was trained on the ImageNet dataset on millions of images, offering high efficiency
in image recognition.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 9/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

InceptionResNetV2
The InceptionResNetV2 module is a combination of Inception and residual networks,
showing promising results in image classification and object detection tasks (Szegedy et
al., 2017). From a particular view, each InceptionResNet module can be demonstrated as
a tiny CNN. These small CNNs, together with additional network layers like pooling
and convolutions, compose the main architecture of the InceptionResNet network.
The architecture of the InceptionResNet module consists of two main parts: shortcut
connections and residual blocks. Input features are directly mapped to output features
by the shortcut connection, so residual blocks estimate the residual function. Finally, the
module output is composed of the corresponding map of input features as well as the
output of the residual block.

MobileNetV2
MobileNetV2 model is utilized in many computer vision applications, but mainly it
offers high robustness performance in object recognition and segmentation tasks. It
increases the state-of-the-art performance of mobile models and computationally limited
devices across various benchmarks, activities, and model sizes (Sandler et al., 2018). On
the main architecture of MobileNetV2, bottleneck levels, inverse residual structures, and
connections are presented. This methodology makes real-time classification possible on
computationally limited devices or smartphones. More detailed information about the
fundamental architecture of MobileNetV2 can be found in Sandler et al. (2018).

MobileNetV2-Modified
The fundamental MobileNetV2 architecture inspires our proposed modified MobileNetV2
model. Once the core convolutional architecture has extracted the input images’ features,
the global average pooling layer was used to minimize the size of the extracted features.
So, the classification task is done in the fully connected layer. The original MobileNetV2
model has a lower computational cost than other CNN-based models. Thus, this makes
the MobileNetV2 model more effective in mobile robot-based applications. In this study,
since the surface classification performance of the mobile robot was analyzed, it is more
consistent to modify the MobileNetV2 model compared to other models in terms of
computational cost. While the original MobileNetV2 model has an average weight of
around 40 MB, which is relatively small, its architecture is changed to reduce the mobile
robot’s computational cost and make it work more efficiently. To achieve this, we replace
the last 11 layers before the fully connected layers of the original MobileNetV2 with a
2D-convolutional layer with 16 filters with a kernel size of 5x5, ReLu as activation, and the
same padding. Thus, the number of blocks was reduced from 17 to 16, as shown in Figs. 4
and 5. The convolutional layer is followed by a Global Average Pooling layer and a Dropout
layer with a value set to 0.2. Then, two dense layers are added, having a size of 2,096 and 3,
respectively. Softmax is used for activation to classify the three types of surfaces correctly.
The size of the extracted features is minimized using the Global Average Pooling layer,
and overfitting was prevented by adding a new Dropout layer to the modified architecture.
Apart from removing blocks, adding dropouts, building a convolution layer, we made a
significant change to the proposed model by making the last 23 layers trainable (Fig. 5),

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 10/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 4 Original architecture of MobileNetV2.
Full-size DOI: 10.7717/peerjcs.1730/fig-4

Figure 5 Architecture of MobileNetV2-Modified.
Full-size DOI: 10.7717/peerjcs.1730/fig-5

whereas in the original MobileNetV2, all layers are frozen except for the fully connected
and global average pooling layers. In the MobileNetV2 model, the frozen layers are trained
on the ImageNet dataset, while the trainable layers are trained with a custom dataset. By
doing so, we made 23 layers of the modified model trainable. This indicates that if we did
not make any modifications to the architecture, the number of trainable parameters in the
modified model would be higher than that of the original model. However, we removed
the last 11 layers of the model and downsized the filter size of the last convolutional
layer in the architecture. Therefore, we simplified the model, resulting in fewer trainable
parameters, less training time and smaller model weight size. Note that the modification
of the architecture was finalized after several rounds of fine-tunings.

Optimizers used in training
Optimizers regulate the learning speed and the neural network weights to provide the best
model performance and reduce the losses experienced during training. In other words,
the optimization algorithms minimize the loss during training and ensure accurate dataset
training. The optimizer algorithms applied in this study are briefly explained below.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 11/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-4
https://doi.org/10.7717/peerjcs.1730/fig-5
http://dx.doi.org/10.7717/peerj-cs.1730

Stochastic Gradient Descent
Stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants are frequently
used in deep learning. SGD is different from the classic vanilla gradient descent technique
in that it computes the gradient of the objective function. It updates the parameters on
subsets of the training data instead of the complete training set. The main goal of SGD is to
minimize computational costs. It is worth noting that gradient descent is a computationally
intensive process by itself, especially when there is a large training set. The parameter update
of SGD is done as follows (Zhao et al., 2019):

θt = θt−1−η ·∇θ J (θt−1) (5)

where θt ∈ Rd is the parameter vector during iteration t , the learning rate is represented
by η, J (θt−1) is the loss function defined by the model’s parameters θt at the t -th iteration,
and ∇θ J (θt−1)= ∂J (θt−1)/∂θ represents the gradient of the loss function to parameters at
the (t−1)th iteration.

