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ABSTRACT
Non-technical losses are consistently a troubling issue for power suppliers. With the
application and popularization of smart grid and advanced measurement systems,
it has become possible to use data-driven methods to detect anomalous electricity
consumption to reduce non-technical losses. A range of machine learning models
have been utilized for detecting anomalous electricity consumption and have achieved
promising results. However, with the evolution of techniques like electricity theft, cou-
pled with the exponential increase in electricity consumption data, new challenges are
constantly being posed for anomalous electricity consumption detection. We propose
a Transformer-based method for detecting anomalous electricity consumption. The
Transformer is composed of multi-head attention, layer normalization, point-wise
feed-forward network, etc., which can effectively handle electricity consumption time-
series data. Meanwhile, to alleviate the problem of imbalanced training data between
anomalous and normal electricity consumption, we propose a method for synthesizing
anomalies. The experimental results demonstrate that our proposedTransformer-based
method outperforms the state-of-the-art methods in detecting anomalous electricity
consumption, achieving a precision of 93.9%, a recall of 96.3%, an F1-score of 0.951,
and an accuracy of 95.6% on a dataset released by the State Grid Corporation of China.

Subjects Data Mining and Machine Learning, Security and Privacy, Neural Networks
Keywords Electricity consumption, Transformer, Detection, Synthesized anomalies

INTRODUCTION
Electricity has become an indispensable source of energy in our modern life. The normal
transmission and usage of electricity is the ultimate goal pursued by power suppliers.
However, this is difficult to achieve in reality, as losses frequently occur in the generation,
transmission, and distribution of electricity. The losses in electricity can generally be
categorized into technical losses and non-technical losses (De Souza Savian et al., 2021).
Technical losses (Roselli et al., 2022) occur during the transmission and distribution of
electrical energy through power lines, transformers, and other equipment. These losses are
due to factors such as resistance in the wires, transformer inefficiencies, and other technical
issues. Technical losses can beminimized by improving the quality of equipment and power
supply systems. Non-technical losses (Messinis & Hatziargyriou, 2018), on the other hand,
refer to electricity being lost due to non-technical reasons such as faulty electrical appliances,
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energy leaks, unauthorized use, and electricity theft. These losses have a significant impact
on the overall financial performance of electricity providers. According to a study by the
Northeast Group released in October 2021, the electricity theft and non-technical losses
cost utilities $101.2 billion annually across 138 countries (Northeast Group, 2021). Unlike
technical losses, non-technical losses often involve intentional human behavior, making
them more difficult to control and prevent.

Fortunately, the smart grid (Butt, Zulqarnain & Butt, 2021) is being applied and
popularized. The smart grid is an advanced electricity distribution network that utilizes
digital communication technology to improve efficiency, reliability, and sustainability. It
allows for two-way communication between utilities and consumers (Faheem et al., 2018).
Advancedmetering infrastructure (AMI) (Fang, Xiao & Wang, 2023) is a key component of
the smart grid. It involves the installation of smart meters that can collect and transmit data
on energy consumption at regular intervals, making it possible for real-time monitoring
and control of electricity usage. Under such circumstances, data-driven anomaly detection
for electricity consumption (Sun & Zhang, 2020) has attracted considerable attention.
Researchers use big data and machine learning techniques to detect anomalous electricity
consumption patterns. This enables proactive steps to address issues such as electricity
theft before they escalate into bigger problems, improving energy efficiency practices and
reducing non-technical costs.

