
Submitted 2 June 2023
Accepted 8 November 2023
Published 8 December 2023

Corresponding author
Leonardo Javier Montiel-Arrieta,
mo450519@uaeh.edu.mx

Academic editor
Rahul Shah

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.1728

Copyright
2023 Montiel-Arrieta et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Minimizing the total waste in the one-
dimensional cutting stock problem
with the African buffalo optimization
algorithm
Leonardo Javier Montiel-Arrieta, Irving Barragan-Vite, Juan Carlos
Seck-Tuoh-Mora, Norberto Hernandez-Romero, Manuel González-Hernández
and Joselito Medina-Marin
AAIyA-ICBI-UAEH, Mineral de la Reforma, Hidalgo, Mexico

ABSTRACT
The one-dimensional cutting-stock problem (1D-CSP) consists of obtaining a set
of items of different lengths from stocks of one or different lengths, where the
minimization of waste is one of the main objectives to be achieved. This problem
arises in several industries like wood, glass, and paper, among others similar. Different
approaches have been designed to deal with this problem ranging from exact algorithms
to hybrid methods of heuristics or metaheuristics. The African Buffalo Optimization
(ABO) algorithm is used in this work to address the 1D-CSP. This algorithm has been
recently introduced to solve combinatorial problems such as travel salesman and bin
packing problems. A procedure was designed to improve the search by taking advantage
of the location of the buffaloes just before it is needed to restart the herd, with the
aim of not to losing the advance reached in the search. Different instances from the
literature were used to test the algorithm. The results show that the developedmethod is
competitive in waste minimization against other heuristics, metaheuristics, and hybrid
approaches.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Optimization Theory and Computation
Keywords Cutting stock problem, Combinatorial optimization, African buffalo optimization,
Meta-heuristic techniques, Artificial intelligence algorithm, Swarm intelligence

INTRODUCTION
The one-dimensional cutting stock problem (1D-CSP) was introduced by Kantorovich
in Kantorovich (1960). It is one of the cutting and packing problems and is considered an
NP-hard problem (Scheithauer, 2018). The 1D-CSP arises in many industrial applications
such as shipbuilding (Dikili & Barlas, 2011), construction (Benjaoran, Sooksil & Mathagul,
2017; Wang & Yi, 2022), wood (Ogunranti & Oluleye, 2016; Kaltenbrunner, Huka &
Gronalt, 2022), rubber mold industry Zanarini (2017), and the metal industries (Morillo-
Torres et al., 2021; Machado et al., 2020), to name a few. According to Dyckhoff (1990)
the classical version of 1D-CSP can be classified into a problem of large objects named
stocks and small objects or items that must be cut from the stocks. In Wäscher, Hausner
& Schumann (2007), the 1D-CSP falls into the single stock-size cutting stock problem

How to cite this article Montiel-Arrieta LJ, Barragan-Vite I, Seck-Tuoh-Mora JC, Hernandez-Romero N, González-Hernández M,
Medina-Marin J. 2023. Minimizing the total waste in the one-dimensional cutting stock problem with the African buffalo optimization algo-
rithm. PeerJ Comput. Sci. 9:e1728 http://doi.org/10.7717/peerj-cs.1728

https://peerj.com/computer-science
mailto:mo450519@uaeh.edu.mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1728
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1728


class where the stocks are of a fixed length while the items are of different lengths. In this
article, we consider this classification for the purpose of our study. Since the 1D-CSP was
introduced as a problem to deal with, several approaches have been developed to obtain
optimal combinations of cutting patterns, focusing on minimizing waste. The approaches
include exact algorithms, heuristics, metaheuristics and hybridizations.

The African Buffalo Optimization metaheuristic (ABO) is a novel algorithm, introduced
in Odili, Kahar & Anwar (2015). The ABO has been used to solve combinatorial problems
like the travelling salesman problem (TSP) (Odili et al., 2015; Odili & Mohmad Kahar,
2016) and the bin packing problem (1BPP) (Gherboudj, 2019), where the ABO was able
to obtain optimal or good solutions. An advantage of the ABO is that it requires few
parameters and is easy to be implemented according to Odili & Mohmad Kahar (2016).
Furthermore, inOdili et al. (2017) is compared against other swarm intelligence algortihms
in solving symetric and asymetric instances of TSP. The ABO proved to be more effective
and efficient in that it was able to obtain more solutions near the optimum.

The novelty of ABO as a promising algorithm to solve combinatorial problems as well
as its effectiveness and efficiency due to its simplicity motivates the study conducted in
this article to continue exploring its capabilities in another sort of combinatorial problem,
namely the 1D-CSP. In addition, most of the methods used to solve this problem need
elaborated representations of the solutions, different stages, or the tunning of many
parameters. The characteristics of the 1D-CSP which are similar to other combinatorial
problems already dealt with the ABO, also guided us to adopt this algorithm since
the solutions can be represented in a simple manner. However, in some preliminary
experiments, we found a disadvantage pointed out by other authors which is related
to continuously restarting the herd after a few iterations, leading to stagnation or to
non-competitive solutions. We addressed this problem by using crossing and retention
strategies at different stages of the algorithm, without adding more parameters to the ABO.
The results reported in this article show that the proposed improvements to the standard
version of the ABO are remarkable and competitive. Hence the main contributions of this
article are on the one hand, to show the use of the ABO for solving the 1D-CSP and, on
the other hand, to introduce strategies to improve its performance in solving this problem
without the use of more parameters than the standard version. Additionally, we use the
Ranking Order Value (ROV) method to yield discrete solutions since the ABO is aimed at
handling continuous problems.

The rest of this article is organized as follows. ‘‘State of the art of 1D-CSP’’ contains
the literature review. ‘‘Description of 1D-CSP’’ describes the basic concepts of 1D-CSP.
‘‘The African Buffalo Optimization algorithm’’ details the ABO algorithm. ‘‘Description of
the ABO-1DCSP’’ presents the algorithm proposed. ‘‘Experiments and results’’ shows the
results obtained. Finally, ‘‘Conclusions’’ presents the conclusions.

STATE OF THE ART OF 1D-CSP
The first formal method to solve the 1D-CSP was proposed by Kantorovich (1960) where
a model based on linear programming (LP) was introduced and the method of resolving

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 2/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


multipliers was used to reach to the solution. Gilmore and Gomory presented a column
generation technique based on a LP formulation in Gilmore & Gomory (1961), Gilmore &
Gomory (1963) with the purpose to create feasible cutting patterns and overcoming the
difficulties when applying classical procedures. Since then many other methods have been
proposed based on LP to deal with the problem as it is presented inDelorme, Iori & Martello
(2016). In Sá Santos & Nepomuceno (2022) the efficiency of three methods were compared:
integer linear programming, the technique of column generation, and an application of
the generate and solve framework to obtain solutions. They used benchmark instances
divided into five classes. Their results show that the exact approach was the only method
to handle well the instances with small and medium sizes, but not for large-sized instances.
Meanwhile, the method generate and solve was the only one to obtain relatively optimal
solutions in almost all instances. However, the method generate and solve does not have
any guarantee of convergence.

As it was pointed out above, a drawback of LP methods is that they are suitable for small
or medium-sized instances of 1D-CSP, but for large-sized instances the computational cost
to find the optimum solution is high. However, the performance of LP methods can be
improved by heuristics like column generation. A sequential search heuristic was jointly
used with LP in Haessler (1975), Haessler (1992) to generate cutting patterns and reduce
waste. Sequential heuristic procedures were later used in Gradišar et al. (1999); Cui et al.
(2008). Lexicographic search was used in Foerster & Wascher (2000) to reduce the cutting
patterns and for the same purpose local search was applied in Umetani, Yagiura & Ibaraki
(2003), Umetani, Yagiura & Ibaraki (2006) and Yanasse & Limeira (2006).

InAlfares & Alsawafy (2019), the authors implemented a heuristicmodelwhich consisted
of two stages to minimize the waste and the number of stocks. They use a set of ten
instances obtained from the literature and a second set from a manufacturer of office
furniture. Another heuristic approach based on residual recombination was introduced
in Campello et al. (2021), where they merge some cutting patterns with waste to minimize
the total number of stocks necessary to satisfy the demand for the items. They used different
instances obtained from various works. Their results obtained were of quality within a
reasonable CPU time. A method based on a greedy heuristic was developed in Cerqueira,
Aguiar & Marques (2021) to minimize the stock. They utilize a random generator for the
instances contemplating 18 classes of problems, each one with 100 instances. Their method
generated solutions with a lower average of stock used. In Lee et al. (2020), the authors
proposed an algorithm trying to minimize the waste related to rebar in the construction
industry. The algorithm was implemented in two methods. The first method called
minimization by special length considers a stock with irregular length, and the second
method called minimization by stock length considers a stock with standard length. Their
method was applied to a case project about a commercial building. The results confirm
that combining stocks with special lengths reduces the waste rate than combination by
stock length. In Vishwakarma & Powar (2021) a mathematical model is presented, where
a sustainable trim is defined as a trim loss that has a less negative economic impact on
the company. The sustainable trim is used as an upper bound for all cutting patterns. If
a cutting pattern has a trim loss greater than the sustainable trim, the cutting pattern is

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 3/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


discarded. Additionally, manpower and space are considered constraints for the problem.
To validate the approach, they use real data extracted from a company transmission tower
manufacturing. The model developed reduces the trim loss on average by 1.5% than other
methods. Goal programming was used in Sarper & Jaksic (2018) to include multiple goals
with soft restrictions and minimize the shortage and overage with a random demand mix
of items.

