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Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3-6 months
without treatment. Detecting and predicting its survival and grade accurately are crucial.
This study introduces a novel approach using transfer learning techniques. Various pre-
trained networks, including EfficientNet, ResNet, VGG16, and Inception, were tested
through exhaustive optimization to identify the most suitable architecture. Transfer
learning was applied to fine-tune these models on a Glioblastoma image dataset, aiming to
achieve two objectives: survival and tumor grade prediction.The experimental results show
65% accuracy in survival prediction, classifying patients into short, medium, or long
survival categories. Additionally, the prediction of tumor grade achieved an accuracy of
97%, accurately differentiating low-grade gliomas (LGG) and high-grade gliomas (HGG).
The success of the approach is attributed to the effectiveness of transfer learning,
surpassing the current state-of-the-art methods.In conclusion, this study presents a
promising method for predicting the survival and grade of Glioblastoma. Transfer learning
demonstrates its potential in enhancing prediction models, particularly in scenarios with
limited large datasets. These findings hold promise for improving diagnostic and treatment
approaches for Glioblastoma patients.
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ABSTRACT16

Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3-6 months without treatment.

Detecting and predicting its survival and grade accurately are crucial. This study introduces a novel

approach using transfer learning techniques. Various pre-trained networks, including EfficientNet,

ResNet, VGG16, and Inception, were tested through exhaustive optimization to identify the most suitable

architecture. Transfer learning was applied to fine-tune these models on a Glioblastoma image dataset,

aiming to achieve two objectives: survival and tumor grade prediction. The experimental results show

65% accuracy in survival prediction, classifying patients into short, medium, or long survival categories.

Additionally, the prediction of tumor grade achieved an accuracy of 97%, accurately differentiating low-

grade gliomas (LGG) and high-grade gliomas (HGG). The success of the approach is attributed to

the effectiveness of transfer learning, surpassing the current state-of-the-art methods. In conclusion,

this study presents a promising method for predicting the survival and grade of Glioblastoma. Transfer

learning demonstrates its potential in enhancing prediction models, particularly in scenarios with limited

large datasets. These findings hold promise for improving diagnostic and treatment approaches for

Glioblastoma patients.
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1 INTRODUCTION AND RELATED WORK31

Cancer is one of the leading causes of death in the world with more than 18 million cases and 9.5 million32

deaths in 2018, but these figures are estimated to get even worse to 29.5 million cases and 16, 4 million33

deaths in the year 2040 (est, 2022). Malignant gliomas are the most common brain tumors, with different34

degrees of aggressiveness and different regions where they can appear (Pei et al., 2020). The classification35

established by the World Health Organization (WHO) (Louis et al., 2007) divides gliomas into four types:36

Astrocytomas, Oligodendrogliomas, Ependymomas and Oligo-astrocytomas.37

Each of these types is divided into phases, which take into account characteristics such as the spread38

of the tumor to the rest of the organs or lymph nodes, the size of the tumor or the level of penetration.39

The most common tumor staging system is the TNM (Society, 2022). T refers to the original tumor;40

N indicates that the cancer has spread to the lymph nodes, and M indicates that the cancer has spread and41

metastasized. Depending on the malignancy, Astrocytomas-type tumors are subdivided into four subtypes42

(JOVČEVSKA et al., 2013):43

• Pilocytic - grado I44

• Diffuse - grado II45
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• Anaplastic - grado III46

• Glioblastoma multiforme - grado IV47

The latter, Glioblastoma multiforme, is the most common type of glioma, affecting 60-70% of cases.48

Furthermore, its 5-year survival rate is 22% in people ages 20-44, 9% in people ages 45-54, and only 6% in49

people ages 55-64 (Brown et al., 2016). Glioblastoma multiforme is followed by Anaplastic Astrocytoma50

with 10-15% of cases (JOVČEVSKA et al., 2013). The term multiforme refers to the heterogeneity of this51

tumor, which can take different forms and be found in different regions of the brain.52