At present, a range of machine learning models, such as support vector machines
(SVM) (Nagi et al., 2009; Depuru, Wang & Devabhaktuni, 2011; Nagi et al., 2011),
convolutional neural networks (CNN) (Zheng et al., 2017; Li et al., 2019) and long short-
term memory networks (LSTM) (Munawar et al., 2021; Almazroi & Ayub, 2021), are being
used to detect anomalies in electricity consumption, and these models have achieved
promising results. However, with the development of machine learning technology,
especially the recent successful application of Transformer (Vaswani et al., 2017; Lin et
al., 2022) in various domains (Yan et al., 2022; Gao et al., 2023; Shamshad et al., 2023),
including time series anomaly detection (Braei & Wagner, 2020; Lai et al., 2021; Xu et al.,
2021), we realize that the accuracy and efficiency of anomaly detection for electricity
consumption can be further improved. In this article, we propose a Transformer-based
anomaly detection method for electricity consumption. The Transformer is composed
of multiple modules, including multi-head attention, layer normalization, point-wise
feed-forward network, and multi-layer perceptron. Meanwhile, to alleviate the problem
of imbalanced training data between anomalous and normal electricity consumption,
we propose a method for synthesizing anomalies. The experimental results demonstrate
that our proposed Transformer-based method outperforms the state-of-the-art methods
in detecting anomalous electricity consumption. In summary, we make the following
contributions.

• We propose a method for detecting anomalous electricity consumption based on the
Transformer.
• We propose a method for synthesizing anomalies to address the problem that normal
electricity consumption data is much larger than abnormal data in reality.

Mu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1721 2/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1721


• We conduct extensive experiments to evaluate our proposed detection method. The
results show that the Transformer-based method outperforms the state-of-the-art
methods in detecting anomalous electricity consumption.

The rest of the article is organized as follows. ‘Related Work’ introduces some related
work about the anomaly detection in electricity consumption. ‘Method’ provides
a detailed description of the Transformer-based method for detecting anomalous
electricity consumption, including the architecture of the Transformer and the method
for synthesizing anomalies. ‘Experiments’ presents the experimental results. Finally,
‘Conclusion’ concludes this article.

RELATED WORK
Electricity consumption anomaly detection has been an important topic of research in
recent years. Various approaches have been proposed to detect anomalous electricity
consumption. These approaches can be broadly divided into three categories: statistics-
based methods, traditional machine learning-based methods, and deep learning-based
methods.

The statistics-based methods for electricity consumption anomaly detection are based
on the principle that normal electricity usage follows a certain pattern or distribution,
and any deviations from this pattern may indicate anomalies. These methods typically
involve computing statistical metrics such as mean, standard deviation, median, and
percentiles to identify data points that fall outside of expected ranges. For instance, Li,
Bowers & Schnier (2009) employed the generalized extreme studentized deviate (GESD)
and the canonical variate analysis (CVA) to describe latent variables of daily electricity-
consumption profiles and to detect the abnormal energy usage. Badrinath Krishna, Iyer &
Sanders (2016) proposed using the autoregressive moving average (ARIMA) to validate
abnormal electricity consumption where smart meter readings are manipulated to steal
electricity. The main disadvantage of the statistics-based methods is that they cannot detect
complex abnormal electricity consumption patterns.

The traditional machine learning-based methods mainly utilizes traditional machine
learningmodels, including support vectormachine (SVM) (Nagi et al., 2009;Depuru, Wang
& Devabhaktuni, 2011; Nagi et al., 2011), decision trees (Cody, Ford & Siraj, 2015; Jindal
et al., 2016), K-nearest neighbors (KNN) (Cai et al., 2017; Aziz et al., 2020), and principal
component analysis (PCA) (Singh, Bose & Joshi, 2017), to learn the differences between
abnormal electricity consumption patterns and normal ones. Although the traditional
machine learning-based methods have improved the performance in detecting abnormal
electricity consumption compared to statistics-based methods, they require complex
feature engineering and the detection accuracy still needs further improvement.

With the development of deep learning technology, deep learning models have also
been widely used in anomaly detection of electricity consumption. Zheng et al. (2017)
proposed a wide and deep convolutional neural network (Wide & Deep CNN) for
electricity-theft detection. The Wide & Deep CNN is composed of two components:
the wide component and the deep CNN component, enabling it to capture features
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Figure 1 The framework of detecting anomalous electricity consumption with transformer and syn-
thesized anomalies.