Despite the fact that many heuristic approaches have been developed to tackle the
1D-CSP and its variants, one of their drawbacks is that they are designed for specific issues
of the problem and cannot be implemented in a general way. For this reason metaheuristic
approaches have gained popularity for solving combinatorial problems as the 1D-CSP.
One of the most used evolutionary algorithms to solve the 1D-CSP is the genetic algorithm
(GA) as in Hinterding & Khan (1995), where two types of mappings to code the solutions
into chromosomes are used to improve the performance of GA. The authors conducted
their experiments on a set of five instances ranging from 20 to 126 items and they found
that the use of different mappings has an impact on both the quality of results and the time
to reach them. In Liang et al. (2002), the authors designed a method based on Evolutionary
Programming (EP) focused on minimizing both the waste and the number of stocks
necessary to satisfy the orders of items. In this method, a chromosome consisted of a list
of items, and it was proposed a mutation process to exchange the items with the purpose
to generate new combinations of items. The proposed EP method resulted to have equal
or better performance than a GA to which it was compared. The authors based their
experiments on the benchmark of Hinterding & Khan (1995) and on a set of another five
instances with a number 200, 400 and 600 of items.

In Peng & Chu (2010b)where, in order tominimize the trim-loss cost, two chromosomes
were proposed in their method, one related to the cutting pattern and the other one to the
frequency of the cutting patterns. In comparison with an EP method, the proposed hybrid
methodwas demonstrated to be slightly better. Similarly, Parmar, Prajapati & Dabhi (2015)
used a pair of genes where the first one is related to the frequency of the cutting pattern,
while the second is for the cutting pattern itself. The modified version of GA was compared
to LP, EP methods, and a two-swap algorithm on a set of 20 instances. The experiments
showed that the proposed method was better in the case of multiple-stock than the LP
method and better than the EP and two-swap algorithm in the case of single-stock.

Another metaheuristic used to solve the 1D-CSP is the ant colony optimization (ACO)
as shown in Levine & Ducatelle (2004) where the first fit-decreasing method was used as a
local search for the ACO. According to the authors, the hybridization and the pure ACO
were comparable to GA and EP. Likewise, in Peng & Chu (2010a), a tree search algorithm
was applied to improve the performance of ACO. Also, in Evtimov & Fidanova (2018) a
variant of ACO is used to solve the linear cutting stock problem. In their method, at each
iteration, every ant selects randomly a stock and order. Then apply a transition probability
rule searching to minimize the number of stocks. They employ a real case from a steel
structure to verify the efficiency of their approach. Also, their algorithm was compared
against a greedy algorithm and commercial software, obtaining positive results related to
the stocks.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


In Tang et al. (2021), ACO is used together with the immune genetic algorithm to
maximize the use of boards in the production process for wooden furniture. Also, they had
to improve the pheromone update method in order to avoid the premature convergence.
The method proposed was compared against others metaheuristic algorithms like GA,
grey wolf optimizer, and polar bear optimization using real data provided by a furniture
company. The results showed that their method can obtain a higher board utilization
than the other metaheuristics. Evolutionary computation was implemented in Chiong et
al. (2008) where each parent chromosome was generated randomly, gathering the items
into groups called genes according to the length of the stock. The objective function was
to minimize the number of stocks and wastage. In Jahromi et al. (2012), a comparison was
made between simulated annealing and tabu search to solve the 1D-CSP. They found that
solutions obtained with simulated annealing have lesser waste than those related to the
tabu search. However, the CPU time required to obtain optimal solutions is lesser with the
tabu search.

Particle swarm optimization (PSO) has been also used to solve the 1D-CSP. In Asvany,
Amudhavel & Sujatha (2017) a discrete PSO is proposed and compared to GA, PSO, and
Cuckoo Search algorithms finding acceptable results in waste minimization, and a better
performance in convergence and total material utilization. A heuristic strategy based on
the use of genetic operators for PSO is implemented in Shen et al. (2007) to solve the
1D-CSP, and the effectiveness is demonstrated by simulation. Likewise, Li, Zheng & Dai
(2007)made use of genetic operators as well as a hybridization of simulated annealing and
general PSO to address the multistock variant of 1D-CSP. Feasible solutions were found
for both limited and unlimited number of stocks. A method based on PSO was developed
in Ben Lagha, Dahmani & Krichen (2014) for a cable manufacturer attaining comparable
results against first fit-decreasing, MTP procedure and Perturbation-SAWMBS heuristic.
An improvement for the artificial fish swarm algorithm was used to solve the 1D-CSP
in Cheng & Bao (2018) yielding a better utilization rate of stock than the basic artificial fish
swarm algorithm.

In Montiel-Arrieta et al. (2022), the classical version of ABO was implemented to solve
the 1D-CSP focusing on minimizing the number of stocks required to satisfy the number
of items. They found that their method based on ABO obtains solutions very close to the
best in instances with a number of items less than or equal to 60. In Fang et al. (2023)
was presented a method based on deep reinforcement learning. Also, it was implemented
a Markov decision making process to realize the cutting sequence selection of items. In
addition, the parameters of the network were trained by employing the reinforcement
algorithm. Their model was tested using a real steel cutting stock and a set of large scale
instances generated randomly. Their approach solve effciently the 82 instances of the 3
sets. However, in some instances other approeches have better average of stock used.
Meanwhile, three different methods were developed in Srivastava et al. (2023) based on
the simplex method, PSO, and GA to reduce waste in a real-world paper industry. They
consider a linear single objective with operational and technological restrictions. Their
results were analyzed and compared against reported results demonstrating the efficiency
of their algorithms.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 5/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


The literature indicates the significant use of different approaches based on
exact, heuristic, and metaheuristic methods. Even proposing hybridizations between
metaheuristic approaches. In addition, the works focused on minimizing waste or the
number of stocks. However, most of these methods need the use of at least two structures,
additional procedures, and therefore more parameters to manage the representation of the
solutions as well as the search for optimal ones. In addition, it is well-known that exact
algorithms can outperform heuristics and metaheuristics methods yet they can only handle
small-sized instances due to the high computational cost when addressing large-sized
instances, as stated above.

In this article, we propose an algorithm for the 1D-CSP based on the ABO named
ABO-1DCSP, to minimize the total waste of the cutting patterns required to satisfy the
demand for items. It only requires one structure and a method to convert the continuous
solutions emitted by ABO to discrete. Moreover, the standard version of the ABO avoids
getting stuck on local optima by restarting the entire population of buffaloes. As it is pointed
out in Singh et al. (2020), however, this is done so frequently that the best solutions reached
throughout the traverse of the buffaloes are lost. In order to overcome this limitation and
based on crossover strategies used in PSO, like in Yang & Li (2023), Chen et al. (2018),
Nguyen et al. (2017) and Wang et al. (2008) to avoid premature convergence, we propose
to generate a new best buffalo from the best cutting patterns of the current buffaloes before
restarting the herd. The purpose is that this new buffalo will guide the new reinitialized
herd. Furthermore, we consider saving each best buffalo at every reinitialization of the herds
because of when the termination criterion has been reached, the last best buffalo saved may
not be the best of all the ones. In this way, the solution returned by the ABO-1DCSP will
be the best of the saved buffaloes. These procedures are an improvement to the standard
version of ABO, yielding equal or better results than other methods it is compared in this
article.

DESCRIPTION OF 1D-CSP
According to Wäscher, Hausner & Schumann (2007) the classical version of the 1D-CSP
considers a source of long objects or stocks with different or the same length, but fixed
width and rectangular shape. From the stocks are obtained small objects or items of
different lengths by making straight cuts on the stocks along the width, obtaining items of
rectangular shape too. The items can be arranged along the stock length in such a way they
can be cut afterwards. This arrangement forms a cutting pattern and different patterns can
be obtained from the stocks.

One of the main objectives of the 1D-CSP is to minimize the total waste generated by
cutting all the patterns such that the demand for items is satisfied. A mathematical model
given in Jahromi et al. (2012) for the 1D-CSP is as follows:

min T =
m∑
j=1

tlj (1)

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


s.t.
m∑
j=1

xij = ni∀i (2)

n∑
i=1

xij · si+ tlj = dj ·yj∀j

yj ∈ (0,1) (3)

xij ∈ integer

where:

• i= is the ith item (i= 1,...,n)
• j = is the jth stock (j = 1,...,m)
• dj = stock length
• tlj = stock wastes
• si= is the length of ith item
• ni= is the total of items with si length
• T = sum of the cutting wastes of all cutting patterns applied
• xij = integer variable, number of items with si length that are cut from stock j
• yj = zero–one variable that equals to one if the stock j is applied in the cutting plan
otherwise, equals to zero

The objective function in Eq. (1) accounts for the total waste obtained from all the stocks
m, which are necessary to fulfill the total demand for items according to the constraint
in Eq. (2). The constraint in Eq. (3) obtain the waste of each stock selected of the cutting
process.

THE AFRICAN BUFFALO OPTIMIZATION ALGORITHM
The ABO is a swarm intelligence optimization algorithm, which was designed based on the
behavior of the African buffaloes (Odili, Kahar & Anwar, 2015). It is focused on two sounds
that African buffaloes make. The first sound, called ‘‘maa’’ is related to the exploitation of
the current location because it is safe and has abundant pasture. The second sound, called
‘‘waa’’ is used to explore new places because in the current location there are dangers or
the pasture is not enough (Odili & Mohmad Kahar, 2016). The main steps of the ABO are
as follows:
1. Set the objective function.
2. Randomly generate a population of N buffaloes.
3. Update the fitness of each buffalo according to Eq. (4).

mk+1=mk+ lp1(bgmax−wk)+ lp2(bpmaxk−wk) (4)
In Eq. (4), mk represents the exploitation and wk stands for the exploration of the kth
buffalo k =1 (2,...,N ), while lp1 and lp2 are learning factors. The bgmax is the best
buffalo of the herd. Meanwhile, the bpmax k is the best location of each buffalo along
its traverse.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 7/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


4. Update the location of each buffalo using Eq. (5).

wk+1=
wk+mk

±λ
(5)

According to Odili, Mohmad Kahar & Noraziah (2017) λ could take values from 0.1 to
2. If the value of lambda is low, it will promote exploration; otherwise, it will encourage
exploitation.