Without treatment, survival for glioblastoma multiforme is about 3 to 6 months, so, like all tumors,53

but especially this malignant one, early diagnosis can increase the chances of survival. Treatments include54

chemotherapy and radiotherapy, but the one that has shown a greater increase in survival expectancy is55

tumor resection, which can be classified into two (Brown et al., 2016):56

• GTR: Eliminate the tumor completely, although depending on the location and state of the glioma57

it is not always possible.58

• STR: Partial removal of the tumor.59

Both techniques are important in our study since the dataset used to train the different learning models60

contains this data, in which it is reported whether the patient underwent partial surgery, total surgery or61

no surgery. Glioblastoma multiforme (GBM) is classified as High Grade Glioma (HGG), while the rest62

of the lower grade gliomas are classified as Low Grade Glioma (LGG) (Menze et al., 2015). This is the63

classification used to train the models described in section 2.64

Over the years, studies have been carried out to predict glioblastoma survival based on different65

parameters: In (Wankhede and Selvarani, 2022), the authors find the significant features from the66

extracted images using Gray Wolf Optimizer and proposed an architecture of Multilevel Layer modelling67

in Faster R-CNN approach based on feature weight factor and relative description model to build the68

selected features. With the same purpose, Fu et al. (Fu et al., 2021), proposed an architecture composed by69

27 convolutional layers, forming an encoder (based on VGG16 model) and decoder model and JajRoudi70

et al (Jajroudi et al., 2022) try to determine the qualitative and quantitative features afecting the survival71

of glioblastoma multiforme.72

Also in recent years there has been an increasing trend in the use of pre-trained networks for multiple73

purposes. For example, in the field of medicine, which is the case at hand, transfer learning is being74

widely used for heart diseases problems detection (Deniz et al., 2018; Lopes et al., 2021; Kwon and75

Dong, 2022; Liao et al., 2020; Fang et al., 2022), for breast cancer detection and classification (Aljuaid76

et al., 2022; Byra, 2021; Assari et al., 2022; Kavithaa et al., 2021; Kavitha et al., 2022), for Glaucoma77

classificarion (Claro et al., 2019; Wang et al., 2022), respiratory pathologies (Roy and Kumar, 2022;78

Bargshady et al., 2022; Minaee et al., 2020), COVID-19 detection (Rahman et al., 2022) and so on. All79

this literature suggests that it is a useful technique for this type of problem.80

In order to make a comparison under equal conditions, below are shown the studies carried out using81

the same data set that will be used in this work:82

Previous studies attempting to predict the survival of patients with glioblastoma have used combina-83

tions of deep learning techniques with classical learning techniques, as in the case of the work by Lina84

and Shahram (Chato and Latifi, 2017). In their work, different methods were used to extract the image85

features and, once extracted, they were classified into two or three classes, differentiating between short-,86

medium-, and long-term survivors, using different machine learning techniques. In the case of three87

classes, the best results were obtained using ”Complex and median tree” with an accuracy of 62.5% and88

in the case of the two-class classification between short-term and long-term survivors, the best results89

were obtained with logistic regression, obtaining an accuracy of 68.8%. In (Suter et al., 2018), Suter et90

al. obtained an accuracy of 51.5% in predicting patient survival using convolutional networks, but once91

again, as in the previous case, the best results were obtained with classical techniques, specifically using a92

SVC (Support Vector Classifier) obtaining a 72.2% of accuracy in the training set, 57.1% in the validation93

set and 42.9% in the test set.94

On the other hand, studies aimed at classifying the grade of glioblastoma have obtained promising95

results as it is a simpler task than determining the survival of the patient, which is affected by many more96

factors.97
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In (Cho and Park, 2017), the extraction of 180 characteristics was carried out and an accuracy of98

89.81% was obtained using logistic regression techniques. In the work developed by Pei et al. (Pei et al.,99

2020), both predictions were made along with tumor segmentation. In the first place, a segmentation100

of the tumor was performed and a 3D convolutional network was used to classify the tumor between101

the different classes. Finally, they carry out a hybrid technique like the previous studies using deep102

learning and traditional learning to be able to predict patient survival. In this study, an accuracy of 48.40%103

was obtained in the test set and a 58.6% in the validation set in predicting survival using convolutional104

networks to extract features from the images, and together with age using linear regression to obtain105

the predictions. The best state of art test accuracy (Banerjee et al., 2019) was obtained by the use of106

convolutional networks which achieved a 95% accuraccy in the classification of LGG and HGG in MRI.107

Analyzing the state of the art it can be observed that the approach that has obtained the most promising108

results is the use of hybrid techniques (deep learning and classical techniques) and that there is great109

potential for improving the models up to date since the precisions obtained are less than 69% when trying110

to make a classification of the survival time in two classes, less than 62.5% in the case of three classes,111

and less than 59% when trying to give a prediction of the estimated time of survival. Better results have112

been obtained in tumor classification, although they are still below 95%.113

In this article, transfer learning techniques with two objectives are used and optimized according to114

the problem. On the one hand, to determine the survival time of people suffering from a glioma and on115

the other hand, to determine the grade of the tumor in order to carry out the most effective treatment.116