Adaptive Moment Estimation
The advantages of Adagrad and RMSprop optimizers are combined in adaptive movement
estimation (Adam), which calculates the learning rates adaptively for various variables. It
has a low memory demand and a high computational efficiency and calculates the learning
rates for each parameter. Momentum is directly integrated with Adam to estimate the
gradient’s first-order moment (Soydaner, 2020). To account for the initialization at the
origin, Adam applies bias corrections to the estimations of the first-order and second-order
moments (Kingma & Ba, 2014). To estimate the moments, Adam employs the exponential
moving average, which is computed on the gradient evaluation with respect to the current
mini-batch. The exponential decay rates of these moving averages are controlled by the
hyperparameters β1 and β2, which are usually set close to 1. β1 and β2 are typically set to
values close to 1. The estimate of the gradient’s mean, mt , is calculated as:

mt =β1mt−1+ (1−β1)gt (6)

where gt is the gradient on the current mini-batch at step t . Subsequently, the estimate of
the gradient’s uncentered variance, vt , is calculated as:

vt =β2vt−1+ (1−β2)g 2t (7)

In the first stage, mt and vt are smoothly biased to starting value. Therefore, bias
correction must be calculated for both the first and second moments, so the following steps
are performed:

m̂t =
mt

1−β t
1

(8)

v̂t =
vt

1−β t
2

(9)

Finally, the parameters are updated as follows:

θt = θt−1−
η

√
v̂t−1+ε

m̂t−1 (10)

where η is the learning rate and ε is a small value to avoid division by zero.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Root Mean Square Propagation
The rootmean square propagation (RMSProp) algorithmwas proposed byGeoffreyHinton
(Hinton, Srivastava & Swersky, 2014). RMSProp optimizer is similar to the gradient descent
algorithm with momentum. By employing a moving average of the squared gradient to
normalize the gradient by considering the size of recent gradient descents, RMSProp
attempts to address the drastically decreasing the learning rates of Adagrad. Therefore,
the algorithm progresses horizontally, with larger steps converging faster as the learning
rate increases (Mukkamala & Hein, 2017). The moving average of the squared gradient is
maintained as follows:

θt = θt−1−
η√

E[g 2]t−1+ε
gt−1 (11)

Adagrad
Adagrad is an optimization technique that modifies the learning rates of the model
parameters on an individual basis (Duchi, Hazan & Singer, 2011). The learning rate of
the parameters with the biggest partial derivative of the loss decreases quickly, whereas
the learning rate of the parameters with smaller partial derivatives decreases more slowly
(Goodfellow, Bengio & Courville, 2016). This is accomplished by using all the previous
squared values of the gradient. The update for each parameter θi in every iteration t is
expressed as follows:

θt ,i = θt−1,i−
η√

Gt−1,ii+ε
·gt−1,i (12)

Here, ε is an expression that prevents division by zero, and the objective function’s
gradient with respect to the parameter θi at iteration t−1 is denoted with g t−1:

gt−1,i =∇θ J (θi), (13)

where gt−1,ii is a diagonal matrix where every diagonal element i,i is the sum of gradients
squares in respect to θi up to iteration t −1. Element-wise vector multiplication between
Gt−1 and gt−1 is represented with �, and vectorization update is done as follows:

θt = θt−1−
η

√
Gt−1+ε

�gt−1 (14)

AdaDelta
The primary goal of the AdaDelta method is to address the two main issues with AdaGrad:
the constant decay of learning rates during training and the demand for manually selecting
global learning rates. To achieve this, AdaDelta limits the past gradient window to a fixed
size rather than adding up the sum of all squared gradients over time (Zeiler, 2012). The
update of AdaDelta is as follows:

θt = θt−1−
RMS[1θ]t−2
RMS[g]t−1

gt−1 (15)

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 13/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

where RMS[g]t−1 represents the RMS error criterion of the gradient [g]t−1:

RMS[g]t−1=
√
E[g 2]t−1+ε (16)

and the running average at the t −1th iteration is represented with E[g 2]t−1, which is
calculated using the previous average and the exist gradient:

E[g 2]t = γE[g 2]t−1+ (1−γ)g 2t−1 (17)

where γ denotes a fraction that is identical as the momentum term. Following this,
RMS[1θ]t represents the error criterion of 1θ2, and the running average E[1θ2]t of 1θt
is acquired by:

E[1θ2]t = γE[1θ2]t−1+ (1−γ)1θ2t−1 (18)

Adamax
Adamax is an extension of Adam. First, Adamax calculates the gradients at time step t with
respect to the stochastic objective. Then, it calculates an exponentially weighted infinity
norm along with a biased first-moment estimate to update model parameters (Kingma &
Ba, 2014). Adamax’s parameter update rule is as follows:

ut =max(β2vt−1,|gt |) (19)

θt+1= θt −
η

ut
m̂t (20)

Nadam
Nadam uses the accelerated gradient of Nesterov to modify Adam’s momentum
component. Thus, the goal of Nadam is to increase the speed of convergence of the models
(Dozat, 2016). Similar to the Adam algorithm, the first and second-moment variables are
updated after computing the gradients. Following this, corrected moments are calculated
so that the parameters can be updated. The parameter updates are expressed as:

θt+1= θt −
η

√
v̂t +ε

(β1m̂t +
(1−β1)gt
1−β t1

) (21)

COMPARISON
In this study, we proposed a solution for surface classification tasks and evaluate the
performance of the applied and proposed models. The evaluation process for the
classification task in terms of training and testing is performed on the AMD Ryzen 9
5900X processor with 64 GB of RAM and Nvidia GeForce RTX 3080 Ti graphic card.
Jupyter Notebook with Python 3.6 is used as an interface. Tensorflow and Keras libraries

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 14/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

are used for the implemented models. Matplotlib and Seaborn libraries are utilized for
visualization.

In order to evaluate the model’s accuracy, each model is trained and tested on a dataset
containing 2,081 images, separated into training, validation, and test sets with 80-10–10%,
respectively. Note that test images are selected randomly to predict the surface accurately.
The efficiency and performance of the models are measured with four metrics: accuracy,
precision, recall, and f1- score. Confusionmatrices are demonstrated to analyze themodel’s
predictions in detail. The performance evaluation metric equations are expressed below:

• The proportion of correctly identified samples to all samples is used tomeasure accuracy.
This metric illustrates the classification’s level of confidence.