Full-size DOI: 10.7717/peerjcs.1721/fig-1

of both 1-D and 2-D electricity consumption data. Li et al. (2019) presented a hybrid
convolutional neural network-random forest (CNN-RF) model for automatic electricity
theft detection.Munawar et al. (2021) used a hybrid bi-directional GRU and bi-directional
LSTM model for electricity theft detection. Almazroi & Ayub (2021) applied the CNN-
LSTM technique for detecting electricity fraud, which incorporates the long short-term
memory (LSTM) within convolutional neural networks. Takiddin et al. (2022) introduced
multiple deep autoencoder-based anomaly detectors for electricity theft detection. The
deep learning-based methods can automatically learn from the complex and non-linear
relationships in large-scale data and detect subtle anomalies. However, there is still a need
for more efficient and accurate methods for handling high-dimensional and complex
electricity consumption data.

METHOD
Framework
The framework of detecting anomalous electricity consumption with Transformer and
synthesized anomalies is shown in Fig. 1. Firstly, the time-series data collected from smart
meters is divided into training and testing data. Since normal electricity consumption
data is much larger than anomalous electricity consumption data in reality, training the
Transformer directly on the imbalanced training data will result in many false negatives.
Therefore, in order to improve the ability of the Transformer to detect anomalies, we
enhance the training data by synthesizing anomalies. The Transformer used here is a
variant of the vanilla Transformer (Vaswani et al., 2017). The Transformer incorporates
several innovative mechanisms, such as multi-head attention, which enable it to selectively
focus on relevant parts of the input sequence. This results in better feature extraction and
higher detection rates for various types of abnormal electricity consumption. Once the
Transformer is trained, it functions like a simple binary classifier, capable of distinguishing
whether the input electricity consumption time-series data is normal or abnormal.
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Figure 2 Normal electricity consumption and three types of anomalous electricity consumption. (A)
Normal electricity consumption. (B) Point anomalies. (C) Contextual anomalies. (D) Collective anoma-
lies.

Full-size DOI: 10.7717/peerjcs.1721/fig-2

Synthesizing anomalies
Following previous research (Cook, Mısırlı& Fan, 2019; Ruff et al., 2021; Zhang, Wu &
Boulet, 2021), we mainly consider three types of anomalies for electricity consumption
time-series data, i.e., point anomalies, contextual anomalies, and collective anomalies. We
first provide definitions for each type of anomaly, and then describe how to synthesize
anomalies for each type.

Figure 2A shows the normal daily electricity consumption of a customer, we can observe
that the electricity consumption data fluctuates every day, but exhibits periodicity with a
one-week cycle. However, the anomalous electricity consumption takes on the following
forms.

Point anomalies. These refer to individual data points in a time-series that deviate
significantly from the rest of the data. For instance, as shown in Fig. 2B, sudden spikes or
dips in electricity consumption can be categorized as point anomalies.

Contextual anomalies. These anomalies occur when a specific data point is not
anomalous by itself but becomes an anomaly when contextual information is taken
into account. For example, as shown in Fig. 2C, based on the electricity data from the
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same historical period and the adjacent two days, the third week’s sixth day for this
customer should show an increasing trend in electricity consumption. However, it displays
a decreasing trend instead. Although this data point is not anomalous when compared to
other data points, it should be considered as an anomaly when taking into account the
contextual information.

Collective anomalies. These are characterized by a group of data points that deviate
significantly from the normal pattern, but no individual data point stands out as being
anomalous on its own. For example, as shown in Fig. 2D, if a high-power electrical appliance
malfunctions, the customer may experience a sudden and significant decrease in electricity
consumption over a short period of time, and the electricity consumption data during this
period should be considered as collective anomalies.

Drawing from the anomaly types defined in the electricity consumption time-series
data, we propose a method for synthesizing anomalies. Assuming a time series is
X = (x1,x2,...,xt ), we can synthesize a point anomaly xi as follows:

xi=max(X )+λσ (X ) or xi=min(X )−λσ (X ) (1)

where σ (X ) is the standard deviation of X ; λ∈ (0,1) is a weight parameter that controls
how much xi deviates from the expected value.