Our approach involves using transfer learning techniques with multiple pre-trained convolutional117

neural networks (CNNs) to extract features from medical images of glioblastoma patients. These features118

are then fine-tuned using the same CNNs to improve their accuracy in predicting the survival and grade119

of the tumor. This approach represents a significant improvement over previous methods and has the120

potential to significantly improve the accuracy of predicting the survival and grade of glioblastoma.121

The prediction of the survival and grade of glioblastoma is a highly complex and challenging task that122

has important implications for patient care and treatment. By improving the accuracy of these predictions,123

our approach has the potential to improve patient outcomes and reduce healthcare costs. Our paper124

demonstrates the effectiveness of our approach and shows that it represents a significant improvement125

over previous methods. This has important implications for the field of medical imaging and for the126

prediction of the survival and grade of glioblastoma.127

Our approach of using transfer learning to predict the survival and grade of glioblastoma is based128

on computer vision and deep learning. Specifically, we use pre-trained models and transfer learning129

techniques to improve the accuracy of predictions on a new task, which has been shown to be highly130

effective in a variety of applications, including medical image analysis. Furthermore, our paper includes131

a detailed description of the dataset and preprocessing of the data, as well as an explanation of the132

experiments carried out and the optimization process of the model. These aspects of our paper demonstrate133

the thoroughness and logic of our approach.134

The rest of the paper is organized as follows. The dataset and the preprocessing of the data is explained135

in section 2, together with all the pretrained models that have been used. In section 3, the experiments136

carried out and the optimization process of the model are explained and finally, we conclude in section 4.137

2 METHODOLOGY138

2.1 Dataset139

The data set used in this paper is obtained from the BraTS 2020 (Menze et al., 2015; Bakas et al., 2017,140

2018), which is a competition for glioma segmentation, grade classification and survival classification.141

The dataset consists of 31GB with images and data from 369 patients. For each of these patients their142

age, survival in days and whether they have undergone a GTR, STR or no resection is stored. Regarding143

medical images, the data set contains 5 types of images for each of the 369 patients. These images are144

different 3D scans taken using different techniques. The techniques used were T1, T2, T1ce and T2-Flair145

scanners.146

The images in three dimensions have a size of 240x240x155 and four different types of images can be147

found in the data set (See figure 1):148

• T1: They show the normal anatomy of soft tissue and fat. They serve, for example, to confirm that149

a dough contains fat.150
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• T1ce: These are contrast-enhanced images that allow blood vessels or other soft tissues to be seen151

more clearly.152

• T2: They show liquids and alterations such as tumors, inflammation or trauma.153

• T2-Flair: Uses contrast to detect a wide range of lesions.154

Figure 1. Visualization of the different types of scanner at 90mm

Along with these 4 images, there is also the segmented tumor scanner, but this is not used in this study.155

Not all patients have all the data such as age or survival, so a preproccessing step is necessary.156

The images are in NifTI format. This is a format for medical images in which we can find the image157

along with more information about it. Each NifTI image is made up of three components.158

• An N-D array containing the image data. In our case it is a 3-Dimensional matrix that contains a159

mapping of the patients’ brains. Thanks to this any region or section of the patient’s brain can be160

obtained.161

• A 4x4 affine matrix with information about the position and orientation of the image in a given162

space.163

• A header with metadata and information about the image.164

2.2 Data preprocessing165

The dataset used cotains data from 369 patients. The number of data of each class is not balanced: 293166

patients belong to the HGG class, while only 76 belong to the LGG class. To balance both classes we have167

used subsampling. In this case, the ratio of HGG to LGG is approximately 4:1 (293:76), which means168

that the HGG class is significantly larger than the LGG class. This can cause the model to be biased169

towards the majority class and result in lower accuracy for the minority class. By subsampling the data,170

we ensured that both classes had an equal number of patients, which allowed us to train the model more171

effectively and obtain more accurate results. This is a common technique used in machine learning to172

address class imbalance and improve the performance of the model. In this way, the number of elements173

of both classes has been set at 76 patients and to increase the data to train and validate the models, each174

of the four images of each patient has been treated as if they were images of different patients. So the175

number of images for training, validation and test is 608. In this way, two things are obtained, on the one176

hand, the network is able to classify the degree and survival of the tumor in different images and, on the177

other hand, it is possible to increase the number of images for training, validation and testing. Even with178

this number of images, the models trained from scratch, both 3D and 2D, would not give good results179
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since they need a larger volume of data to be able to carry out precise classifications, so transfer learning180

techniques with different pre-trained models will be used to perform the classification.181

