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ABSTRACT
This article endeavors to enhance image recognition technology within the context
of the Internet of Things (IoT). A dynamic image target detection training model is
established through the convolutional neural network (CNN) algorithm within the
framework of deep learning (DL). Three distinct model configurations are proposed:
a nine-layer convolution model, a seven-layer convolution model, and a residual
module convolution model. Subsequently, the simulation model of CNN image target
detection based on optical imaging is constructed, and the simulation experiments
are conducted in scenarios of simple and salient environments, complex and salient
environments, and intricate micro-environment. By determining the optimal training
iterations, comparisons are drawn in terms of precision, accuracy, Intersection Over
Union (IoU), and frames per second (FPS) among different model configurations.
Finally, an attention mechanism is incorporated within the DL framework, leading
to the construction of an attention mechanism CNN target detection model that
operates at three difficulty levels: simple, intermediate, and challenging. Through
comparative analysis against prevalent target detection algorithms, this article delves
into the accuracy and detection efficiency of various models for IoT target detection.
Key findings include: (1) The seven-layer CNNmodel exhibits commendable accuracy
and confidence in simple and salient environments, although it encounters certain
instances of undetected images, indicating scope for improvement. (2) The residual
network model, when employing a loss function comprising both mean square
error (MSE) and cross entropy, demonstrates superior performance in complex and
salient environments, manifesting high precision, IoU, and accuracy metrics, thereby
establishing itself as a robust detectionmodel. (3)Within intricatemicro-environments,
the residual CNN model, utilizing loss functions of MSE and cross entropy, yields
substantial results, with precision, IoU, and FPS values amounting to 0.99, 0.83,
and 29.9, respectively. (4) The CNN model enriched with an attention mechanism
outperforms other models in IoT target image detection, achieving the highest accuracy
rates of 24.86%, 17.8%, and 14.77% in the simple, intermediate, and challenging levels,
respectively. Although this model entails slightly longer detection times, its overall
detection performance is excellent, augmenting the effectiveness of object detection
within IoT. This article strives to enhance image target detection accuracy and speed,
bolster the recognition capability of IoT systems, and refine dynamic image target
detection within IoT settings. The implications encompass reducedmanual recognition
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costs and the provision of a theoretical foundation for optimizing imaging and image
target detection technologies in the IoT context.

Subjects Artificial Intelligence, Computer Vision, Internet of Things
Keywords Visualization, Optical imaging, Deep learning, Convolutional neural network, Image
target detection