5. If there is a change in the bgmax value after updating the fitness of all the buffaloes,
then go to step 6. Otherwise, go to step 2 to reinitialize the herd.

6. If the stop criterion is reached, go to step 7. Otherwise, go to step 3.
7. Return bgmax as the best solution.
It can be noticed that the ABO tends to avoid stagnating because the best buffalo of the

herd is continuously updated. In addition, the movement of exploration takes into account
the best location of each buffalo as well as the best buffalo of the whole herd, giving the
algorithm a memory property.

As the standard version of ABO reinitializes the entire herd if the bgmax is not updating,
thismisses the advance gained in the search for the best solution. Hence in the ABO-1DCSP,
we propose the following:
1. Generate a bgmax based on the last buffaloes before reinitialization, taking the best

cutting patterns from them.
2. Since the last bgmax found will be replaced by the newly generated bgmax, it will

be saved and used later to obtain the best or global solution when the termination
condition is reached.

DESCRIPTION OF THE ABO-1DCSP
This section describes the proposed algorithm to address the 1D-CSP based on the ABO
algorithm. Firstly, it is explained how the solutions are represented, then the fitness function
is given to evaluate the solutions and finally the steps of the algorithm are detailed, which
includes a procedure to make discrete the solutions.

Representation of the solutions
The algorithm ABO-1DCSP searches for a solution with minimal waste. A solution or
buffalo consists of a linear arrangement of items from which a number of cutting patterns
are generated by summing the lengths of the items from the leftmost item to the rightmost
one. A cutting pattern is made of a group of consecutive items such that the sum of their
lengths does not exceed the length of the stock assigned in turn. Any remainder of the stock
not used is considered waste.

In order to explain how to represent a solution for the ABO-1DCSP, we use the instance
of Table 1 as an example. This instance has four items with different lengths and the same
demand. Also, it considers an unlimited number of stocks with a length of 65. In Fig. 1,
some examples of solutions or buffaloes are shown, where each buffalo contains all the
items of the instance of Table 1, including the demand for each of them.

In Fig. 2 it is shown that the formation of cutting patterns begins from the left side of
the arrangement to the right. If the sum of the length of a new item exceeds the length of

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 1 The example instance with a stock length of 65.

Item Length Demand

Item 1 40 2
Item 2 30 2
Item 3 25 2
Item 4 15 2

Figure 1 Solutions representation or buffaloes for the 1D-CSP.
Full-size DOI: 10.7717/peerjcs.1728/fig-1

Figure 2 Cutting patterns formation for each buffalo of Fig. 1.
Full-size DOI: 10.7717/peerjcs.1728/fig-2

the stock, then the new item will be the first of the new stock and the sum of lengths is
reinitialized. This process continues with the remaining items of the buffalo and finally, it
is determined the total waste, the number of stocks used as well as the number of stocks
with waste.

From Fig. 2, it can be seen that buffaloes 1 and 2 have the same waste. However, the
number of stocks used and the number of stocks with waste in buffalo 1 and 2 is lesser than
in buffalo 3, whereas buffalo 2 used the whole length of stock 1 and 2.

Fitness function
In order to evaluate the solutions quality and to determine the best buffalo of the herd
throughout the iterations, a fitness function based on the total waste generated by the

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 9/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1728/fig-1
https://doi.org/10.7717/peerjcs.1728/fig-2
http://dx.doi.org/10.7717/peerj-cs.1728


arrangement of the items of each buffalo is proposed. The total waste of each buffalo is
computed as indicated in Eq. (6) where the partial waste on each stock j is determined as
the difference between the length of the stock lj and the length of the corresponding cutting
pattern lpj such that the sum of all of the partial wastage yields the total waste w of total
stocks used ts.

w =
ts∑
j=1

lj− lpj (6)

where:

• w = the total waste generated by cutting patterns.
• lj = the length of stock j.
• lpj = the length of cutting pattern.
• ts = total number of stocks used to accomplish the order of items.

ABO-1DCSP
This section presents how the algorithm ABO-1DCSP works to solve the 1D-CSP, based
on the ABO. The steps of ABO-1DCSP are detailed in Algorithm 1.

According to Algorithm 1, is needed to set the parameters lp1, lp2, λ , the number of
iterations to stop the algorithm (k), the number of buffaloes (nb), and the number of
iterations needed to reinitialize the herd (q). In the ABO-1DCSP, the herd of buffaloes is
restarted after every q iterations as long as the bgmax has not been updated; otherwise, the
search continues in such a way the count of iterations to restart the herd is reinitialized with
the aim to allow the current best buffalo to guide the herd to find better cutting patterns.
Additionally, in the algorithm ABO-1DCSP is introduced a procedure of crossover to build
a bgmax, namely bgmaxB, when a restart of the herd is needed and the current bgmax has
not been updated after q iterations. The bgmaxB is obtained from the best cutting patterns
of the buffaloes of the last iteration and the current bgmax is saved in order to be used when
k iterations are reached. This crossing process has not been implemented with the ABO.
While other investigations have proposed dividing the herd into efficient and non-efficient
buffaloes as seen in Singh et al. (2020). In addition, crossing processes have already been
designed with swarm intelligence algorithms such as the PSO, as observed in Yang & Li
(2023), Chen et al. (2018), Nguyen et al. (2017) andWang et al. (2008).

After setting the values of the parameters, the first step of our algorithm consists
of creating randomly an initial population of nb buffaloes by using the function
CreateBuffaloesRandom (line 1 of Algorithm 1). Then, the bgmax is determined based on
the evaluation of the fitness function for each buffalo. This is done with the Searchbgmax
function displayed on line 2 of Algorithm 1.

Once the initialization of the algorithm has been carried out, the process continues
with updating the location of each buffalo. The UpdateBuffaloes function uses the Eqs. (4)
and (5) to update the buffaloes, yielding the mb and wb, correspondingly. In all of the
instances tested in this article the lengths of the items as well as of the stocks are discrete
and therefore, we needed discrete solutions. Since the values obtained with Eq. (4) and

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 10/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Input: instance, stock_length, number_buffaloes(nb), λ, iterations (k), lp1, lp2,
number_iterations_restart(q)

Output: best_bgmax
1 buffaloes = CreateBuffalosRandom(instance, stock_length, nb);
2 bgmax = Searchbgmax(buffaloes, stock_length);
3 j = 1;
4 i = 1;
5 while i ≤ k do
6 buffaloes = UpdateBuffaloes(buffaloes, stock_length, nb, λ, lp1, lp2, instance,

bgmax);
7 bgmaxupdated, bgmax = VerifyUpdatebgmax(buffaloes, bgmax, stock_length);
8 if bgmaxupdated == False and i % q == 0 then
9 list_bgmax[j] = bgmax;
10 j = j + 1;
11 bgmaxB = Generatebgmax(buffaloes, instance, stock_length);
12 buffaloes = CreateBuffalosRandom(instance, stock_length, nb);
13 bgmax = bgmaxB;
14 i = i + 1;
15 else
16 i = i + 1;
17 end
18 end
19 list_bgmax[j] = bgmax;
20 best_bgmax = SearchBestbgmax(list_bgmax);

Algorithm 1: ABO-1DCSP.

Eq. (5) are continuous, the ROV method was used as in Liu et al. (2008) to obtain discrete
values.

In order to explain the ROV was used, let us consider the instance shown in Table 1
and Fig. 3. Firstly, it is necessary to sort the items by the length in ascending order and
number them as shown in Fig. 3A. Then, suppose a new wb is obtained with Eq. (5) as
the one presented in Fig. 3B. The next step consists in sorting the values of the new wb in
ascending order as shown in Fig. 3C and let j and i be the new and old index of the sorted
values. Therefore, the ith position of the discretized wb will be filled with the length of the
jth item of the list of the sorted items. As an example, consider the new j = 1 position and
the corresponding old i= 3 position of Fig. 3C. Thus, the i= 3 position of Fig. 3D is filled
with the length of the j = 1 item of Fig. 3A. The process is repeated with the rest of the
values of Fig. 3C to generate the new arrangement of items presented in the Fig. 3D.

After each wb has been updated and discretized, they are evaluated with the fitness
function and the best buffalo of the new herd is determined. Consequently, the algorithm
uses the VerifyUpdatebgmax function to check if bgmax was updated after all buffaloes
were reallocated.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 11/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Figure 3 Explanation of ROV. (A) The items of instance are sorted in ascending way according to their
length. (B) They are the new values obtained related to the wb. (C) The values of the New wb are ordered
in ascending order (new position), and the old position is placed. (D) They are the discretized values of
the new wb.

Full-size DOI: 10.7717/peerjcs.1728/fig-3

In our algorithm, each time q iterations are reached and the bgmax has not been updated,
it is avoided this bgmax leads a new herd under the assumption that this buffalo (bgmax)
is not suitable to perform such a task since it failed to lead the past herds to find a better
solution. However, this bgmax is not discarded at all but is saved to be used when the k
iterations has been fulfilled to stop the search.

Following with the Algorithm 1, when the bgmax has not been updated after q iterations,
it is saved in list_bgmax and the procedure of crossover is performed by Generatebgmax
function to obtain the bgmaxB from the best cutting patterns of the herd in the last iteration.
This procedure is carried out since it was considered that the information about the last
location of the buffaloes should not be missed despite it was not found a better solution
than the current bgmax that has lead the herd until the q-th location. This information
about the location of the buffaloes is preserved in the bgmaxB made up from the best
cutting patterns of the last herd.