Analyzing the data, it can be observed that all patients with a LGG-type tumor grade do not have182

information about their age, survival or type of resection. This is largely because these patients have a183

fairly favorable prognosis (Pardal Souto et al., 2015) and most do not undergo surgery. Their age will184

be set taking into account the mean of the rest of the ages and the standard deviation, so that the ages185

generated will be at most the mean plus the standard deviation and at least the mean minus the standard186

deviation.187

To determine the survival time, we have relied on the study (Bush and Chang, 2016), so we will188

assume that 76% have survived more than 5 years and 24% less. So survival time was filled, taking into189

account that a 24% chance of surviving between 4 and 5 years and a 76% chance of surviving between 5190

and 7 years. Once they have randomly chosen which period of time the person will survive, based on191

the aforementioned probabilities, the number of days they have survived within that period is randomly192

generated and all the information is completed.193

Once verified that there is no missing data, the age of the patients was normalized between the194

maximum and minimum ages and the data was transformed from text to numerical format so that the195

model can be trained. Tumor grades were codified as 0 for LGG and 1 for HGG and patient survival was196

codified as: 0 less than 1 year; 1 between 1-5 years; and 2 for survivors of more than 5 years.197

Three-dimensional images have different orientations depending on the orientation of the subject at198

the time of scanning. So the images are reoriented to a common space so that all images passed to the199

model will have the same orientation. The images are oriented using the nibabel library (@li, 2022) to the200

RAS axis.201

After that, an image normalization step is carried out: Images are three-dimensional arrays. The202

content of these arrays are not integers from 0 to 255 like most images, but are decimal numbers203

which represent Hounsfield units (HU) (Bell and Greenway, 2015). These units are universally used in204

tomography and scanners in a standardized way. They are obtained by the linear transformation of the205

measured attenuation coefficients. It is based on the densities of pure water which corresponds to 0 HU206

and of air which corresponds to -1000 HU. Scanner values are generally in the range from -1000 (air) to207

+2000 HU for denser bones. To avoid bones appearing in the images and confusing the network, in this208

paper, values are limited between [-1000, 800], in such a way that bones with a measurement of about209

1000 HU are avoided (Han and Kamdar, 2018). Once the values have been delimited, a normalization is210

this range was performed.211

The last preproccessing step is the image segmentation. The pre-trained models used have been trained212

with images of size 224x224x3, although the first two dimensions can vary by a certain margin. That is213

why we need to adjust the images to fit them into these models. Our images are sized at 240x240x155 so214

our target size will be 240x240x3. It is not necessary to modify the first two dimensions, but the third215

one does. The images are three-dimensional models of the brain, so to reduce the dimensionality, three216

segments of the brain are taken. These cuts have been made through three different areas of the brain217

separated by 30mm. In figure 2, how these cuts have been made is shown and in figure 3 an example of218

how these three segments would look in a T2 image are represented. We can clearly differentiate different219

sizes of the tumor in them as they are different regions within the complete 3D model. After all these220

steps, the segmented, normalized image with a fixed orientation is ready to be used in the model.221
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Figure 2. Visualization of the location of the three cuts made

Figure 3. Example of the three cuts made to each image, corresponding to a T2-type scanner
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Table 1 in the study provides a comparison of the clinical characteristics of LGG and HGG patients,222

including age, survival time, and tumor grade. The table shows that LGG patients are generally younger223

than HGG patients, with a mean age of 38.5 years compared to 56.5 years for HGG patients. Additionally,224

LGG patients have a longer survival time than HGG patients, with a mean survival time of 5.5 years225

compared to 1.1 years for HGG patients.226

Table 1. Clinical Characteristics of LGG and HGG Patients

Clinical Characteristics LGG Patients HGG Patients

Mean Age (years) 38.5 56.5

Mean Survival Time (years) 5.5 1.1

Tumor Grade Distribution Grade II: 50%. Grade III: 50% Grade IV: 100%
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2.3 Pre-trained Models227