Accuracy =
TP+TN

TP+FP+FN +TN
(22)

• Precision is a metric that determines the ratio of true positives (TP) to the total of TP
and false positives (FP).

Precision=
TP

TP+FP
(23)

• Recall is the metric that demonstrates the ratio of the true positive to the total of the
true positive and false negatives (FN).

Recall =
TP

TP+FN
(24)

• The F-measure is a metric defined as the harmonic mean of precision and recall.

F1score =
2×Precision×Recall
Precision+Recall

(25)

In Algorithm 1, first, the dataset, including images of carpet, tile, and wood, is loaded
(line 1), and secondly, the images are normalized to reduce the computational cost (line
2). In the training, eight different models are trained (line 3), consisting of seven different
state-of-the-art and one modified CNN-based model. Seven different optimizers (line
4) are used for each model. The models trained with different optimizers (line 10) are
compared, and as a result, the model with the best performance (Proposed Model) is
determined (line 11).

The train and validation accuracy/loss graphs obtained with the best-performing
optimizers of each model are demonstrated between Figs. 6–13. When the figures are
examined, it is seen that the train accuracy values of the models are above 96%. However,
the values of the validation accuracy vary significantly according to themodels. For instance,
as shown in Figs. 6–8, although train accuracy is high in InceptionV3 and VGG19 models,
validation accuracy could not exceed a specific limit. It implies that there is overfitting in
both models. When analyzing the train-validation loss graphs of VGG19 and InceptionV3,
it is observed that as the number of epochs increases during training, the train loss value
of VGG19 decreases, whereas the InceptionV3 model increases.

Contrary to these models, it is seen that train and validation accuracy values in VGG16
and Xception models converge, and overfitting decreases compared to previous models,
except for a few epochs when examining Figs. 7–10. This decrease in overfitting accuracy

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 15/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Algorithm 1 Surface classification in indoor environment
1: ImP=Load(Surface)
2: ImNorm=(ImP min(ImP))/(max(ImP)min(ImP))
3: Models← { InceptionV3, VGG16, VGG19, Xception, ResNet50, InceptionResNetV2,

MobileNetV2, Proposed}
4: Optimizers← {SGD, Adam, RMSProp, Adadelta, Adamax, Adagrad, Nadam}
5: for i=1 to |Models| do
6: for j=1 to |Optimizers| do
7: TrainedModel[i][j]=Models[i](ImNorm,Optimizers[j])
8: end for
9: end for
10: for k=1 to TrainedModel[i][j] do
11: ProposedModel← BestWeights(TrainedModel[i][j])
12: end for

Figure 6 InceptionV3model’s training and validation accuracy-loss graphs with Adam optimizer.
Full-size DOI: 10.7717/peerjcs.1730/fig-6

Figure 7 VGG16model’s training and validation accuracy-loss graphs with Nadam optimizer.
Full-size DOI: 10.7717/peerjcs.1730/fig-7

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 16/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-6
https://doi.org/10.7717/peerjcs.1730/fig-7
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 8 VGG19model’s training and validation accuracy-loss graphs with Adamax optimizer.
Full-size DOI: 10.7717/peerjcs.1730/fig-8

Figure 9 ResNet50 model’s training and validation accuracy-loss graphs with Adamax optimizer.
Full-size DOI: 10.7717/peerjcs.1730/fig-9

Figure 10 Xceptionmodel’s training and validation accuracy-loss graphs with SGD optimizer.
Full-size DOI: 10.7717/peerjcs.1730/fig-10

values is reflected in the graph as an increase in loss values. Although there is oscillation
for the InceptionResNetV2 model in Fig. 11, the train and validation accuracy values are
close. The train loss value is already low; the validation loss confirms this.

Comparing the MobileNetV2 and MobileNetV2-modified graphs in Figs. 12 and 13,
it is evident that the training process of the proposed model is better than the original

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 17/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-8
https://doi.org/10.7717/peerjcs.1730/fig-9
https://doi.org/10.7717/peerjcs.1730/fig-10
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 11 InceptionResNetV2model’s training and validation accuracy-loss graphs with Adam opti-
mizer.

Full-size DOI: 10.7717/peerjcs.1730/fig-11

Figure 12 MobileNetV2model’s training and validation accuracy-loss graphs with Adamax optimizer.
Full-size DOI: 10.7717/peerjcs.1730/fig-12

Figure 13 MobileNetV2-modified model’s training and validation accuracy-loss graphs with Adamax
optimizer.

Full-size DOI: 10.7717/peerjcs.1730/fig-13

MobileNetV2. Thus, this positively affects the proposed model’s accuracy, precision, recall,
and test accuracies.

The performance comparison analysis of the proposed model and applied state-of-the-
art DL models for surface classification task is shown in Table 2. Experimental results

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 18/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-11
https://doi.org/10.7717/peerjcs.1730/fig-12
https://doi.org/10.7717/peerjcs.1730/fig-13
http://dx.doi.org/10.7717/peerj-cs.1730

Table 2 Performance results of applied state-of-the-art models and proposed model.