Similarly, we can synthesize a contextual anomaly xi as follows:

xi=µ(X i−k:i+k)±λσ (X i−k:i+k) (2)

where λ∈ (0,1), X i−k:i+k is a subsequence from the time series X , and µ(X i−k:i+k) is the
mean and σ (X i−k:i+k) is the standard deviation of X i−k:i+k .

The collective anomalies X i:j can be synthesized as follows:

X i:j = λX i:j± (1−λ)Y (3)

where λ∈ (0,1), and Y is another time series with the same length as X i:j but a different
distribution.

Transformer-based anomaly detection
As shown in Fig. 3, the Transformer used for detecting anomalous electricity consumption
is composed of a stack of N identical Transformer blocks and a multi-layer perceptron.
Each Transformer blockmainly consists of a multi-head attentionmodule and a point-wise
feed-forward network (FFN).

Multi-head attention
Multi-head attention is a key component of the Transformer. The attention mechanism
(Zhu et al., 2019) allows the model to selectively focus on parts of the input sequence that
are relevant to the current output. In multi-head attention, multiple attention mechanisms
operate in parallel with different sets of learned parameters, allowing the model to attend
to different aspects of the input.

The attention mechanism in the Transformer is based on the Query-Key-Value model.
Given a set of queries Q, keys K , and values V , the multi-head attention operation can be
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Figure 3 Architecture of the Transformer used for detecting anomalous electricity consumption.
Full-size DOI: 10.7717/peerjcs.1721/fig-3
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formulated as:

headi= Attention(QWQ
i ,KW

K
i ,VW

V
i ) (4)

where the subscript i indicates the ith attention head;WQ
i ,W

K
i , andW

V
i are learned weight

matrices that project the input queries, keys, and values into a common high-dimensional
space.

The Attention function computes the weights for each value based on the similarity
between its corresponding key and the query vector. The output of each attention head is
a weighted sum of the values:

Attention(QWQ
i ,KW

K
i ,VW

V
i )= Softmax

(
(QWQ

i )(KW
K
i )
>

√
dk

)
VW V

i (5)

where Softmax is the Softmax function, > denotes the transpose operation, and dk is
the dimensionality of the key vectors. The division by

√
dk serves as a scaling factor that

stabilizes the gradients during training.
The final output of the multi-head attention is obtained by concatenating the outputs

of all the individual heads and multiplying them by another learned weight matrixWO:

MultiHead(Q,K ,V )= Concat(head1,...,headh)WO (6)

where h is the number of attention heads and Concat is the concatenation function. We
adopt the self-attention and set Q=K =V =X , where X is the outputs of the previous
layer.

Layer normalization
Layer normalization (Ba, Kiros & Hinton, 2016) is a technique used in the Transformer to
normalize the outputs of each layer before passing them to the next layer. This helps to
improve the stability and speed of training by reducing the internal covariate shift, which
is the change in the distribution of inputs to a layer that can occur during training.

The layer normalization operation can be formulated as follows:

LayerNorm(X )= a
X−µ
√
σ 2+ε

+b (7)

here, X is the input tensor; µ and σ 2 are the mean and variance calculated over the last
dimension of the input tensor; ε is a small value added to the variance to avoid division
by zero; a and b are learned scale and shift parameters, respectively, which are also applied
over the last dimension of the input tensor.

Point-wise FFN
The point-wise feed-forward network (FFN) (Vaswani et al., 2017) is a simple yet effective
component of the Transformer. It is applied to each position in the sequence independently
and identically, which means that it operates on the feature dimension of the input tensor.

The point-wise FFN operation can be formulated as follows:

FFN(X )= ReLU(XW 1+b1)W 2+b2 (8)
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Table 1 Experimental data distribution of the SGCC dataset.

Normal
(Real)

Abnormal
(Real+Synthesized)

Total

Training 31,005 14,892 (2,892+12,000) 45,897
Testing 7,752 723 (723+0) 8,475SGCC

Total 38,757 15,615 (3,615+12,000) 54,372

where X is the input tensor;W 1 andW 2 are learned weight matrices; b1 and b2 are learned
biases; ReLU is the ReLU function.