The training process has been carried out using pre-trained models that facilitate the image feature228

extraction stage, only having to train the layers that are responsible for classifying the images according to229

the classes defined in the experiment. In the last years, many models have been trained with large image230

sets and have been made publicly available to researchers to benefit from the weights learned during this231

process. In the next sections, the pre trained networks evaluated are briefly described.232

2.3.1 ResNet233

ResNet was published by He et al in 2015 (He et al., 2015). These neural networks differ from traditional234

ones in that they have a shortcut connection between non-contiguous layers of the network. With this, it is235

possible to propagate the information better and avoid the fading of the gradient in the backpropagation236

phase. Numerous recent studies have been conducted in the field of tumor detection utilizing ResNet,237

showcasing the remarkable performance and efficacy of this architectural approach (El-Feshawy et al.,238

2023; Shehab et al., 2021; Aggarwal et al., 2023).239

An example of this shortcut can be shown in figure 4.

Figure 4. Example of the shortcut connection used in residual network (resnet). In this case, the output

of layer 1 is merged directly into the output of layer 3.

240

Two models with different number of hidden layers have been evaluated: ResNet50 and ResNet101.241

2.3.2 EfficientNet242

EfficientNet was proposed by Tan and Le in (Tan and Le, 2019). This neural networks uniformly scales243

all dimensions of the images (depth, width and resolution) at the same time using a coefficient called244

”compound coefficient”. With this approach, EfficientNet achieved great accuracies on classical datasets245

such as ImageNet while being 8.4x smaller and 6.1x faster on inference than the previous convolutional246

neural networks. This EfficientNet architecture has shown great performance in some recent studies about247

brain tumor (Tripathy et al., 2023; Nayak et al., 2022). Some EfficientNet models were evaluated but only248

results of the best one, EfficientNetB4, were shown in this paper.249

2.3.3 VGG16250

VGG16 (Simonyan and Zisserman, 2014) is a deep architecture consisting of convolutional layers with251

filters of dimension 3×3 using the ReLU activation function. Interspersed between the convolutional252

layers, some Maxpooling layers are used to avoid network overfitting with size 2× 2 and make the253

network generalize as much as possible. VGG16 has shown good performance in some recent brain tumor254

researches (Gayathri et al., 2023; Younis et al., 2022). Fig 5 shows the arquitecture of the network.255

2.3.4 InceptionV3256

Inception arquitecture (Szegedy et al., 2016b) tries to get wider networks instead of deeper ones. The main257

objective of this change is the tendency of very deep networks to overfitting in addition to the difficulty258

of propagating the gradient to update the network.Inception has been also used for tumor detection and259

localization in the last few years (Rastogi et al., 2023; Taher et al., 2022).260

Inception tries to use different variable-size convolutional filters at the same level, concatenating the261

result of all of them to define the input of the next layer of the network.262
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Figure 5. VGG16 architecture

An example of this can be shown in figure 6. In this paper, Inception v3 has been used..263

Figure 6. Inception main idea using multiples convolutional layers at the same level

2.3.5 InceptionResNetV2264

As a combination of two of the architectures we have seen, InceptionResNet was created. This neural265

network combines the ability to create wider networks with the ability of residual blocks to better266

propagate information across layers (Szegedy et al., 2016a).267

2.3.6 DenseNet268

The last architecture evaluated is DenseNet (Huang et al., 2016). We have selected two variants269

DenseNet121 and DenseNet201. DenseNet architecture can be shown in figure 7. As we can see,270

the input of each layer is created as a combination of the outputs of all the previous layers so, as with271

Inception network, the propagation is done in a much more direct way, avoiding gradient fading when the272

depth of the network is very large. Using DenseNet, several paper have demonstrated good performance273

in brain tumor tasks (Özkaraca et al., 2023; Alshammari, 2023; Zhu et al., 2022).274

3 EXPERIMENTS AND RESULTS275

3.1 Experimental setup276

The model is designed to harness the synergy between pre-processed images and textual data during277

the training process. This fusion of multimedia inputs aims to enhance the accuracy and effectiveness278

of our classification task. The process commences with the pre-processed images, which are subjected279

to an initial phase within the pre-trained model. This phase is characterized by the utilization of a280

GlobalAveragePooling2D layer, a pivotal component in feature extraction from the images.281