Model Optimizer Recall (%) Precision (%) F1-score (%) Train Acc. (%) Train loss (%) Test Acc. (%)

SGD 95 95 95 99.40 3.8 95.19
Adam 95 95 95 99.64 0.5 95.67
RMSprop 96 95 95 99.58 5.04 95.67
Adadelta 92 93 92 95.74 14.45 92.79
Adamax 95 95 95 99.52 2.56 95.67
Adagrad 95 95 95 99.52 1.85 95.67

InceptionV3

Nadam 93 93 93 99.34 2.27 93.75
SGD 86 87 86 88.77 35.42 87.02
Adam 93 93 93 99.58 0.6 93.27
RMSprop 92 92 92 99.46 0.7 91.83
Adadelta 84 85 85 85.29 44.57 85.58
Adamax 93 93 93 99.52 0.64 93.27
Adagrad 91 91 91 93.63 22.95 91.93

VGG16

Nadam 95 95 95 99.40 0.59 95.19
SGD 87 87 87 84.98 42.69 87.98
Adam 91 91 90 99.58 2.46 91.35
RMSprop 91 91 91 99.76 1.42 91.83
Adadelta 52 56 49 59.76 93.38 57.69
Adamax 94 94 94 96.76 13.47 94.23
Adagrad 85 85 85 85.29 43.34 86.06

VGG19

Nadam 91 91 91 99.34 2.4 92.31
SGD 47 38 35 56.05 95.21 41.29
Adam 56 60 57 61.08 90.50 56.73
RMSprop 54 55 46 66.85 70.62 53.85
Adadelta 55 50 48 56.16 91.66 57.69
Adamax 54 55 52 72.07 61.23 57.21
Adagrad 55 53 50 61.26 80.94 57.21

ResNet50

Nadam 54 59 54 65.53 70.84 58.17
SGD 94 95 94 98.80 5.58 94.71
Adam 93 93 93 99.58 0.55 93.75
RMSprop 93 93 93 99.58 0.56 93.27
Adadelta 93 94 93 97.36 9.80 93.75
Adamax 93 93 93 99.40 0.69 93.75
Adagrad 93 93 93 99.46 2.25 93.27

Xception

Nadam 33 14 20 41.92 109 41.35
SGD 88 90 89 88.89 37.97 89.42
Adam 95 95 95 99.58 0.61 95.19
RMSprop 92 92 92 99.70 0.62 92.79
Adadelta 86 88 86 85.83 67.83 87.50
Adamax 94 94 94 99.52 1.26 94.71
Adagrad 88 90 89 90.57 27.74 89.42

InceptionResNetV2

Nadam 94 94 94 99.40 0.65 94.71
(continued on next page)

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Table 2 (continued)

Model Optimizer Recall (%) Precision (%) F1-score (%) Train Acc. (%) Train loss (%) Test Acc. (%)

SGD 91 92 91 89.01 36.55 91.83
Adam 93 93 93 99.52 1.31 93.27
RMSprop 95 95 95 99.46 1.62 95.19
Adadelta 79 82 80 79.52 69.71 81.25
Adamax 95 95 95 99.58 1.15 95.67
Adagrad 93 93 93 91.29 28.62 93.27

MobileNetV2

Nadam 95 95 95 99.52 1.39 95.19
SGD 95 96 95 87.45 38.80 95.67
Adam 99 99 99 99.82 1.08 98.56
RMSprop 99 99 99 100 0.002 99.04
Adadelta 70 74 70 65.71 99.88 73.08
Adamax 100 99 100 99.94 0.53 99.52
Adagrad 97 97 97 93.09 21.95 97.12

MobileNetV2-
modified

Nadam 99 99 99 100 0.01 98.56

Notes.
We emphasize the Modified model/Adamax values by making them bold, as they represent significant values, indicating the best performance in the table.

demonstrate that the modified model surpassed the state-of-the-art DL models in terms
of precision, recall, F1-score, and test accuracy when trained with Adamax optimizer, by
achieving 4% higher accuracy than each model. Afterward, the most effective ones are
MobileNetV2, InceptionV3, Xception, and InceptionResNetV2 models, whereas VGG19
shows the lowest performance when considering the results obtained with different
optimizers. Among the seven different optimizers, Adamax, Adam, SGD, and RMSProp
perform the most effectively on each CNNmodel, while the others perform less effectively.

When Figs. 12 and 13 are compared, the effect of the modification can be seen quite
clearly in terms of the accuracy and loss value. When the train-validation accuracy graph
in Fig. 12 is examined, it is seen that the oscillation is lower, and there is a small difference
in accuracy compared to the other models. As seen in Fig. 13, the training progress of
the modified model has been completed consistently. In the train-validation accuracy and
train-validation loss graphs, it is seen that the values converge between train-validation
accuracy and loss. Thus, overfitting is prevented.

Consequently, the test accuracy is obtained as 99.52%, which is quite high compared to
other models, and the loss value is close to 0 in Table 2. Therefore, this shows how well the
modified model was trained. As seen in Fig. 14, MobileNetV2-modified mispredicts only
one carpet image out of 208 test images in the confusion matrix, which reveals that the test
accuracy is almost 100%.

The confusion matrices for each model are shown in Fig. 14, with each matrix
representing the classification of images into 0 Carpet, 1 Tile, or 2 Wood. As shown
in Fig. 14, 86 images of Carpet, 64 images of Tile, and 58 images of wood were tested. Each
class was predicted with high accuracy, as indicated by the confusion matrix results. When
examining the estimation of Carpet for each model, it is observed that the TP value is
relatively high and the FP value is low, which is desirable. For instance, when the confusion
matrix is examined for tile, the FN value is higher than other classes by reducing the recall

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 20/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 14 Confusionmatrices. (A) InceptionV3 (Adam) (B) VGG16 (Nadam) (C) VGG19 (Adamax)
(D) ResNet50 (Adamax) (E) Xception (SGD) (F) InceptionResnetV2 (Adam) (G) MobileNetV2
(Adamax) (H) MobileNetV2-modified (Adamax). Each model is associated with an optimizer performing
best with the model.