The point-wise FFN operation consists of two linear transformations. The first
transformation projects the input tensor into a higher-dimensional space, while the second
transformation maps it back to the original dimensionality. By applying the point-wise
FFN operation to each position in the input sequence independently and identically, the
model is able to capture different patterns and relationships within the sequence.

Multi-layer perceptron
The multi-layer perceptron is composed of four layers: Global Average Pooling (GAP),
Dense with ReLU activation, Dropout, and Dense with Softmax activation. The GAP
layer reduces the spatial dimensions of the input tensor, resulting in a single feature
vector. The Dense layer applies linear transformation to this feature vector followed by
the ReLU activation function. Then, the Dropout layer randomly drops out some of the
neurons, which helps prevent overfitting. Finally, the last Dense layer applies another
linear transformation followed by the Softmax activation function, producing the output
probabilities for determining whether the input sequence is normal or abnormal.

EXPERIMENTS
Experimental settings
We conducted experiments on two electricity consumption datasets, namely the SGCC
(State Grid Corporation of China; Zheng et al., 2017) dataset and LEAD1.0 (Gulati &
Arjunan, 2022) dataset. The SGCC dataset, released by the State Grid Corporation of
China, is a realistic electricity consumption dataset. It includes the electricity consumption
data of 42,372 customers within 1,035 days (from Jan. 1, 2014 to Oct. 31, 2016). It is
worth noting that the SGCC dataset contains many missing values, and we employed the
method proposed by Zheng et al. (2017) to handle these missing values. Among the 42,372
electricity consumption records, there are 38,757 normal records and 3,615 abnormal
records. We divided these records into training and testing data in a ratio of 80% and 20%.
Since the proportion of abnormal records in the training dataset is very small, we artificially
synthesized 12,000 additional abnormal records to enhance the training data. For the SGCC
dataset, we only considered the data from the first 365 days; thus the length of the time
series is 365. The experimental data distribution of the SGCC dataset is presented in Table
1.

LEAD1.0 dataset is a commercial building hourly electricity consumption dataset,
which contains 12,060,910 data points collected by 1,413 smart meters over one year.

Mu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1721 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1721


Table 2 Experimental data distribution of the LEAD1.0 dataset.

Normal
(Real)

Abnormal
(Real+Synthesized)

Total

Training 75,912 71,914 (47,914+24,000) 147,826
Testing 18,978 11,978 (11,978+0) 30,956LEAD1.0

Total 94,890 83,892 (59,892+24,000) 178,782

Table 3 The key parameter settings for different methods.

Method Parameters

SVM (Depuru, Wang & Devabhaktuni, 2011) Kernel type: RBF kernel; regularization parameter C = 1;
Kernel coefficient γ = 0.92.

Wide & Deep CNN (Zheng et al., 2017) The size of the wide component α= 60; the size of the CNN
component β = 120; the number of filters γ = 15.

LSTM (Munawar et al., 2021) Embedding dimension de = 256; the number of hidden
units nh= 128.

CNN-LSTM (Almazroi & Ayub, 2021) Embedding dimension de = 256; the number of hidden
units nh= 128.

Autoencoder (Takiddin et al., 2022) Encoder Layers ne = 4; decoder layers nd = 2.
Transformer (Ours) Key dimension dk = 256; number of heads h= 4.

For the LEAD1.0 dataset, we have chosen the 360-hour electricity consumption data
from each commercial building as the time-series data, resulting in a time-series length
of 360. We finally selected 94,890 normal electricity consumption time-series data and
59,892 abnormal electricity consumption time-series data from the LEAD1.0 dataset as
the experimental data. Additionally, we also synthesized 24,000 anomalies to enhance the
training data. The experimental data distribution of the LEAD1.0 dataset is presented in
Table 2.

Due to the nature of the experimental datasets, some sequences are only labeled as
anomalous or not, without specifying the specific points that are anomalous. Therefore,
our detection method focuses on determining whether the entire sequence is anomalous,
rather than identifying the specific types of anomalies (e.g., point anomalies, contextual
anomalies, and collective anomalies) occurring within it.