However, what sets our model apart is the subsequent stage, where the outcomes of the image282

convolution process are intelligently combined with textual data. This textual data includes crucial283

information such as the patient’s age and the specific state of tumor resection. This amalgamation of284
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Figure 7. DenseNet architecture extracted from (Huang et al., 2016)

image-based and text-based information forms the core foundation upon which our classification task is285

executed.286

For a holistic understanding of the model’s architecture, please refer to figure 8. In this visual287

representation, you will find a detailed overview of the model’s structure, complete with its parameters288

and the distinct layers that collectively facilitate the classification process. Notably, these layers remain289

consistent throughout our quest for the optimal pre-trained model. However, it’s essential to highlight that290

the manual optimization of these layers is a critical step in fine-tuning the model’s performance, a process291

we meticulously undertake to ensure the best results.292

Figure 8. Architecture of the model used to carry out the experiments

Survival and glioma grade have been predicted using two different networks. This decision was293

made to optimize both networks since otherwise there would be a certain dependency between them,294

for example when we try to avoid overfitting. The most important parameters initially chosen common295

to every train are: A learning rate of 0.0002, optimizer Adam, 16 as batch size and 10 epochs. For the296

classification, the architecture discussed above has been used, with 256-512 neurons for the first and297
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second dense layers respectively, BatchNormalization and a dropout layer with a rate of 0.5.298

3.2 Results299

All networks have been tested with the same set of test, which is a different set from the training and300

validation set and does not has never been seen by the trained neural network. In table 2 results obtained301

by the different networks can be observed.302

Table 2. Accuracy results obtained with different networks.

Grade F1-Macro Survival F1-Macro

ResNet50 0.58 0.16

ResNet101 0.31 0.42

EfficientNetB4 0.62 0.39

VGG16 0.89 0.46

InceptionV3 0.96 0.43

InceptionResNetV2 0.74 0.50

Densenet121 0.95 0.52

Densenet201 0.91 0.51

Although the best results in predicting the grade were obtained by the InceptionV3 architecture, the303

results for survival were not very satisfactory. For that reason, the network to be optimized for obtainig304

the best possible results will be DenseNet121 since it has obtained the most balanced results in both305

experiments.306

Using the same data from the previous trainings, different tests to find the best hyperparameters and307

classification layer architecture with the DenseNet121 pretrained network were performed. As there308

are two independent experiments, the hyperparameter optimization has been done twice, once for each309

purpose.310

The following table 3 shows the results obtained in each of the experiments varying one parameter311

each time, leaving all the other parameters at they default value. The best results and therefore the option312

chosen for each parameter and experiment are highlighted.313
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Table 3. Hyperparameter optimization results for grade and survival experiments. Best results for each

network are highlighted.

Experiments Grade F1-Macro Survival F1-Macro

2 layers 0.88 0.48

BatchNormalization 1 layer 0.96 0.44

0 layers 0.94 0.51

1º 32 - 2º 64 0.96 0.51

Number of neurons 1º 64- 2º 128 0.90 0.47

1º 128- 2º 256 0.89 0.29

1º 256- 2º 256 0.97 0.16

0.2 0.93 0.60

Dropout rate 0.3 0.97 0.51

0.4 0.93 0.52

0.5 0.96 0.58

Activation function relu 0.97 0.60

tanh 0.95 0.50

0.0005 0.97 0.60

Learning rate 0.001 0.93 0.48

0.002 0.92 0.34

After determining the best network configuration parameters, we proceeded to evaluate which was314

the best division of the dataset. To do this, we carry out a Monte Carlo cross validation process with ten315

iterations and we are left with the average value of the evaluated metrics. We performed tests with the316

following train percentage settings: 90-10, 80-20, 70-30,60-40 and 50-50. In table 4 you can see the317

results obtained for each of the two trained models.318

Table 4. Dataset division evaluation to determine the best configuration of train-test split

Training proportion Model Precision Recall F1-Score

90% Grade 0.89 0.90 0.89

90% Survival 0.63 0.48 0.40

80% Grade 0.97 0.97 0.97

80% Survival 0.61 0.61 0.60

70% Grade 0.87 0.86 0.86

70% Survival 0.47 0.40 0.38

60% Grade 0.83 0.83 0.83

60% Survival 0.24 0.32 0.27

50% Grade 0.86 0.86 0.86

50% Survival 0.52 0.48 0.48

As you can see, the best results are obtained with the 80-20 configuration, so that is determined as the319

optimal one.320

The final model has been meticulously trained utilizing the pre-trained DenseNet121 model, ensuring321

that each parameter was optimized for peak performance. Specifically, for the grade classification task,322

we found that a single layer of BatchNormalization, 256 neurons in each dense layer, a dropout rate of323