INTRODUCTION
In the era of big data, Internet of Things (IoT) technology has emerged as a pivotal driving
force across various domains, signifying the progressive assimilation of IoT into diverse
sectors. This transformative trend has propelled image object detection technology to
the forefront, granting it widespread utility in numerous domains. As IoT continues its
evolution, the growing significance of image object detection becomes increasingly evident.
This technology excels at extracting crucial insights from image data, encompassing object
recognition, detection, and pose estimation. These capabilities are essential to address
the ever-growing requirements of data acquisition, underscoring the pivotal role of
image object detection in propelling IoT system development. The confluence of big data
and the pervasive adoption of IoT technology facilitates the collection and processing
of unparalleled volumes and types of data. This data is sourced from sensors, devices,
and applications and encompasses various forms of image data. Image object detection
technology excels in identifying and tracking objects and proficiently estimates their
positions and orientations. It finds applications in a multitude of domains such as smart
cities, intelligent transportation, agriculture, healthcare, and more. In the realm of IoT
system development, the application domains of image object detection technology
continue to expand. This includes its utilization in monitoring and security systems to
facilitate the identification of potential hazards or anomalies. In the retail sector, image
object detection technology plays a pivotal role in recognizing and tracking goods, thereby
enhancing inventory management. In agriculture, it aids in monitoring plant growth and
health. In healthcare, it finds applications in the domain of medical image analysis and
diagnosis. In industrial production, it contributes to quality control and optimization
of production processes. These illustrations represent only a fraction of the potential
applications as the capacities of image object detection technology remain subjects of
continual exploration and expansion. Efficient image object detection hinges upon the
incorporation of artificial intelligence (AI) technology and the adept utilization of machine
learning methods. The integration of AI technology is indispensable for augmenting image
recognition capabilities, refining recognition techniques, and enhancing the adaptability
of image object detection algorithms (Tran-Dang et al., 2022). The realization of AI
technology is contingent on the effective application of machine learning methods.
Deep learning (DL), as an emerging field within machine learning, centers its focus on
comprehending the underlying patterns within sample data and the creation of multilayer
representations (Shorten, Khoshgoftaar & Furht, 2021).
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DL has gained widespread adoption and serves various practical purposes across
different domains. This method proves to be a powerful tool in microscope analysis,
surpassing conventional image processing techniques and yielding optimization effects in
the investigation of various biological processes (Von Chamier et al., 2021). DL algorithms
find application in industrial production and construction, enhancing target recognition
systems to improve speed and accuracy, thereby boosting construction safety andpreventing
violations (Huang et al., 2021a). The integration of DL-based color and depth image
information fusion elevates the success rate of mechanical arm grasping position detection
models, attaining higher monitoring accuracy (Jiang et al., 2021). DL algorithms effectively
address issues such as synthetic aperture radar (SAR) automatic target recognition, even
with limited training samples (Wang et al., 2021). In oceanic contexts, DL’s aptitude for
large data feature learning contributes to the creation of ocean image target datasets,
bolstering detection accuracy (Fu, Song & Wang, 2021). When applied to IoT image target
detection, DL approaches may improve feature extraction accuracy through principal
component analysis and advancing image recognition quality (Jacob & Darney, 2021).
DL encompasses diverse single-model artificial neural network structures, including
feedforward neural networks, convolutional neural networks (CNNs), recurrent neural
networks, and generative adversarial networks. Of these, CNN, frequently utilized for
image target detection and effectively classifies large datasets, enhances image quality,
and improves recognition outcomes (Girsang, 2021). CNN notably advances image target
recognition system accuracy, speed, and overall performance (Qing et al., 2021; Bai et al.,
2022). In the domain of radar image target recognition, DL’s deep convolution networks
enhance SAR image features, thereby elevating accuracy and application potential (Gao et
al., 2019). Notably, CNN-based image detection and recognition within the DL framework
significantly elevates detection efficacy in several sectors, including radar image target
recognition (Huang et al., 2021b; Zhang et al., 2021). Given the transformative impact of
DL, integrating CNN into image target detection algorithms becomes imperative. This
strategic fusion represents a pivotal step in enhancing image target recognition technology,
amplifying computer vision capabilities, and propelling the evolution of IoT systems.

This article presents an innovative approach to bolstering image target detection
capabilities within IoT systems through the integration of CNN algorithms within
the domain of DL. The investigation unfolds across several key phases. Firstly, CNN
algorithms in DL serve as the foundation for building a dynamic image target detection
model. A spectrum of models is constructed, including a nine-layer convolution model,
a seven-layer convolution model, and a residual module convolution model. Secondly, a
simulation model catering to CNN-based image target detection is devised, grounded in
optical imaging. Simulation experiments encompassing simple and salient environments,
complex and salient environments, and intricate micro-environments are meticulously
executed.Within a fixed training regimen, an extensive comparison is conducted, evaluating
precision, accuracy, IoU, and FPS across different model states. Finally, this article
introduces an attention mechanism within DL, paving the way for an attention mechanism
CNN target detection model based on datasets. This model is then benchmarked against
conventional target detection algorithm models. Subsequently, the accuracy and detection
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time of these models in IoT object detection scenarios are thoroughly analyzed. The
innovation of this article stems from the integration of the CNN algorithm within DL
for dynamic image target detection. This article systematically examines the performance
of diverse models across varied environments by constructing numerous model states
and simulation models rooted in optical imaging. In addition, the incorporation of the
attentionmechanismwithin DL offers a more efficient and precise solution for image target
detection within IoT systems. Beyond this, the article explores the application of DL and
attention mechanisms within the IoT domain, providing valuable theoretical and practical
insights for the future development and implementation of related technologies. This
article is dedicated to the intricate realm of image object detection within IoT systems, with
the primary objective of elevating detection performance by integrating DL and CNNs. The
significance of this article is underscored by its direct relevance to practical applications.
The key contribution of this article resides in its innovative approach, a fusion of CNN
algorithms with DL frameworks, engineered to amplify image object detection capabilities
within IoT systems. The study’s framework encompasses the creation of multiple CNN
models, including nine-layer convolution models, seven-layer convolution models,
and residual module convolution models, all subjected to comprehensive performance
comparison experiments across diverse environmental settings. Furthermore, the article
leverages simulation models rooted in optical imaging principles, designed to simulate a
variety of environmental conditions more realistically, thus providing a robust evaluation
of performance. Of particular note, this article introduces attention mechanisms within the
domain of DL. It introduces a dataset-based attention mechanism CNN object detection
model, which excels in elevating both detection accuracy and efficiency. However, this
research extends beyond the mere realm of technology. It boldly applies these findings to
practical scenarios within the IoT domain, imparting invaluable insights that will steer the
development and implementation of future IoT systems. Consequently, these contributions
work harmoniously to augment the practicality and performance of IoT systems, marking
a significant stride toward realizing efficient and effective IoT applications.