In order to provide a comprehensive evaluation of the detectionmethodwe proposed, we
compared it with five state-of-the-art methods, i.e., SVM (Depuru, Wang & Devabhaktuni,
2011), Wide & Deep CNN (Zheng et al., 2017), LSTM (Munawar et al., 2021), CNN-LSTM
(Almazroi & Ayub, 2021), and Autoencoder (Takiddin et al., 2022). The key parameter
settings for these methods are shown in Table 3.

Evaluation metrics
We adopted five commonly used evaluation metrics: ROC curve, precision, recall, F1-
score, and accuracy. As we are detecting anomalous electricity consumption, in this article,
‘‘positive’’ refers to anomalous consumption records, while ‘‘negative’’ refers to normal
consumption records.
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ROC curve is a graphical representation of the true positive rate (TPR) against the false
positive rate (FPR) at different classification thresholds. It helps in choosing an optimal
threshold for a model, considering the trade-off between true positives and false positives.

Precision is the fraction of true positives out of all the predicted positives. It tells us
how often a model correctly predicts positive cases. A high precision score means that the
model has fewer false positives. Recall is the fraction of true positives out of all the actual
positives. It tells us how well a model can identify positive cases. A high recall score means
that the model has fewer false negatives. F1-score is the harmonic mean of precision and
recall. It provides a balance between precision and recall. Accuracy is used to measure the
proportion of correct predictions made by a model. It provides an overall assessment of
the model’s performance in terms of correctly classifying instances.

If we use TP to represent the number of true positives, FP to represent the number of
false positives, TN to represent the number of true negatives, and FN to represent the
number of false negatives, then the formulas for the above metrics are as follows.

Precision=
TP

TP+FP
(9)

Recall (TPR)=
TP

TP+FN
(10)

F1-score= 2∗
Precision∗Recall
Precision+Recall

(11)

FPR=
FP

FP+TN
(12)

Accuracy =
TP+TN

TP+FP+TN +FN
(13)

Experimental results
The ROC curves of the six methods are shown in Fig. 4. As we can observe, the overall
trend of the ROC curves is consistent on both the SGCC dataset and the LEAD1.0 dataset.
The ROC curves demonstrate that our proposed Transformer has the largest area under
the curve (AUC) among all the methods, indicating its superiority in detecting anomalous
electricity consumption. The SVM has the poorest detection performance. Moreover, it
can be observed that for each method, the TPR increases as the FPR increases. To ensure
a fair comparison in subsequent experiments, we will record the performance metrics of
each method at a FPR of 0.5%.

The performance comparison of different methods on the SGCC dataset is shown in
Table 4. The precision of different methods is relatively high, all above 90%, indicating that
all methods can accurately detect abnormal electricity consumption. However, in terms
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Figure 4 ROC curves of different methods. (A) ROC curve on the SGCC dataset. (B) ROC curve on the
LEAD1.0 dataset.

Full-size DOI: 10.7717/peerjcs.1721/fig-4

Table 4 Performance comparison of different methods on the SGCC dataset ( FPR= 0.5%).

Dataset Model Precision Recall F1-score Accuracy

SVM (Depuru, Wang & Devabhaktuni, 2011) 0.907 0.613 0.731 0.800
Wide & Deep CNN (Zheng et al., 2017) 0.929 0.812 0.867 0.889
LSTM (Munawar et al., 2021) 0.932 0.863 0.896 0.911
CNN-LSTM (Almazroi & Ayub, 2021) 0.934 0.887 0.910 0.922
Autoencoder (Takiddin et al., 2022) 0.937 0.925 0.931 0.939

SGCC

Transformer (Ours) 0.939 0.963 0.951 0.956

of recall, F1-score and accuracy, there are significant differences in the performance of
differentmethods. Specifically, the Transformerwe proposed exhibits the best performance,
with a recall of 96.3%, an F1-score of 0.951, and an accuracy of 95.6%. The Autoencoder
performs the second best, with a recall of 92.5%, an F1-score of 0.931, and an accuracy of
93.1%. The SVM has the worst performance, with a recall of only 61.3%, an F1-score of
0.731, and an accuracy of 80.0%.