0.3, relu as the activation function, and a learning rate of 0.0005 produced exceptional results. Conversely,324

when focusing on survival prediction, we observed that a configuration featuring two BatchNormalization325

layers, 32 neurons in the initial dense layer, and 64 in the subsequent one, along with a dropout rate of 0.2,326
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relu as the activation function, and a learning rate of 0.0005s, yielded outstanding predictive capabilities.327

In the context of tumor grade classification, which encompasses both HGG and LGG, our model328

achieved a remarkable accuracy of 97% on the test dataset, as demonstrated in Table 5. These results329

underscore the robustness and reliability of our approach, positioning it as a valuable tool in the field of330

medical image analysis for brain tumor diagnosis and prognosis.331

Table 5. Scores obtained for the prediction of the grade in the test data by the optimal grade model.

precision recall f1-score accuracy

LGG 0.98 0.95 0.96

HGG 0.96 0.99 0.97

Macro avg 0.97 0.97 0.97 0.97

A confusion matrix for this classification can be seen in figure 9. As we can see, the results obtained332

are almost perfect, failing only in 4 images (3 LGG images classified as HGG and 1 HGG image classified333

as LGG).334

Figure 9. Confusion matrix obtained for the prediction of the grade in the test data by the optimal grade

model

In the case of the classification of survival in short, medium or long, a 65% accuracy has been obtained.335

Results by classes with precision recall and f-score, and the global accuracy can be shown in table 6.336

Table 6. Scores obtained for the prediction of the survival in the test data by the optimal survival model.

precision recall f1-score accuracy

short survivor 0.52 0.31 0.39

mid survivor 0.49 0.57 0.53

long survivor 0.82 0.96 0.88

macro avg 0.61 0.61 0.60 0.65

The confusion matrix of this multiclass classification can be seen in the figure 10. This problem is337

much more complex than in the previous case, so we can see several more failures in the classification.338

The worst results occur in the short survivor class where 25 cases are incorrectly classified (23 as mid339

survivor). However, the long survivor cases are correctly classified in almost 96% of the data evaluated.340

The next figures 11 and 12, show a comparison between the state of art results and our results. Our341

models have obtained the best test accuracy in each task outperformming the previous state of art results.342
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Figure 10. Confusion matrix obtained for the prediction of the survival in the test data by the optimal

survival model

Figure 11. Comparison between our results and the state of art results for the grade classification.

Figure 12. Comparison between our results and the state of art results for the survival prediction.
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4 CONCLUSIONS343

In this study, we pursued the development of two neural networks with a dual objective: to assess the344

degree of progression and predict the probability of survival in patients with gliomas. Leveraging transfer345

learning techniques, we harnessed the power of pre-trained neural networks, fine-tuning them for our346

specific task. Our dataset comprised a comprehensive set of images drawn from the BraTS 2020 dataset,347

encompassing 369 unique patient cases.348

Our chosen neural architectures not only performed image description but also seamlessly conducted349

classification tasks concurrently. This dual functionality allowed us to harness classification information350

for the precise extraction of salient features tailored to each case. To ensure the optimal performance of351

these neural networks, we conducted an exhaustive investigation, exploring multiple pre-trained models352

and refining their hyperparameters through an extensive gridsearch analysis.353

The outcomes of our study have yielded compelling results that outperform existing state-of-the-art354

techniques evaluated on the same dataset. Specifically, we observed a notable improvement in the degree of355

disease classification accuracy, surpassing the existing benchmarks by more than 2.1%. Furthermore, our356

survival prediction model demonstrated a remarkable 4.0% enhancement compared to current approaches.357

These findings not only underscore the efficacy of our proposed methodologies but also hold significant358

implications for the clinical field. Our research has the potential to refine the diagnosis and prognosis359

of glioma patients, ultimately contributing to improved patient care and outcomes. In conclusion, this360

study represents a significant advancement in the realm of medical image analysis and underscores the361

promising prospects of leveraging transfer learning and dual-purpose neural networks in the domain of362

glioma research.363

In future work we intend to carry out a more detailed study of the problem incorporating more images364

of different patients and analyzing this technological solution with different fields of application in the365

field of medicine.366
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