Full-size DOI: 10.7717/peerjcs.1730/fig-14

value. It was determined as wood instead of being estimated as tile. This is because there
are wood-like tiles and tile-like wood images in the section reserved for testing. In contrast,
wood appears to be predicted more accurately. Considering the confusion matrices, the
modified model has shown the highest prediction when compared to the applied DL
models.

Additionally, in this study, the computational time of each model was also measured.
Table 3 presents the training times and the weight sizes of both the modified model and
the state-of-the-art DL models used in the surface classification task. Compared to the
other models, the modified model effectively completed the training in less computing
time. According to MobileNetV2, the training time increased partially as the depth of the
proposed model increased. After removing blocks, adding dropouts, and freezing certain
blocks, the trainable parameters have been reduced by approximately four times compared
to the original MobileNetV2 and the weight of this model has been reduced to 11 MB.
On the other hand, VGG19 and InceptionResNetV2 had the longest training time. It is

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 21/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-14
http://dx.doi.org/10.7717/peerj-cs.1730

Table 3 Comparison of training time andmodel weight size for each model.

Model Training time (min) Model weight size

InceptionV3 3:24 1.7 GB
VGG16 6:48 2.3 GB
VGG19 8:29 82 MB
ResNet50 7:13 1.4 GB
Xception 6:47 927 MB
InceptionResNetV2 8:30 264 MB
MobileNetV2 1:43 42 MB
MobileNetV2-modified 1:25 11 MB

Table 4 Comparison of the proposed model and existing studies.

Research Sensor Surface type Algorithm/Technique Accuracy (%)

Kertész (2016) Ground Contact Force,
Infrared,
Accelerometer

Indoor Random Forest (RF) 94

Giguere & Dudek (2011) Tactile Indoor/Outdoor Artificial Neural Network (ANN) 94.6
Lomio et al. (2019) IMU Indoor XGBoost+Neural Network+ResNet 68.21
Singh et al. (2023) IMU Indoor/Outdoor Customized CNNModel 88
Weiss, Tamimi & Zell (2008) Audio & Vision Indoor/Outdoor Support Vector Machine (SVM) 87.04
Kurobe et al. (2021) Audio & Vision Indoor/Outdoor ResNet50 80
Guan et al. (2022) IMU & Vision Indoor/Outdoor EfficientNet-B0 + IMU Denoising Module 98.37
Our study Vision Indoor MobileNetV2-Modified 99.52

worth noting that the InceptionV3 model required a considerable amount of training time,
whereas the training time for VGG16 and Xception models was on average.

It is worth noting that previous studies have mainly focused on surface classification
tasks by using both IMU and vision sensors. Most of them utilize conventional machine
learning algorithms or deep learning networks, which attain reasonable results. When
Table 4 is examined, most of these studies were tested on indoor or outdoor surfaces by
using more than one sensor. However, the accuracy remained within a certain limit except
for the work (Guan et al., 2022). When they utilized only the vision sensor, the accuracy
was around 90%, but when the IMU was added and the sensor fusion was supplied, it
increased to around 98%. On the other hand, our study only used the vision sensor, and
we facilitated its applicability in robotic applications by proposing a lightweight model
called MobileNetV2-modifed. Consequently, with these advantages, the proposed model
achieved an accuracy of 99.52%, which outperformed other studies.

EXPERIMENTS
In this section, we first present the proposed approach (Algorithm 2) implemented on the
mobile robot. Then, the characteristics of the utilized mobile robot are presented. Finally,
we experimentally demonstrate the performance of the proposed model on the mobile
robot under various indoor environments in surface classification tasks.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 22/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

In Algorithm 2, first, the best weights obtained in the training are loaded to the proposed
model (line 1). As the robot moves (line 2), it captures an image from the camera every
five seconds (line 3). It tests the captured images using the best model weight obtained in
training and generates probabilities for three surface types (line 4). Finally, the algorithm
returns the surface type with the maximum probability (line 5).

Algorithm 2 Real time surface classification in indoor environment
1: ProposedModel← TrainedBestWeights
2: while Robot Moving do
3: image← CaptureImage in every 5 s
4: probs← ProposedModel.Predict(image)
5: surface_type←max(probs)
6: end while

Experimental platform
The robot utilized for indoor surface classification is the Kobuki TurtleBot2, which is an
open-source differential-drive robot developed by Yujin Robot. It has features such as long
battery life, dependable odometry sensors, and power for external sensors and actuators,
making it convenient for various indoor tasks. A laptop with an Intel i5 processor and 8
GB of RAM configuration is connected to the robot and placed on top of it.

For video streaming, we use a Logitech C922 webcam mounted on the laptop. With
a 78-degree field of view, this webcam can capture 1080p HD videos at 30 frames per
second (fps). The connectivity between the laptop and the robot is facilitated by Robot
Operating System (ROS). ROS packages were utilized for the connectivity of the Logitech
C922 camera to the Kobuki Turtlebot2 as well as for the keyboard control of the mobile
robot. Note that the robot was controlled remotely via a keyboard from a computer that
accessed the laptop. The experimental platform is shown in Fig. 15.

Experimental results
To demonstrate the robustness of the proposed models in recognizing surface types, we
conducted experiments on 11 different indoor environments. These environments include
offices, rooms, and hallways. The surface types in each environment vary in terms of colors
and patterns. We first transferred the weights of the proposed models (h5 file) to the
laptop that was placed on top of the mobile robot. This made it suitable to perform surface
classification on live streams during the robot is moving.