The performance comparison of different methods on the LEAD1.0 dataset is shown in
Table 5. We can see that the experimental results on the LEAD1.0 dataset are consistent
with those on the SGCC dataset. Our proposed Transformer still performs the best, with a
precision of 93.8%, a recall of 95.0%, an F1-score of 0.944, and an accuracy of 95.0%. It
should be noted that for the samemethod, the results on the LEAD1.0 dataset are somewhat
inferior to those on the SGCC dataset, suggesting that anomalous electricity consumption
patterns in the LEAD1.0 dataset are more challenging to detect than those in the SGCC
dataset.

In summary, the experimental results on both the SGCCdataset and the LEAD1.0 dataset
demonstrate that our proposed Transformer outperforms the state-of-the-art methods in
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Table 5 Performance comparison of different methods on the LEAD1.0 dataset (FPR= 0.5%).

Dataset Model Precision Recall F1-score Accuracy

SVM (Depuru, Wang & Devabhaktuni, 2011) 0.900 0.562 0.692 0.778
Wide & Deep CNN (Zheng et al., 2017) 0.928 0.800 0.859 0.883
LSTM (Munawar et al., 2021) 0.930 0.825 0.874 0.894
CNN-LSTM (Almazroi & Ayub, 2021) 0.933 0.875 0.903 0.917
Autoencoder (Takiddin et al., 2022) 0.935 0.900 0.917 0.928

LEAD1.0

Transformer (Ours) 0.938 0.950 0.944 0.950

detecting anomalous electricity consumption, achieving higher precision, recall, F1-score,
and accuracy.

Ablation study
In our proposed method for detecting abnormal electricity consumption based on the
Transformer, we artificially synthesized anomalies to enhance the training dataset to
alleviate the imbalance between normal and abnormal electricity consumption patterns. To
verify whether the synthesized anomalies can improve the performance of the Transformer,
we conducted an ablation study in this section. The experimental results are shown in Fig. 5.
It can be observed that training the Transformer with synthesized anomalies does not have a
significant impact on its precision onboth the SGCCandLEAD1.0 datasets, but significantly
improves its recall and F1-score. For example, on the SGCC dataset, when training the
Transformer with additional synthesized anomalies, the precision increases slightly from
92.6% to 93.9%, while the recall increases from 78.7% to 96.3%, F1-score increases from
0.851 to 0.951, and the accuracy increases from 87.8% to 95.6%. We analyzed that the
reason for this observation might be that, without the additional synthesized anomalies,
the training dataset has a significantly higher number of normal electricity consumption
patterns than abnormal electricity consumption patterns. Consequently, training the
Transformer on this imbalanced dataset causes it to overfit heavily to normal electricity
consumption patterns. As a result, it produces fewer false alarms butmisses many abnormal
electricity consumption patterns during detection, leading to a high precision but a low
recall. Therefore, synthesizing anomalies is very helpful in improving the performance of
the Transformer.

CONCLUSION
In this article, we propose a Transformer-basedmethod for detecting anomalous electricity.
In particular, the Transformer is composed of multiple modules, including multi-
head attention, layer normalization, point-wise feed-forward network, and multi-layer
perceptron. Since normal electricity consumption data is much larger than abnormal
consumption data in reality, we propose a method for artificially synthesizing anomalies to
alleviate the issue of imbalanced training data. To comprehensively evaluate the method we
proposed, we conduct experiments on two representative datasets and also compare it with
the state-of-the-art methods. The experimental results demonstrate that our proposed
method outperforms other methods and can effectively detect anomalies in electricity
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Figure 5 Performance of the Transformer trained with and without synthesized anomalies. (A) Results
on the SGCC dataset. (B) Results on the the LEAD1.0 dataset.

Full-size DOI: 10.7717/peerjcs.1721/fig-5

consumption. In the future, we will further explore how to leverage Transformers to detect
various anomalies in electricity consumption more precisely, improve their performance
on imbalanced training data, and employ them for forecasting the anomalous electricity
consumption.
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