To explain how the function Generatebgmax generates the bgmaxB, let us consider the
test instance of the Table 1 as an example and the buffaloes shown in Fig. 4A as the herd in
the last iteration. Hence, the buffaloes are sorted in ascending order by their total waste.
Then the cutting patterns of each buffalo are also sorted in ascending order by the waste of
each pattern in such a way that the patterns are arranged from the left to the right in each
buffalo as it can be seen in Fig. 4B. Once the buffaloes and their cutting patterns are sorted,
the process continues with the selection of the best cutting patterns to form the bgmaxB.
The first pattern to be selected is the first one (from the left to the right) of the first buffalo
since this buffalo has the minimum total waste and the pattern the minimum waste. This

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 12/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1728/fig-3
http://dx.doi.org/10.7717/peerj-cs.1728


Figure 4 The process to get the bgmaxB. (A) The current herd of example from a bgmaxB will be gener-
ated. (B) The cutting patterns of each buffalo and buffaloes are sorted ascending according to the number
of waste. (C) The best cutting patterns of the current herd are chosen for the bgmaxB. (D) The items miss-
ing from the instance are added ascending at the end of the bgmaxB.

Full-size DOI: 10.7717/peerjcs.1728/fig-4

first buffalo will be the reference for the search, and the pattern will be the first one of
the bgmaxB as it is shown in Fig. 4C. The demand for each of the items in the selected
pattern is discounted in the list of items, and each selected pattern is discarded from the
buffalo that belongs. The next step is to check if the following pattern of the reference
buffalo has zero waste. Otherwise, it will skip to the next buffalo. It can be seen with the
first buffalo of Fig. 4C where the first pattern is selected, but the next pattern has not zero
waste therefore it goes to the next buffalo. If the first pattern of the next buffalo can be

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 13/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1728/fig-4
http://dx.doi.org/10.7717/peerj-cs.1728


selected, such a buffalo becomes the new reference to continue the search. Otherwise, the
pattern is discarded from the buffalo, and it goes to the next buffalo to continue the search
until the first pattern of a buffalo can be selected.

Following this process, it may occur that in the list of items there are items that do not
belong to a pattern, that is to say, they do not form a pattern. Therefore, these items are
arranged in ascending order by the length and added to the end of the bgmaxB to complete
the buffalo as shown in Fig. 4D.

In this way, the bgmaxB will guide the new herd generated randomly with the function
CreateBuffaloesRandom and a new set of q iterations is initialized. Completed all the k
iterations, the function SearchBestbgmax of Algorithm 1 searches for the best solution
best_bgmax in list_bgmax.

EXPERIMENTS AND RESULTS
The algorithm ABO-1DCSP has been programmed with Python language, version 3.7 and
executed in a Intel

®
Core™ i7-6700HQCPU 2.60 GHz computer with 8 GB of RAM, under

Windows 10 Home Single Language.
We selected 130 instances to test the performance of the ABO-1DCSP. Each instance

consists of several items of rectangular dimensions with a fixed width and variable length,
and only one stock of rectangular dimensions is used on each instance. That is, there are no
stocks of different lengths, but it is allowed to use the necessary number of stocks to fulfill the
demand for the items. Firstly, we chose a set of ten instances named from 1a to 10a obtained
from Liang et al. (2002), which were used to test algorithms in some studies, and we found
them suitable to evaluate the performance of our algorithm and to be compared with the
results of those algorithms. Secondly, the next 80 instances were used in Falkenauer (1996)
andwere obtained fromhttp://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html. The
last 40 instances were used in Scholl, Klein & Jürgens (1997) and were obtained from set 1 y
2 of https://www.euro-online.org/websites/esicup/data-sets/. To the best of our knowledge,
there is no optimal values known for all these instances. However the theoretical lower
optimum bound can be easily obtained. The information on the number of items and
length of stock of instances is shown in Table 2.

In regard to the instances obtained fromLiang et al. (2002), theABO-1DCSP is compared
with eight algorithms. Seven of these algorithms, namely those from Liang et al. (2002),
Levine & Ducatelle (2004), Chiong et al. (2008), Peng & Chu (2010a), Peng & Chu (2010b)
and Parmar, Prajapati & Dabhi (2015), are population-based metaheuristics while the
algorithm from Alfares & Alsawafy (2019) is a heuristic approach. We have taken only the
values reported in the articles related to the comparisons with instances 1a to 10a. The
authors of these works used fully or partially the same set of instances. Nevertheless, the
performance measures which are compared are not the same for all the algorithms as it
can be seen in Table 3. For example, ABO-1DCSP under the average stock with waste is
compared against Chiong et al. (2008) and Liang et al. (2002) since in this works the focus
was on this performance metric.

Although the main objective of the ABO-1DCSP algorithm is to find the solution with
the minimal waste, we consider additional performance measures like the number of

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 14/31

https://peerj.com
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html
https://www.euro-online.org/websites/esicup/data-sets/
http://dx.doi.org/10.7717/peerj-cs.1728


Table 2 Description of instances.

Instance Number of
items

Items length range,
Minimum–Maximum

Length of
stock

1a 20 3–10 14
2a 50 3–10 15
3a 60 3–10 25
4a 60 5–12 25
5a 126 1,050–2,350 4,300
6a 200 21–47 86
7a 200 22–64 120
8a 400 22–67 120
9a 400 21–67 120

Liang et al.
(2002)

10a 600 21–67 120
u120_00-u120_19 120 20–120 150
u250_00-u250_19 250 20–120 150
u500_00-u500_19 500 20–120 150

Falkenauer
(1996)

u1000_00-u1000_19 1000 20–120 150
Set 1 of Scholl 50–500 2–100 100–120Scholl, Klein &

Jürgens (1997) Set 2 of Scholl 50–500 16–494 1,000

Table 3 Algorithms related to performance measures.

Algorithm Reference Performance measures

Average
waste

Average stock
used

Average stock
used with waste

LLA Alfares & Alsawafy (2019) X X

SMBEP Chiong et al. (2008) X X X

HACO Levine & Ducatelle (2004) X

Pure ACO Levine & Ducatelle (2004) X

EP Liang et al. (2002) X X X

MACO Peng & Chu (2010a) X X

HMCGA Peng & Chu (2010b) X X

GA Parmar, Prajapati & Dabhi (2015) X

stocks used and the number of stocks with waste which are easily determined once the best
solution has been found. This is done under the fact that the 1D-CSP we address consists
of stocks of a unique length and the demand of items must be met strictly, and therefore
the miminimization of total waste implies the minimization of stocks used.

For all of the instances and after preliminary experiments, the chosen population size of
buffaloes was 90, and the chosen number of iterations to search for the best solution is set to
440, where both quantities are in the range suggested inOdili et al. (2022). The values of the
learning factors lp1 and lp2were set to 0.3 and 0.6, respectively, based onGherboudj (2019).
The value of λ was set to 1 because it was desired to have a balance between exploitation
and exploration as was pointed out inOdili, Mohmad Kahar & Noraziah (2017). Moreover,
after the preliminary experiments, it was determined that 10 iterations are needed to restart

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 15/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 4 Experimental parameters setting.

ABO-1DCSP SMBEP HACO Pure ACO EP

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Buffaloes 90 Generations 1,000–2,000 nants No. of items nants No. of items Population 75

lp1 0.3 Value of
fitness function

2 Value of
fitness function

2 Tournament
size

10

lp2 0.6 β 1–2 β 2–10 Generations 50–20,000

λ 1 γ 1 γ 500/total
of items

q 10 ρ 0.1–0.9 ρ 0.95

k 440 Evolutions 20,000 Evolutions 100,000

bins 4

Total No.
of runs

50 10 50 50 50

the herd if the best solution found is not updated. The ABO-1DCSP algorithm was run 50
times on each instance as was done in Liang et al. (2002) and Levine & Ducatelle (2004).

Table 4 shows the different parameters reported by the approaches that use the set
of Liang et al. (2002) in their experiments compared against the ABO-1DCSP. It should
mention that four of the eight methods show the parameters that they used for their
experiments. It can see that almost all themethods perform 50 executions of their algorithm
except for the SMBEP approach to obtain the results that they show.

Apart from comparing the performance of the ABO-1DCSP with the previous
algorithms, the relative percentage deviation (RPD) was obtained as shown in Madenoğlu
(2021) and Ruiz, Vallada & Fernández-Martínez (2009) with Eq. (7), where BOV is the Best
Obtained Value by each algorithm, and BKV is the Best Known Value for instances 1a to
10a. After calculating the RPD it was carried out a non-parametric Friedman test using
the language R version 4.2.0 for performance measure of Average Stock used and Average
Waste, with the aim to determine whether there is a statistically significant difference
between the results obtained among all of the algorithms based on their RPD values as in
Derrac et al. (2011) and Serna et al. (2021).

RPD=
BOV −BKV

BOV
×100 (7)

Table 5 presents the results for the average minimal waste. The best average minimal
waste obtained in instances 1a to 10a is indicated with a *. As it can be observed, for the
instances 1a, 2a, 3a, 4a, 7a, the ABO-1DCSP reaches the best average minimal waste like
other algorithms, whereas for the instance 9a, it reaches the best average minimal waste. In
the instance 5a, it obtains a lesser or equal average waste in comparison with the methods
LLA, EP, HMCGA, and MACO, but not for the SMBEP and GA. For the instance 6a, the
ABO-1DCSP produces less waste compared to the other methods except for HMCGA and
MACO. In the instance 8a, the ABO-1DCSP yields the less average waste against LLA,
EP, and GA methods. In the instance 10a, the ABO-1DCSP generated less average waste
compared to almost all approaches except for LLA and SMBEP.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 16/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 5 Average waste.

Instance BKV ABO-1DCSP LLA SMBEP EP GA HMCGA MACO

1a 3 3* 3* 3* 3* 3* 3* 3*

2a 13 13* 13* 13* 13* 14.5 13* 13*

3a 0 0* 0* 0* 0* 2.5 0* 0*

4a 11 11* 11* 11* 11* 11* 11* 11*

5a 10,850 11,450 11,450 11,370 11,966 10,850* 11,966 11,966
6a 103 109.88 275 240.6 309.4 330.9 103* 103*

7a 84 84* 84* 84* 189.6 327.6 264 264
8a 212 320 332 308 788 547.95 212* 212*

9a 142 142* 382 250 730 673.8 334 334
10a 130 274 130* 190 1037.2 662.5 490 490

Notes.
*Best obtained average minimal waste.