For the testing phase, 11 different scenarios were determined. Thus, we drove the mobile
robot through passages where surfaces like wood-carpet-tile, carpet-tile, and carpet-wood
were present. During the movement of the mobile robot, an image was captured from a
Logitech camera every 5 s and classified as carpet, tile, or wood. In total, 267 images were
captured and tested. The proposed model correctly classified the 265 surface images, while
only two images were classified incorrectly. These images belong to scenario 8 in Table 5.
Table 5 shows the number of correctly classified images for each scenario. In scenarios
where one or two surface types did not exist it is presented with a dash (-).

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 15 Experimental platform.
Full-size DOI: 10.7717/peerjcs.1730/fig-15

Table 5 Classification results of the proposed model implemented on amobile robot.

Scenario Environment Carpet Tiles Wood

1 14 12 –
2

Hallway
– 15 –

3 Office 1 11 – 17
4 Office 2 9 – 13
5 6 8 4
6 10 4 6
7

Home 1
14 10 7

8 Home 2 10 8 10
9 19 5 6
10 15 – 9
11

Home 3
10 8 7

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 24/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-15
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 16 Confusionmatrix of proposed model for all the scenarios.
Full-size DOI: 10.7717/peerjcs.1730/fig-16

The confusion matrix of the proposed model for all the scenarios is presented in Fig. 16.
It is clear that the proposed model correctly predicts all of the images except for two
images. In scenario 8, the proposed method classified the carpet surface type as wood. To
investigate the source of the misclassification, we repeated the experiment for scenario 8
by moving the robot over the same area. However, this time, it classified all surface types
correctly. After analyzing the images from the first experiment and the repeated experiment
in scenario 8, we concluded that the misclassification was due to blurriness. Some of the
correctly classified surface images and all misclassified images can be seen in Figs. 17 and
18, respectively.

In general, our model achieved an accuracy of 99.25% by correctly classifying 265 out
of 267 surface images. Achieving high accuracy even in various indoor environments
demonstrates the robustness of the proposed model.

The processing cost of the pre-trained models varies depending on the architecture
and size of the model. We evaluated the processing cost of each model in terms of model
loading time and processing time. When we refer to processing time, we imply the time
required for predicting surface type. The evaluation was done on the laptop which we
utilized on Kobuki robot and Raspberry Pi 3, a single board computer.

Table 6 presents the results obtained on an Intel laptop. As excepted, due to their
architecture and model weight sizes, InceptionV3, VGG16, ResNet50, Xception and
InceptionResNetV2 obtain a higher processing costs in terms of model loading and
processing time. In comparison to the original MobileNetV2 model, the modified model
requires less time for both model loading and processing time.

The results obtained using the Intel laptop reveal that, despite significant variations in
model loading time for each architecture, the maximum processing time is 1.5 s. However,

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 25/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-16
http://dx.doi.org/10.7717/peerj-cs.1730

Figure 17 Samples of correctly classified surface types.
Full-size DOI: 10.7717/peerjcs.1730/fig-17

Figure 18 Blurry images of carpet misclassified by the proposed model.
Full-size DOI: 10.7717/peerjcs.1730/fig-18

Table 6 Processing cost of model weights on an Intel laptop.

Model Model loading time (sec.) Processing time (sec.)

InceptionV3 8.44 0.37
VGG16 11.76 1.28
VGG19 0.61 1.52
ResNet50 6.21 0.48
Xception 5.22 0.53
InceptionResNetV2 7.73 0.70
MobileNetV2 1.63 0.11
MobileNetV2 Modified 1.37 0.10

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 26/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1730/fig-17
https://doi.org/10.7717/peerjcs.1730/fig-18
http://dx.doi.org/10.7717/peerj-cs.1730

Table 7 Processing cost of model weights on Raspberry Pi 3.

Model Model loading time (sec.) Processing time (sec.)

InceptionV3 failed –
VGG16 failed –
VGG19 15.87 7.91
ResNet50 failed –
Xception failed –
InceptionResNetV2 168.09 114.02
MobileNetV2 10.04 11.03
MobileNetV2 Modified 7.41 5.22

as seen in Table 7, there are significant differences in model loading time and processing
time among the architectures when they were tested on Raspberry, which has a limited
processing capacity. Although the evaluation process was performed multiple times for the
InceptionV3, VGG16, ResNet50, and Xception architectures, Raspberry was unable to load
them. InceptionResNetV2 and VGG19 are far behind both the original MobileNetV2 and
MobileNetV2-modified in terms of model loading time and processing time. Compared to
the original MobileNetV2, the processing and loading time has been significantly reduced
in the MobileNetV2-modified model.

CONCLUSION
Towards the improvement of indoor mobile robots for surface classification tasks, we
developed a lightweight MobileNetV2-modified model. We then analyzed the performance
of pre-trained state-of-the-art DL based models, including InceptionV3, VGG16, VGG19,
ResNet50, Xception, InceptionResNetV2, and MobileNetV2. Our proposed model’s total
parameters are reduced approximately four times compared to the original MobileNetV2
model. This parameter reduction makes the model well-suited for use in computationally
limited systems. Moreover, we generated a unique dataset with various types of carpets,
tiles, and wood collected from different indoor environments. Finally, we applied several
optimizers, namely SGD, RMSProp, Adam, Adadelta, Adamax, Adagrad, and Nadam, to
determine themost efficientmodel. The experiments show that the proposedMobileNetV2-
modifiedmodel outperforms all applied state-of-the-artDLmodels and existing approaches
in the literature. Besides this, the robustness of the proposed model is demonstrated by its
high accuracy performance in real-time indoor scenarios when examined on the mobile
robot. Furthermore, it has been observed that the proposed model yields better results
than other models in terms of model loading time and processing time on computers with
limited computational capacity.