The article’s framework and structure are delineated as follows:
1. Introduction: This section serves as the article’s inception, setting the stage by

elucidating its background, objectives, andmethodological approach. It emphasizes the
novel contributions and innovationswhile underscoring the constraints of conventional
object detection methods regarding feature extraction and articulating the potential
and challenges presented by DL technology.

2. Literature Review: This segment delves into the constraints confronting traditional
object detection methods in feature extraction, particularly within the domains of
information technology and artificial intelligence. As artificial intelligence continues
to advance, conventional feature extraction techniques evolve toward DL algorithms.
The section elaborates on the critical role of convolutional neural networks in feature
extraction, particularly in the context of object detection within IoT systems.

3. Materials andMethods: Here, readers are acquainted with key concepts related to image
object detection algorithms, IoT systems, computer vision, and image object detection
theory. It elucidates the core tenets and functions of DL and convolutional neural
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networks. Additionally, this section expounds the experimental design, encompassing
scope, methodologies, and experimental configurations, providing clarity on the
research’s procedural facets, including the conduct of experiments and data collection.

4. Summary and Discussion of Results Analysis: This part ushers in the research’s
denouement, presenting the outcomes of simulation experiments across simple and
complex environments, along with complex microenvironments. A comprehensive
analysis of the detection outcomes of the CNN algorithm model, incorporating an
attention mechanism, offers insights into the model’s performance under varying
environmental conditions. A meticulous examination of the efficacy of innovative and
optimized techniques is presented in conjunction with the delineation of potential
limitations and suggestions for future research directions.

5. Discussion: This section aligns with the research’s fundamental objectives, engaging in
an in-depth discussion of the research outcomes, particularly focusing on performance
comparisons across diverse models within varying environments. It accentuates the
effectiveness of innovative and optimizedmethods while hinting at potential limitations
and charting the course for future research directions.

6. Conclusion: In this concluding segment, the research findings and contributions are
succinctly encapsulated, accentuating their practical application potential and broader
significance. Moreover, it extends recommendations and guidelines for prospective
research endeavors.

LITERATURE REVIEW
In the current landscape of information technology and AI technology, traditional target
detection methods are grappling with limitations in feature extraction (Tian et al., 2023).
As AI advances, a paradigm shift from conventional feature extraction techniques to DL
algorithms, particularly CNNs, has emerged. Utilizing CNNs for feature extraction has
led to heightened efficiency and accuracy in detecting targets within IoT systems (Li et
al., 2023a). Notably, Li et al. (2023a) and Li et al. (2023b) demonstrated that a multi-scale
analysis modulation recognition network employing denoising encoders, deep adaptive
threshold learning, and multi-scale feature fusion significantly improved recognition
accuracy in low signal-to-noise ratio environments. Meanwhile, the network shows the
adaptive learning ability of different noise thresholds and the advantages of effective
feature fusion modules under various modulation types (Li et al., 2023b). Liao & Liu
(2023) proposed a CNN based on a depth-invariant network, which effectively boosts data
detection efficiency and accuracy in image target detection. Zhong et al. (2023) advocated
the fusion of real-time monocular 3D detection networks and CNNs to overcome
temporal dependencies, resulting in improved accuracy for target detection. Ding &
Li (2023) highlighted the advantages of DL-based target recognition, who demonstrateed
superior performance compared to traditional AI algorithms. Their findings underscore DL
technology’s potential for enhancing image recognition. Idris, Ya’u & Ali (2023) showcased
how CNNs coupled with non-maximum suppression techniques enhance context and deep
feature extraction. This contributes to effective road crack detection by mitigating target
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occlusion. Park (2023) explored CNNs integrated with multimodal information, extracting
features from comments and images to accurately predict customers’ revisiting behavior.
Lindenheim-Locher et al. (2023) focused on real-time multimodal 3D CNNs, emphasizing
their pivotal role in processing higher-resolution images and consequently enhancing
3D image detection capacities. In accordance with prior research, it becomes readily
apparent that DL algorithms have yielded remarkable achievements within the realm of
IoT image object detection. Specifically, CNNs have played a pivotal role in advancing the
precision and efficiency of image object detection within IoT systems. Several investigations
have underscored the transformative potential of novel techniques, such as multi-scale
analysis and attention mechanisms, in profoundly augmenting the performance of image
object detection, particularly in environments characterized by low signal-to-noise ratios.
Moreover, the pervasive applicability of DL technology spans a multitude of domains,
encompassing applications as diverse as road crack detection, image recognition, and
intelligent surveillance. Nevertheless, despite the considerable successes associated with the
application of DL technology, certain limitations persist. Conventional object detection
methods grapple with constraints in feature extraction, rendering them less efficacious
in the intricate milieu of IoT. Furthermore, DL technology encounters bottlenecks in
specific scenarios, including computational complexity and model selection-related issues.
Furthermore, the existing research landscape exhibits relatively narrow coverage, marked
by a dearth of comprehensive comparisons and evaluations encompassing different
models and technologies. This article makes a substantial contribution in mitigating these
limitations. Harnessing CNN algorithms nested within a DL framework has facilitated the
development of multiple dynamic image object detection models, adept at accommodating
the exigencies of diverse environmental conditions. Additionally, the formulation of
simulation models based on optical imaging principles furnishes a comprehensive
evaluation of the model’s efficacy across a spectrum of environments, encompassing
both simple and intricate scenarios. The integration of attention mechanisms confers a
marked enhancement in the accuracy and efficiency of image object detection, thereby
bestowing robust support for the application and advancement of IoT technology. This
article holds the promise to propel the progression of image object detection, illuminating
a pathway towards further development within the field.