Table 6 Average RPD and friedman test for waste.

Algorithm ABO-1DCSP LLA SMBEP EP GA HMCGA MACO p value

Average RPD: 9.78 16.67 16.77 37.28 47.41 20.84 20.84 0.0047
Rank 1 2 3 5 6 4 4

The results of the Average RPD and non-parametric Friedman test related with the
Table 5 for the average minimal waste are presented in Table 6. As shown the ABO-1DCSP
is ranked in the first position according to Average RPD, displaying the high effectiveness
of the ABO-1DCSP to minimize waste against the algorithms compared. Meanwhile
the p value related to Friedman test is 0.0047, as observed in the last column, which is
lesser than the significant level of 0.05 and allows us to reject the null hypothesis that all
algorithms behave statistically similarly. The p value indicates significant differences in
the performance of all algorithms according to parameter waste in relation to the waste
produced.

The comparison of ABO-1DCSP against other algorithms under the average stock used
is presented in Table 7. As can be seen from Table 7, the ABO-1DCSP from instances 1a
to 5a uses an equal or less quantity of average stock used even though ABO-1DCSP will
consider an objective function based on the total waste. Meanwhile, the others approaches
consider the stock used in their objective function. For instance 6a, the ABO-1DCSP use
less stock than other methods except for the PureACO and HACO. In instance 7a, the
ABO-1DCSP obtained a lower or equal average stock used against all algorithms except
HMCGA and MACO. For instance 8a, the ABO-1DCSP gets a lower average stock used
against LLA, EP and Pure ACO algorithms. For instance 9a, the ABO-1DCSP obtains less
stock used than algorithms LLA, SMBEP, EP, and Pure ACO. In the last instance, the
ABO-1DCSP obtained less stock used than EP, Pure ACO, HMCGA, and MACO.

In the same way, a non-parametric Friedman test was applied with RPD values related
to Table 7 associated with the average stock used, except for values of algorithms HACO
and Pure ACO because they do not have results in instances 1a to 5a. As shown in Table 8

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 17/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 7 Average stock used.

Instance BKV ABO-1DCSP LLA SMBEP EP Pure ACO HACO HMCGA MACO

1a 9 9* 9* 9* 9* – – 9* 9*

2a 23 23* 23* 23* 23* – – 23* 23*

3a 15 15* 15* 15* 15* – – 15* 15*

4a 19 19* 19* 19* 19* – – 19* 19*

5a 53 53* 53* 53* 53.12 – – 53* 53*

6a 79 79.08 81 80.6 81.4 79* 79* 79.1 79.1
7a 67.3 68 68 68 68.88 69 68 67.3* 67.3*

8a 143 144.9 145 144.8 148.8 146 143* 144.8 144.8
9a 149 150 152 150.9 154.9 151 149* 149.4 149.4
10a 215 217.2 216 216.5 223.56 218.9 215* 219.8 219.8

Notes.
*Best obtained average stock.

Table 8 Average RPD and friedman test for parameter stock used.

Algorithm ABO-1DCSP LLA SMBEP EP HMCGA MACO p value

Average RPD: 0.41 0.73 0.62 1.7 0.38 0.38 0.0034
Rank 2 4 3 5 1 1

the ABO-1DCSP is ranked in the second position in accordance with Average RPD,
demonstrating the high competence of the ABO-1DCSP to minimize stock used against
the algorithms compared, staying very close to the first place. The result of the Friedman
test was 0.0034, as observed in the last column of Table 8, which is less than the significant
level of 0.05 to reject the null hypothesis that all algorithms perform statistically similarly.
The p value shows considerable differences between algorithms under the parameter stock
used and the effectiveness of ABO-1DCSP to minimize the stock used.

Table 9 shows the comparison of ABO-1DCSP under the parameter of the stock with
waste against algorithms EP and SMBEP. It is observed that ABO-1DCSP compared against
SMBEP algorithm obtain the same or minus average stocks used with waste from instance
1a to 6a, but not with the other instances. Meanwhile, the ABO-1DCSP had the same or
less average stocks used with waste than EP in instances 3a, 6a, 8a, 9a, and 10a, but not in
instances 1a, 2a, 4a, 5a, and 7a.

We can not perform a non-parametric Friedman test with RPD values related to Table 9
associated with the stock used with waste because it has no requirements to perform it.
However, the ABO-1DCSP obtained values closed to the best average in almost all instances
and positioned in the second position, conforming to Average RPD as shown in Table 10.

Table 11 shows the comparison of the ABO-1DCSP against the theoretical lower
optimum bound (Nmin) of stock used shown in Alfares & Alsawafy (2019) for the Liang et
al. (2002) instances. We take the amount of stock used from each method shown in Table 7
to obtain the percentage difference against Nmin. It can be appreciated the HMCGA and
MACO approaches obtained a stock lower than Nmin in instance 7a, so their percentages
are negative. As can be seen, the ABO-1DCSP reaches the Nmin in 5 out of the 10 instances.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 18/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 9 Average stock used with waste.

Instance BKV ABO-1DCSP SMBEP EP

1a 2 2.3 2.8 2*
2a 4 4.48 4.7 4*
3a 0 0* 0* 0*
4a 1.02 2.1 3.2 1.02*
5a 22.8 23.48 27.1 22.8*
6a 24.8 24.8* 26.5 29.96
7a 6.6 8.34 6.6* 7.48
8a 27.4 33.34 27.4* 56.24
9a 17.6 23.22 17.6* 48.54
10a 11.4 33.52 11.4* 73.06

Table 10 Average RPD for parameter stock used with waste.

Algorithm ABO-1DCSP SMBEP EP

Average RPD: 20.69 13.37 22.82
Rank 2 1 3

In the instance 5a, the ABO-1DCSP was no more than 4% of Nmin. Meanwhile, in the 6a,
8a, and 10a instances, the ABO-1DCSP was just above 1% of Nmin, and in the instance 9a,
the ABO-1DCSP is 0.67% above Nmin to complete the demand for items. It is essential to
mention that our algorithm focuses on a single objective in the search for better solutions.
The method ABO-1DCSP employs an objective function that only seeks to minimize waste.
The algorithm SMBEP consider the amount of waste related in the chromosomes. However,
the algorithms PureACO and HACO use a objective function focused on taking advantage
of the stock. Meanwhile, the methods HMCGA and MACO applied a objective función to
reduce the cost stock. Contrarily, the approach EP implement a objective function that try
to minimize waste and stock with waste. On the other hand, the heuristic LLA considers use
two objective functions that involve minimizing waste and the number of stocks necessary
to satisfy the demand for items.

Other tests were performed with instances of Falkenauer (1996) to compare the
effectivenness of ABO-1DCSP under the parameter stock used against the Nmin reported in
Gherboudj (2019). All the instances considered only a single type of stock with a length of
150. The instances are classified into four classes according to the number of items, which
are 120, 250, 500, and 1,000 items.

Table 12 shows that the ABO-1DCSP equals the Nmin in 14 out of the 20 instances. In
the instances u120_03 and u120_17, the ABO-1DCSP is 0.2% above Nmin. For instances
u120_09 and u120_12, the ABO-1DCSP is between 1 and 1.8% above Nmin to complete the
order of items. For the instances, u120_08 and u120_19, the ABO-1DCSP is 1.99% above
Nmin to satisfy the demand for items.

Table 13 shows that the ABO-1DCSP reaches the Nmin in 8 out of the 20 instances. In
the instances u250_00, u250_02, u250_04, u250_05, u250_08, u250_11, u250_12, u250_15

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 11 Comparison of Nmin stock used of instances of Liang et al. (2002).

Instance Nmin %ABO-1DCSP % LLA % SMBEP % EP % Pure ACO %HACO %HMCGA %MACO
>Nmin >Nmin >Nmin >Nmin >Nmin >Nmin >Nmin >Nmin

1a 9 0 0 0 0 – – 0 0
2a 23 0 0 0 0 – – 0 0
3a 15 0 0 0 0 – – 0 0
4a 19 0 0 0 0 – – 0 0
5a 51 3.92 3.92 3.92 4.15 – – 3.92 3.92
6a 78 1.38 3.84 3.33 4.35 1.28 1.28 1.41 1.41
7a 68 0 0 0 1.29 1.47 0 −1.02 −1.02
8a 143 1.32 1.39 1.25 4.05 2.09 0 1.25 1.25
9a 149 0.67 2.01 1.27 3.95 1.34 0 0.26 0.26
10a 215 1.02 0.46 0.69 3.98 1.81 0 2.23 2.23

Table 12 Comparison of Nmin stock used of instances u120 of Falkenauer (1996).

Instance Nmin ABO-1DCSP %ABO-1DCSP>Nmin

u120_00 48 48 0
u120_01 49 49 0
u120_02 46 46 0
u120_03 49 49.1 0.20
u120_04 50 50 0
u120_05 48 48 0
u120_06 48 48 0
u120_07 49 49 0
u120_08 50 51 2
u120_09 46 46.54 1.17
u120_10 52 52 0
u120_11 49 49 0
u120_12 48 48.86 1.79
u120_13 49 49 0
u120_14 50 50 0
u120_15 48 48 0
u120_16 52 52 0
u120_17 52 52.14 0.26
u120_18 49 49 0
u120_19 49 50 2.04

and u250_16, the ABO-1DCSP is between 0.06% and 0.99% above Nmin to fulfill item
orders. While in the rest of the instances, the ABO-1DCSP is between 1%, and 1.06% above
Nmin.

In Table 14 it can be seen that the ABO-1DCSP reaches the Nmin in 7 of the 20 instances.
Meanwhile, in the instances u500_02, u500_11, u500_13, u500_14 and u500_17 the
ABO-1DCSP is between 0.03% and 0.22% above Nmin. For the rest of the instances, the
ABO-1DCSP uses between 0.43% and 0.51% more stock than Nmin.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 20/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 13 Comparison of Nmin stock used of instances u250 of Falkenauer (1996).