Future work includes enhancing the system by removing blurriness using image
processing filters and computer vision techniques. In addition, different tasks will be
assigned to heterogeneous robots based on the type of surface, allowing them to collaborate
effectively. The robot that performs better on the relevant ground will complete the task.
Therefore, this approach will facilitate task distribution based on surface conditions.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 27/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1730

ACKNOWLEDGEMENTS
The authors thank Erdal Alimovski for his helpful support during this work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Scientific Research Projects (BAP) through the Istanbul
Sabahattin Zaim University (No. BAP-1000-88). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Scientific Research Projects (BAP) through the Istanbul Sabahattin Zaim University:
BAP-1000-88.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Asiye Demirtaş conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Gökhan Erdemir conceived and designed the experiments, analyzed the data, performed
the computation work, prepared figures and/or tables, authored or reviewed drafts of
the article, and approved the final draft.
• Haluk Bayram conceived and designed the experiments, analyzed the data, performed
the computation work, prepared figures and/or tables, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub and Zenodo:
- https://github.com/FieldRoboticsLab/Dataset-for-Indoor-Surface-Classification
- Demirtas, A., Erdemir, G., & Bayram, H. (2023). Indoor Surface Classification for

Mobile Robots [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8415260

REFERENCES
Bai C, Guo J, Zheng H. 2019. Three-dimensional vibration-based terrain classification for

mobile robots. IEEE Access 7:63485–63492 DOI 10.1109/ACCESS.2019.2916480.
Bermudez FLG, Julian RC, Haldane DW, Abbeel P, Fearing RS. 2012. Performance

analysis and terrain classification for a legged robot over rough terrain. In: 2012
IEEE/RSJ international conference on intelligent robots and systems. Piscataway: IEEE,
513–519.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 28/31

https://peerj.com
https://github.com/FieldRoboticsLab/Dataset-for-Indoor-Surface-Classification
https://doi.org/10.5281/zenodo.8415260
http://dx.doi.org/10.1109/ACCESS.2019.2916480
http://dx.doi.org/10.7717/peerj-cs.1730

BosworthW,Whitney J, Kim S, Hogan N. 2016. Robot locomotion on hard and soft
ground: measuring stability and ground properties in-situ. In: 2016 IEEE interna-
tional conference on robotics and automation (ICRA). Piscataway: IEEE, 3582–3589.

Chollet F. 2017. Xception: deep learning with depthwise separable convolutions.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway: IEEE, 1251–1258.

Demirtas A, Erdemir G, BayramH. 2023. Dataset for indoor surface classification.
Zenodo. DOI 10.5281/zenodo.8415260.

Dozat T. 2016. Incorporating nesterov momentum into Adam. In: Proceedings of 4th
international conference on learning representations, workshop track. 1–4.

Duchi J, Hazan E, Singer Y. 2011. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research 12(61):2121–2159.

Giguere P, Dudek G. 2011. A simple tactile probe for surface identification by mobile
robots. IEEE Transactions on Robotics 27(3):534–544 DOI 10.1109/TRO.2011.2119910.

Goodfellow I, Bengio Y, Courville A. 2016.Deep learning. Cambridge: MIT press.
Google Cloud TPU. 2023. Advanced guide to Inception v3. Available at https://cloud.

google.com/tpu/docs/inception-v3-advanced (accessed on 01 October 2023).
Guan T, Song R, Ye Z, Zhang L. 2022. VINet: visual and inertial-based terrain classifica-

tion and adaptive navigation over unknown terrain. ArXiv arXiv:2209.07725.
GuanWH,Melvern C, Hou FT, Zaw AM, KhanMA, AramugamK, Ramaswamy

M. 2021. D-Bot: a food serving robot during pandemic situation. In: 2021 IEEE
international conference on robotics, automation, artificial-intelligence and internet-
of-things (RAAICON). Piscataway: IEEE, 22–25.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway: IEEE, 770–778.

Hinton G, Srivastava N, Swersky K. 2014. Overview of mini-batch gradient descent.
In: Lecture 6a notes—neural networks for machine learning. Toronto: University of
Toronto, 1–31.

Huang G, Liu Z, Van DerMaaten L,Weinberger KQ. 2017. Densely connected convolu-
tional networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. Piscataway: IEEE, 4700–4708.

Kertész C. 2016. Rigidity-based surface recognition for a domestic legged robot. IEEE
Robotics and Automation Letters 1(1):309–315 DOI 10.1109/LRA.2016.2519949.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv
arXiv:1412.6980.

Kurobe A, Nakajima Y, Kitani K, Saito H. 2021. Audio-visual self-supervised ter-
rain type recognition for ground mobile platforms. IEEE Access 9:29970–29979
DOI 10.1109/ACCESS.2021.3059620.

Lomio F, Skenderi E, Mohamadi D, Collin J, Ghabcheloo R, Huttunen H. 2019. Surface
type classification for autonomous robot indoor navigation. ArXiv arXiv:1905.00252.

Mukkamala MC, HeinM. 2017. Variants of RMSprop and Adagrad with logarithmic
regret bounds. In: International conference on machine learning. PMLR, 2545–2553.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 29/31

https://peerj.com
http://dx.doi.org/10.5281/zenodo.8415260
http://dx.doi.org/10.1109/TRO.2011.2119910
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://cloud.google.com/tpu/docs/inception-v3-advanced
http://arXiv.org/abs/2209.07725
http://dx.doi.org/10.1109/LRA.2016.2519949
http://arXiv.org/abs/1412.6980
http://dx.doi.org/10.1109/ACCESS.2021.3059620
http://arXiv.org/abs/1905.00252
http://dx.doi.org/10.7717/peerj-cs.1730

Muthugala MVJ, Vengadesh A,Wu X, Elara MR, Iwase M, Sun L, Hao J. 2020. Ex-
pressing attention requirement of a floor cleaning robot through interactive lights.
Automation in Construction 110:103015 DOI 10.1016/j.autcon.2019.103015.

NiloyMA, Shama A, Chakrabortty RK, RyanMJ, Badal FR, Tasneem Z, AhamedMH,
Moyeen SI, Das SK, Ali MDF, Ali MRI, Saha DK. 2021. Critical design and control
issues of indoor autonomous mobile robots: a review. IEEE Access 9:35338–35370
DOI 10.1109/ACCESS.2021.3062557.

Rajendran GB, Kumarasamy UM, Zarro C, Divakarachari PB, Ullo SL. 2020. Land-
use and land-cover classification using a human group-based particle swarm
optimization algorithm with an LSTM Classifier on hybrid pre-processing remote-
sensing images. Remote Sensing 12(24):4135 DOI 10.3390/rs12244135.

Robbins H, Monro S. 1951. A stochastic approximation method. The Annals of Mathe-
matical Statistics 22(3):400–407.

Ruan K,Wu Z, Xu Q. 2021. Smart cleaner: a new autonomous indoor disinfection robot
for combating the covid-19 pandemic. Robotics 10(3):87
DOI 10.3390/robotics10030087.

Rubio F, Valero F, Llopis-Albert C. 2019. A review of mobile robots: concepts, methods,
theoretical framework, and applications. International Journal of Advanced Robotic
Systems 16(2):1729881419839596 DOI 10.1177/1729881419839596.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A,
Khosla A, BernsteinMichael ACB, Fei-Fei L. 2015. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision 115:211–252
DOI 10.1007/s11263-015-0816-y.

Sandler M, Howard A, ZhuM, Zhmoginov A, Chen L-C. 2018.MobileNetV2: inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 4510–4520.

Sayak P. 2023. Learning to resize in computer vision. Available at https://keras.io/
examples/vision/learnable_resizer (accessed on 01 October 2023).

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv arXiv:1409.1556.

Singh S, SajwanM, Singh G, Dixit AK, Mehta A. 2023. Efficient surface detection
for assisting collaborative robots. Robotics and Autonomous Systems 161:104339
DOI 10.1016/j.robot.2022.104339.

Soydaner D. 2020. A comparison of optimization algorithms for deep learning. Inter-
national Journal of Pattern Recognition and Artificial Intelligence 34(13):2052013
DOI 10.1142/S0218001420520138.

Stefek A, Van Pham T, Krivanek V, PhamKL. 2020. Energy comparison of controllers
used for a differential drive wheeled mobile robot. IEEE Access 8:170915–170927
DOI 10.1109/ACCESS.2020.3023345.

Szegedy C, Ioffe S, Vanhoucke V, Alemi A. 2017. Inception-v4, inception-resnet and the
impact of residual connections on learning. In: Proceedings of the AAAI conference on
artificial intelligence, vol. 31(1).

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 30/31

https://peerj.com
http://dx.doi.org/10.1016/j.autcon.2019.103015
http://dx.doi.org/10.1109/ACCESS.2021.3062557
http://dx.doi.org/10.3390/rs12244135
http://dx.doi.org/10.3390/robotics10030087
http://dx.doi.org/10.1177/1729881419839596
http://dx.doi.org/10.1007/s11263-015-0816-y
https://keras.io/examples/vision/learnable_resizer
https://keras.io/examples/vision/learnable_resizer
http://arXiv.org/abs/1409.1556
http://dx.doi.org/10.1016/j.robot.2022.104339
http://dx.doi.org/10.1142/S0218001420520138
http://dx.doi.org/10.1109/ACCESS.2020.3023345
http://dx.doi.org/10.7717/peerj-cs.1730

Szegedy C, LiuW, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V,
Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. Piscataway: IEEE, 1–9.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 2818–2826.

Tick D, Rahman T, Busso C, Gans N. 2012. Indoor robotic terrain classification via
angular velocity based hierarchical classifier selection. In: 2012 IEEE international
conference on robotics and automation. Piscataway: IEEE, 3594–3600.

Weiss C, Tamimi H, Zell A. 2008. A combination of vision-and vibration-based terrain
classification. In: 2008 IEEE/RSJ international conference on intelligent robots and
systems. Piscataway: IEEE, 2204–2209.

Xue F, Hu L, Yao C, Liu Z, Zhu Z, Jia Z. 2022. Sound-based terrain classification for
multi-modal wheel-leg robots. In: 2022 international conference on advanced robotics
and mechatronics (ICARM). Piscataway: IEEE, 174–179.

Yasuda YD, Martins LEG, Cappabianco FA. 2020. Autonomous visual navigation for
mobile robots: a systematic literature review. ACM Computing Surveys (CSUR)
53(1):1–34.

Zeiler MD. 2012. Adadelta: an adaptive learning rate method. ArXiv arXiv:1212.5701.
Zhao H, Liu F, Zhang H, Liang Z. 2019. Research on a learning rate with energy index in

deep learning. Neural Networks 110:225–231 DOI 10.1016/j.neunet.2018.12.009.

Demirtaş et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1730 31/31

https://peerj.com
http://arXiv.org/abs/1212.5701
http://dx.doi.org/10.1016/j.neunet.2018.12.009
http://dx.doi.org/10.7717/peerj-cs.1730