Instance Nmin ABO-1DCSP %ABO-1DCSP>Nmin

u250_00 99 99.52 0.52
u250_01 100 100 0
u250_02 102 102.26 0.25
u250_03 100 100 0
u250_04 101 101.1 0.09
u250_05 101 102 0.99
u250_06 102 102 0
u250_07 103 104.1 1.06
u250_08 105 106 0.95
u250_09 101 101 0
u250_10 105 105 0
u250_11 101 102 0.99
u250_12 105 106 0.95
u250_13 102 103.02 1
u250_14 100 100 0
u250_15 105 106 0.95
u250_16 97 97.06 0.06
u250_17 100 100 0
u250_18 100 101 1
u250_19 102 102 0

Table 15 shows that the ABO-1DCSP reaches the Nmin in 6 of the 20 instances. For
the instances u1000_01, u1000_08, u1000_10, u1000_18, and u1000_19, the ABO-1DCSP
generates solutions that require between 0.005% and 0.05% above Nmin. Meanwhile, in the
rest of the instances, the ABO-1DCSP needs between 0.11% and 0.42% more stock than
Nmin to satisfy the demand for items.

In the same way we consider some instances of sets 1 and 2 of Scholl, Klein & Jürgens
(1997) to corroborate the efficiency of ABO-1DCSP under the parameter stock used against
the Nmin reported in Gherboudj (2019). The instances consider a single type of stock that
can be 100, 120 or 1,000. As for the items, the quantity of these is between 50 and 500 with
lengths that can be from 2 to 494.

Table 16 shows the comparison of the ABO-1DCSP under the parameter of stock used
against the Nmin of some instances of set 1 of Scholl, Klein & Jürgens (1997). As seen in
11 out of 20 instances the ABO-1DCSP can reach Nmin to fulfill the demand of items.
Meanwhile, in 7 instances the ABO-1DCSP is between 0.05% and 0.95% above Nmin. Only
in 2 instances the ABO-1DCSP is 1% above Nmin.

Table 17 presents the comparison of some instances of set two of Scholl, Klein & Jürgens
(1997). It is observed that in fifteen out of twenty instances the ABO-1DCSP reaches
Nmin. While in four instances the ABO-1DCSP uses between 0.99% and 1.35% more
stock than Nmin. Only in one instance the ABO-1DCSP reach a percentage above 3%
Nmin.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 21/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 14 Comparison of Nmin stock used of instances u500 of Falkenauer (1996).

Instance Nmin ABO-1DCSP %ABO-1DCSP>Nmin

u500_00 198 198.92 0.46
u500_01 201 202 0.49
u500_02 202 202.46 0.22
u500_03 204 205 0.49
u500_04 206 206 0
u500_05 206 206 0
u500_06 207 208 0.48
u500_07 204 205 0.49
u500_08 196 196.86 0.43
u500_09 202 202 0
u500_10 200 200 0
u500_11 200 200.3 0.15
u500_12 199 200 0.50
u500_13 196 196.06 0.03
u500_14 204 204.26 0.12
u500_15 201 201 0
u500_16 202 202 0
u500_17 198 198.18 0.09
u500_18 202 202 0
u500_19 196 197 0.51

From the results of the instances tested above, the ABO-1DCSP shows to be
consistent in regard to the Nmin. For the instances of Liang et al. (2002), the results
do not exceed 4% above Nmin. From the results of Falkenauer (1996) the ABO-
1DCSP is around the 2% in one the u120 instances and below 2% for the rest of
them. Similarly, for most of the instances u250 is below 1%, for instances u500 and
u1000 is less than 0.5% and 0.25%, correspondingly. Finally, for the instances from
Scholl, Klein & Jürgens (1997) is less than 2% for the set 1 and less than 4% for the
set 2.

CONCLUSIONS
In this work we presented the ABO-1DCSP, an adaptation of ABO to solve the 1D-CSP.
The main idea is to utilize the advance of the herd of buffaloes to build a new best buffalo
with a procedure of crossing with the best cutting patterns of the current herd before
restarting it. The ABO is a swarm metaheuristic algorithm used in combinatorial problems
like TSP and 1BPP, where the ABO demonstrated the capability and efficiency to obtain
optimal solutions, remarking that 1BPP belongs to cutting and stock problems. We use
a set of instances employed by other works based on exact, heuristic, or metaheuristic
methods to compare the ABO-1DCSP under three parameters: waste, stock used, and stock
used with waste. Also, we found that giving more time, specifically ten iterations, to the
best buffalo of the herd to search for a better solution leads to better solutions without

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 22/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 15 Comparison of Nmin stock used of instances u1000 of Falkenauer (1996).

Instance Nmin ABO-1DCSP %ABO-1DCSP>Nmin

u1000_00 399 399.6 0.15
u1000_01 406 406.24 0.05
u1000_02 411 411.48 0.11
u1000_03 411 412.74 0.42
u1000_04 397 398 0.25
u1000_05 399 399.78 0.19
u1000_06 395 395 0
u1000_07 404 404 0
u1000_08 399 399.08 0.02
u1000_09 397 398 0.25
u1000_10 400 400.02 0.005
u1000_11 401 401.96 0.23
u1000_12 393 393 0
u1000_13 396 396 0
u1000_14 394 395 0.25
u1000_15 402 403 0.24
u1000_16 404 404 0
u1000_17 404 405 0
u1000_18 399 399.08 0.02
u1000_19 400 400.02 0.005

constantly restarting the herd. We conducted experiments that help us to confirm the
efficiency of the ABO-1DCSP algorithm in reducing waste. Furthermore, the ABO-1DCSP
was able to obtain acceptable results for the stock used to satisfy the demand for items
in the majority of the instances. Although, the objective function does not consider
minimizing the number of stocks. The results obtained by the present investigation show
that our approach generates on average, less or equal waste in 60% of the instances against
heuristic, metaheuristic, and hybrid methods. Meanwhile, under the parameter of the
stock used, our method generates solutions with an equal or lower average in 50% of
the instances of Liang et al. (2002) against the approaches that were compared. In the
same way, the ABO-1DCSP was compared against the Nmin of the instances of Liang et al.
(2002), where in 50% of the instances, the ABO-1DCSP reached the Nmin. Meanwhile, the
ABO-1DCSP is above 3.92% Nmin for the other instances of Liang et al. (2002). Likewise,
the ABO-1DCSP was also tested on four sets of Falkenauer (1996), where the ABO-1DCSP
reached the Nmin in 35 out of 80 instances, that is 43.75% of the instances. Meanwhile,
the ABO-1DCSP kept a difference to the Nmin of less than 2.05%, with the rest of the
instances. In the same way, the ABO-1DCSP was tested on some instances from Scholl,
Klein & Jürgens (1997), reaching the Nmin in 65% of them. Meanwhile, the ABO-1DCSP
kept a difference of less than 2% with respect to the Nmin in most of the remaining
instances.

With regard to the 1a to 10a instances, the comparison with the RPD values shows
that the ABO-1DCSP performs better than the other methods to minimize waste.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 16 Comparison of Nmin stock used of instances set 1 of Scholl, Klein & Jürgens (1997).

Instance Nmin ABO-1DCSP %ABO-1DCSP>Nmin

N1C1W1_A 25 25 0
N1C1W1_B 31 31 0
N1C1W1_D 28 28 0
N1C1W1_E 26 26 0
N1C1W1_F 27 27 0
N1C1W1_G 25 25 0
N1C1W1_I 25 25 0
N2C1W1_Q 46 46.72 1.56
N2C1W2_N 64 64 0
N2C1W2_O 64 65.14 1.78
N2C1W2_P 68 68.04 0.05
N2C1W2_R 67 67 0
N3C1W1_A 105 106 0.95
N3C2W2_D 107 107.58 0.54
N3C2W4_B 112 112.8 0.71
N4C1W2_T 323 323.44 0.13
N4C1W4_A 368 368 0
N4C1W4_B 349 349.76 0.21
N4C1W4_C 365 365 0
N4C1W4_D 359 360.8 0.50

Meanwhile, the non-parametric Friedman test confirm that the differences with RPD
values between all methods are significant. The second important finding was that
solutions obtained by ABO-1DCSP required a quantity of stock close to or equal
to the Nmin, positioning in the second place among all methods corresponding to
RPD values. Also, applying the test of Friedman ensured that the differences were
significant. The third important aspect is related to the number of stocks used with
waste produced from the arrangement of items obtained by the ABO-1DCSP was close
in most instances. The ABO-1DCSP was placed in the second position according to
RPD values.

Taking all together, it appears that the ABO-1DCSP developed in this article is
an effective algorithm to solve the 1D-CSP. For future work, other issues could
be addressed; for example, using a new objective function that considers both
the number of stocks with waste and total waste. This can improve the search
for solutions to use the fullest of each stock and minimize the total waste at
the same time in the cases of 1D-CSP with single or multiple stocks. Thus, a
local search method could be integrated with the ABO-1DCSP to obtain better
solutions.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 24/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


Table 17 Comparison of Nmin stock used of instances set 2 of Scholl, Klein & Jürgens (1997).

Instance Nmin ABO-1DCSP %ABO-1DCSP>Nmin

N1W1B1R2 19 19 0
N1W1B1R9 17 17 0
N1W1B2R0 17 17 0
N1W1B2R1 17 17 0
N1W1B2R3 16 16 0
N2W1B1R0 34 34 0
N2W1B1R1 34 34 0
N2W1B1R3 34 34 0
N2W1B1R4 34 34 0
N2W3B3R7 13 13 0
N2W4B1R0 12 12 0
N3W2B2R3 39 39.42 1.07
N3W3B1R3 29 29 0
N3W4B1R1 23 23 0
N3W4B2R1 22 22.78 3.54
N4W2B1R0 101 102 0.99
N4W2B1R3 100 101 1
N4W3B3R7 74 75 1.35
N4W4B1R0 56 56 0
N4W4B1R1 56 56 0

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This studywas supported by theNational Council ofHumanities Sciences andTechnologies
(CONAHCYT) for financial support through scholarship number 770376 and projects
with numbers CB- 2017-2018-A1-S-43008 and F003-320109. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Council of Humanities Sciences and Technologies (CONAHCYT): CB-
2017-2018-A1-S-43008, F003-320109.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Leonardo Javier Montiel-Arrieta conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 25/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1728


• Irving Barragan-Vite conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.
• Juan Carlos Seck-Tuoh-Mora conceived and designed the experiments, analyzed the
data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.
• Norberto Hernandez-Romero conceived and designed the experiments, analyzed the
data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.
• Manuel González-Hernández conceived and designed the experiments, analyzed the
data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.
• Joselito Medina-Marin analyzed the data, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo: LeoMontielArrieta. (2023). LeoMontielArrieta/ABO-
1DCSP: ABO-1DCSP (1.0). Zenodo. https://doi.org/10.5281/zenodo.8361112.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1728#supplemental-information.

REFERENCES
Alfares HK, Alsawafy OG. 2019. A least-loss algorithm for a bi-objective one-

dimensional cutting-stock problem. International Journal of Applied Industrial
Engineering (IJAIE) 6(2):1–19 DOI 10.4018/IJAIE.2019070101.

Asvany T, Amudhavel J, Sujatha P. 2017. One-dimensional cutting stock problem
with single and multiple stock lengths using DPSO. Advnaces and Applications in
Mahtematical Sciences 17(4):147–163.

Ben Lagha G, Dahmani N, Krichen S. 2014. Particle swarm optimization approach for
resolving the cutting stock problem. In: 2014 international conference on advanced
logistics and transport (ICALT). 259–263.

Benjaoran V, Sooksil N, Mathagul M. 2017. Effect of demand variations on steel bars
cutting loss. International Journal of Construction Management 19(2):137–148
DOI 10.1080/15623599.2017.1401258.

Campello BSC, Ghidini CTLdS, Ayres AOdC, OliveiraWA. 2021. A residual recom-
bination heuristic for one-dimensional cutting stock problems. TOP 30:1–27
DOI 10.1007/s11750-021-00611-3.

Cerqueira GR, Aguiar SS, Marques M. 2021.Modified greedy heuristic for the one-
dimensional cutting stock problem. Journal of Combinatorial Optimization 42:1–18.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 26/31

https://peerj.com
https://doi.org/10.5281/zenodo.8361112
http://dx.doi.org/10.7717/peerj-cs.1728#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1728#supplemental-information
http://dx.doi.org/10.4018/IJAIE.2019070101
http://dx.doi.org/10.1080/15623599.2017.1401258
http://dx.doi.org/10.1007/s11750-021-00611-3
http://dx.doi.org/10.7717/peerj-cs.1728


Chen Y, Li L, Xiao J, Yang Y, Liang J, Li T. 2018. Particle swarm optimizer with
crossover operation. Engineering Applications of Artificial Intelligence 70:159–169
DOI 10.1016/j.engappai.2018.01.009.

Cheng C, Bao L. 2018. An improved artificial fish swarm algorithm to solve the cutting
stock problem. In: Huang T, Lv J, Sun C, Tuzikov AV, eds. Advances in neural
networks—ISNN 2018. Cham: Springer International Publishing, 165–172.

Chiong R, Chang YY, Chai PC,Wong AL. 2008. A selective mutation based evolutionary
programming for solving cutting stock problem without contiguity. In: 2008 IEEE
congress on evolutionary computation (IEEE World Congress on Computational
Intelligence). Piscataway: IEEE, 1671–1677.

Cui Y, Zhao X, Yang Y, Yu P. 2008. A heuristic for the one-dimensional cutting
stock problem with pattern reduction. Proceedings of the Institution of Mechan-
ical Engineers, Part B: Journal of Engineering Manufacture 222(6):677–685
DOI 10.1243/09544054JEM966.

DelormeM, Iori M, Martello S. 2016. Bin packing and cutting stock problems: math-
ematical models and exact algorithms. European Journal of Operational Research
255(1):1–20 DOI 10.1016/j.ejor.2016.04.030.

Derrac J, García S, Molina D, Herrera F. 2011. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1):3–18
DOI 10.1016/j.swevo.2011.02.002.

Dikili AC, Barlas B. 2011. A generalized approach to the solution of one-dimensional
stock-cutting problem for small shipyards. Journal of Marine Science and Technology
19(4):368–376 DOI 10.51400/2709-6998.2177.

Dyckhoff H. 1990. A typology of cutting and packing problems. European Journal of
Operational Research 44(2):145–159 DOI 10.1016/0377-2217(90)90350-K.

Evtimov G, Fidanova S. 2018. Ant colony optimization algorithm for 1D cutting stock
problem. In: Advanced computing in industrial mathematics: 11th annual meeting of
the Bulgarian section of SIAM December 20–22, 2016, Sofia, Bulgaria. Revised selected
papers. Springer International Publishing, 25–31.

Falkenauer E. 1996. A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics 2:5–30 DOI 10.1007/BF00226291.

Fang J, Rao Y, Luo Q, Xu J. 2023. Solving one-dimensional cutting stock problems with
the deep reinforcement learning.Mathematics 11(4):1028 DOI 10.3390/math11041028.

Foerster H,Wascher G. 2000. Pattern reduction in one-dimensional cutting stock
problems. International Journal of Production Research 38(7):1657–1676
DOI 10.1080/002075400188780.

Gherboudj A. 2019. African Buffalo optimization for one dimensional bin packing
problem. International Journal of Swarm Intelligence Research (IJSIR) 10(4):38–52.

Gilmore PC, Gomory RE. 1961. A linear programming approach to the cutting-stock
problem. Operations Research 9(6):849–859 DOI 10.1287/opre.9.6.849.

Gilmore PC, Gomory RE. 1963. A linear programming approach to the cutting stock
problem—part II. Operations Research 11(6):863–888 DOI 10.1287/opre.11.6.863.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 27/31

https://peerj.com
http://dx.doi.org/10.1016/j.engappai.2018.01.009
http://dx.doi.org/10.1243/09544054JEM966
http://dx.doi.org/10.1016/j.ejor.2016.04.030
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.51400/2709-6998.2177
http://dx.doi.org/10.1016/0377-2217(90)90350-K
http://dx.doi.org/10.1007/BF00226291
http://dx.doi.org/10.3390/math11041028
http://dx.doi.org/10.1080/002075400188780
http://dx.doi.org/10.1287/opre.9.6.849
http://dx.doi.org/10.1287/opre.11.6.863
http://dx.doi.org/10.7717/peerj-cs.1728


Gradišar M, Kljajić M, Resinovič G, Jesenko J. 1999. A sequential heuristic procedure for
one-dimensional cutting. European Journal of Operational Research 114(3):557–568
DOI 10.1016/S0377-2217(98)00140-4.

Haessler RW. 1975. Controlling cutting pattern changes in one-dimensional trim
problems. Operations Research 23(3):483–493 DOI 10.1287/opre.23.3.483.

Haessler RW. 1992. One-dimensional cutting stock problems and solution procedures.
Mathematical and Computer Modelling 16(1):1–8 DOI 10.1016/0895-7177(92)90114-Z.

Hinterding R, Khan L. 1995. Genetic algorithms for cutting stock problems: with and
without contiguity. In: Progress in evolutionary computation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 166–186.

JahromiMH, Tavakkoli-Moghaddam R, Makui A, Shamsi A. 2012. Solving an one-
dimensional cutting stock problem by simulated annealing and tabu search. Journal
of Industrial Engineering International 8(1):1–8 DOI 10.1186/2251-712X-8-1.

Kaltenbrunner M, HukaMA, Gronalt M. 2022.Heuristic based approach for short term
production planning in highly automated customer oriented pallet production. Jour-
nal of Intelligent Manufacturing 33:1087–1098 DOI 10.1007/s10845-021-01901-0.

Kantorovich LV. 1960.Mathematical methods of organizing and planning production.
Management Science 6(4):366–422 DOI 10.1287/mnsc.6.4.366.

Lee D, Son S, KimD, Kim S. 2020. Special-length-priority algorithm to minimize rein-
forcing bar-cutting waste for sustainable construction. Sustainability 12(15):5950.

Levine J, Ducatelle F. 2004. Ant colony optimization and local search for bin packing and
cutting stock problems. Journal of the Operational Research Society 55(7):705–716
DOI 10.1057/palgrave.jors.2601771.

Li Y, Zheng B, Dai Z. 2007. General particle swarm optimization based on simulated
annealing for multi-specification one-dimensional cutting stock problem. In:
Wang Y, Cheung Y-M, Liu H, eds. Computational intelligence and security. Berlin,
Heidelberg: Springer Berlin Heidelberg, 67–76.

Liang K-H, Yao X, Newton C, Hoffman D. 2002. A new evolutionary approach to cutting
stock problems with and without contiguity. Computers & Operations Research
29(12):1641–1659 DOI 10.1016/S0305-0548(01)00039-9.

Liu B,Wang L, Qian B, Jin Y. 2008.Hybrid particle swarm optimization for stochas-
tic flow shop scheduling with no-wait constraint. IFAC Proceedings Volumes
41(2):15855–15860 DOI 10.3182/20080706-5-KR-1001.02680.

Machado AA, Zayatz JC, da Silva MM,Melluzzi Neto G, Leal GCL, Palma Lima RH.
2020. Aluminum bar cutting optimization for door and window manufacturing.
DYNA 87(212):155–162.

Madenoğlu FS. 2021. Solving optimization problem with particle swarm optimization:
solving hybrid flow shop scheduling problem with particle swarm optimization
algorithm. In: Applying particle swarm optimization: new solutions and cases for
optimized portfolios. Springer International Publishing, 263–277.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 28/31

https://peerj.com
http://dx.doi.org/10.1016/S0377-2217(98)00140-4
http://dx.doi.org/10.1287/opre.23.3.483
http://dx.doi.org/10.1016/0895-7177(92)90114-Z
http://dx.doi.org/10.1186/2251-712X-8-1
http://dx.doi.org/10.1007/s10845-021-01901-0
http://dx.doi.org/10.1287/mnsc.6.4.366
http://dx.doi.org/10.1057/palgrave.jors.2601771
http://dx.doi.org/10.1016/S0305-0548(01)00039-9
http://dx.doi.org/10.3182/20080706-5-KR-1001.02680
http://dx.doi.org/10.7717/peerj-cs.1728


Montiel-Arrieta LJ, Barragán-Vite I, Hernández-Romero N, González-Hernández
M. 2022. Algoritmo del Búfalo Africano para resolver el problema de corte uni-
dimensional. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI
10(Especial2):1–8.

Morillo-Torres D, BaenaMT, Escobar JW, Romero-Conrado AR, Coronado-
Hernández JR, Gatica G. 2021. A mixed-integer linear programming model for the
cutting stock problem in the steel industry. In: Figueroa-García JC, Díaz-Gutierrez Y,
Gaona-García EE, Orjuela-Cañón AD, eds. Applied computer sciences in engineering.
Springer International Publishing, 315–326.

Nguyen HB, Xue B, Andreae P, ZhangM. 2017. Particle swarm optimisation with
genetic operators for feature selection. In: 2017 IEEE congress on evolutionary
computation (CEC). 286–293 DOI 10.1109/CEC.2017.7969325.

Odili J, Kahar MNM, Noraziah A, Kamarulzaman SF. 2017. A comparative evaluation
of swarm intelligence techniques for solving combinatorial optimization problems.
International Journal of Advanced Robotic Systems 14(3):1–11.

Odili JB, Kahar MNM, Anwar S. 2015. African buffalo optimization: a swarm-
intelligence technique. Procedia Computer Science 76:443–448
DOI 10.1016/j.procs.2015.12.291.

Odili JB, Kahar MNM, Anwar S, AzragMAK. 2015. A comparative study of african
buffalo optimization and randomized insertion algorithm for asymmetric travelling
salesman’s problem. In: 2015 4th international conference on software engineering and
computer systems (ICSECS). 90–95.

Odili JB, Mohmad Kahar MN. 2016. Solving the traveling salesman’s problem using
the african buffalo optimization. Computational Intelligence and Neuroscience
2016:1510256 DOI 10.1155/2016/1510256.

Odili JB, Mohmad Kahar MN, Noraziah A. 2017. Parameters-tuning of PID controller
for automatic voltage regulators using the African buffalo optimization. PLOS ONE
12(4):e0175901 DOI 10.1371/journal.pone.0175901.

Odili JB, Nasser AB, Noraziah A,WahabMHA, AhmedM. 2022. African Buffalo
optimization algorithm based T-Way test suite generation strategy for electronic-
payment transactions. In: Al-Emran M, Al-Sharafi MA, Al-Kabi MN, Shaalan K, eds.
Proceedings of international conference on emerging technologies and intelligent systems.
Cham: Springer International Publishing, 160–174.

Ogunranti GA, Oluleye AE. 2016.Minimizing waste (off-cuts) using cutting stock
model: the case of one dimensional cutting stock problem in wood working industry.
Journal of Industrial Engineering and Management 9(3):834–859.

Parmar KB, Prajapati HB, Dabhi VK. 2015. Cutting stock problem: a solution based
on novel pattern based chromosome representation using modified GA. In: 2015
international conference on circuits, power and computing technologies [ICCPCT-2015].
1–7.

Peng J, Chu ZS. 2010a. A hybrid ant colony algorithm for the Cutting Stock Problem.
In: 2010 international conference on future information technology and management
engineering, vol. 2. 32–35.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 29/31

https://peerj.com
http://dx.doi.org/10.1109/CEC.2017.7969325
http://dx.doi.org/10.1016/j.procs.2015.12.291
http://dx.doi.org/10.1155/2016/1510256
http://dx.doi.org/10.1371/journal.pone.0175901
http://dx.doi.org/10.7717/peerj-cs.1728


Peng J, Chu ZS. 2010b. A hybrid multi-chromosome genetic algorithm for the cutting
stock problem. In: 2010 3rd international conference on information management,
innovation management and industrial engineering, vol. 1. 508–511.

Ruiz R, Vallada E, Fernández-Martínez C. 2009. Scheduling in flowshops with no-idle
machines. In: Computational intelligence in flow shop and job shop scheduling. Berlin,
Heidelberg: Springer Berlin Heidelberg, 21–51.

Sarper H, Jaksic NI. 2018. Evaluation of procurement scenarios in one-dimensional
cutting stock problem with a random demand mix. Procedia Manufacturing
17:827–834 DOI 10.1016/j.promfg.2018.10.134.

Scheithauer G. 2018. Introduction to cutting and packing optimization. Problems, modeling
approaches, solution methods. Gewerbestrasse: Springer.

Scholl A, Klein R, Jürgens C. 1997. Bison: a fast hybrid procedure for exactly solving
the one-dimensional bin packing problem. Computers & Operations Research
24(7):627–645 DOI 10.1016/S0305-0548(96)00082-2.

Serna NJE, Seck-Tuoh-Mora JC, Medina-Marin J, Hernandez-Romero N, Barragan-
Vite I, Armenta JRC. 2021. A global-local neighborhood search algorithm and tabu
search for flexible job shop scheduling problem. PeerJ Computer Science 7:e574
DOI 10.7717/peerj-cs.574.

Shen X, Li Y, Yang J, Yu L. 2007. A heuristic particle swarm optimization for cutting
stock problem based on cutting pattern. In: Shi Y, van Albada GD, Dongarra J, Sloot
PMA, eds. Computational Science—ICCS 2007. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1175–1178.

Singh P, Meena NK, Slowik A, Bishnoi SK. 2020.Modified African buffalo optimization
for strategic integration of battery energy storage in distribution networks. IEEE
Access 8:14289–14301 DOI 10.1109/ACCESS.2020.2966571.

Srivastava M, Pati S, Verma OP, Sharma TK, Gupta H, Arya RK, Tiwari AK, Sahu D.
2023.Minimization of trim loss during reel cutting at paper mill by using different
optimization algorithms. Singapore: Springer Nature Singapore, 1165–1181.

Sá Santos JV, Nepomuceno N. 2022. Computational performance evaluation of column
generation and generate-and-solve techniques for the one-dimensional cutting stock
problem. Algorithms 15(11):394.

TangM, Liu Y, Ding F,Wang Z. 2021. Solution to solid wood board cutting stock
problem. Applied Sciences 11(17):7790.

Umetani S, Yagiura M, Ibaraki T. 2003. One-dimensional cutting stock problem to
minimize the number of different patterns. European Journal of Operational Research
146(2):388–402 DOI 10.1016/S0377-2217(02)00239-4.

Umetani S, Yagiura M, Ibaraki T. 2006. One-dimensional cutting stock problem
with a given number of setups: a hybrid approach of metaheuristics and lin-
ear programming. Journal of Mathematical Modelling and Algorithms 5:43–64
DOI 10.1007/s10852-005-9031-0.

Vishwakarma R, Powar P. 2021. An efficient mathematical model for solving one-
dimensional cutting stock problem using sustainable trim. Advances in Industrial and
Manufacturing Engineering 3:100046 DOI 10.1016/j.aime.2021.100046.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 30/31

https://peerj.com
http://dx.doi.org/10.1016/j.promfg.2018.10.134
http://dx.doi.org/10.1016/S0305-0548(96)00082-2
http://dx.doi.org/10.7717/peerj-cs.574
http://dx.doi.org/10.1109/ACCESS.2020.2966571
http://dx.doi.org/10.1016/S0377-2217(02)00239-4
http://dx.doi.org/10.1007/s10852-005-9031-0
http://dx.doi.org/10.1016/j.aime.2021.100046
http://dx.doi.org/10.7717/peerj-cs.1728


Wang H,Wu Z, Liu Y, Zeng S. 2008. Particle swarm optimization with a novel multi-
parent crossover operator. In: 2008 fourth international conference on natural
computation, vol. 7. 664–668 DOI 10.1109/ICNC.2008.643.

Wang H, YiW. 2022. Optimization models for reducing off-cuts of raw materials in
construction site.Mathematics 10(24):4651.

Wäscher G, Hausner H, SchumannH. 2007. An improved typology of cutting and
packing problems. European Journal of Operational Research 183:1109–1130
DOI 10.1016/j.ejor.2005.12.047.

Yanasse HH, Limeira MS. 2006. A hybrid heuristic to reduce the number of dif-
ferent patterns in cutting stock problems. Computers & Operations Research
33(9):2744–2756 DOI 10.1016/j.cor.2005.02.026.

Yang X, Li H. 2023.Multi-sample learning particle swarm optimization with adaptive
crossover operation.Mathematics and Computers in Simulation 208:246–282
DOI 10.1016/j.matcom.2022.12.020.

Zanarini A. 2017. Optimal stock sizing in a cutting stock problem with stochastic
demands. In: Salvagnin D, Lombardi M, eds. Integration of AI and OR techniques
in constraint programming. Cham: Springer International Publishing, 293–301.

Montiel-Arrieta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1728 31/31

https://peerj.com
http://dx.doi.org/10.1109/ICNC.2008.643
http://dx.doi.org/10.1016/j.ejor.2005.12.047
http://dx.doi.org/10.1016/j.cor.2005.02.026
http://dx.doi.org/10.1016/j.matcom.2022.12.020
http://dx.doi.org/10.7717/peerj-cs.1728