MATERIALS AND METHODS
Image target detection algorithm
(1) IoT system

The IoT represents a versatile technology capable of real-time data collection,
encompassing a wide array of parameters including sound, light, heat, electricity, chemical
composition, mechanical properties, biological metrics, and geographical location (Lv
& Singh, 2021). The IoT system is underpinned by four key technologies, which are
systematically classified and depicted in Fig. 1.

IoT systems find extensive application across various industries and domains,
encompassingmanufacturing, agriculture, transportation, energymanagement, healthcare,
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Figure 1 Key technologies of the IoT system.
Full-size DOI: 10.7717/peerjcs.1718/fig-1

and more. In these contexts, IoT systems assume a pivotal role in facilitating intelligent
development and refining resource allocation. They offer the mechanisms to boost
operational efficiency, fine-tune resource utilization, and ultimately elevate the quality
of life and working environments.

(2) Computer vision
Computer vision (CV) is a theoretical framework for processing visual information.

This theory delineates the visual perception process into a multi-level, bottom-up analysis
sequence. In this process, a series of distinct representations furnishes detailed information
concerning the relevant visual environment (Lv et al., 2021).

Two challenges confront CV: the first pertains to feature extraction, and the second
concerns the handling of vast computational datasets. DL offers a promising approach
to addressing these challenges. Presently, CV encompasses eight distinct task categories,
shown in Fig. 2.

As a pivotal domain in the AI field, CV exhibits extensive applications across various
sectors, including industry, healthcare, security, agriculture, retail, human–computer
interaction, culture, and the arts. Through the simulation of the human visual system,
CV empowers computers to recognize, analyze, and comprehend image and video data,
thereby enabling automatic image processing and analysis. The contributions of CV
resonate in the form of innovation, efficiency, and convenience across diverse industries,
propelling technological advancements and nurturing societal development, underscoring
its undeniable significance.
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Figure 2 Computer vision task classification.
Full-size DOI: 10.7717/peerjcs.1718/fig-2

(3) Image target detection
One of the primary challenges within the realm of CV is image object detection. The

fundamental goal is to discern and categorize all objects of interest in an image while
determining their respective positions. Object recognition has traditionally represented the
most formidable hurdle in CV, primarily due to the inherent variability in appearances,
shapes, and orientations of different objects, further compounded by factors such as varying
illumination, occlusion, and other imaging-related complexities. Figure 3 illustrates the
principal quandaries associated with image target detection.

There exist five conventional image object detection techniques, including edge
detection, Hough Transform, binarization, projection histogram, and feature extraction.
DL-based image target detection algorithms can primarily be divided into two categories:
Two Stage and One Stage (Zhao et al., 2019).

Deep learning (DL)
(1) DL

DL finds extensive applications in search technology, machine learning, data
mining, machine translation, natural language processing (NLP), multimedia learning,
recommendation systems, and personalized technology (Janiesch, Zschech & Heinrich,
2021; Sarker, 2021). Furthermore, DL algorithms demonstrate utility in predicting the
geometric structure of RNA molecules (Townshend et al., 2021), inferring and forecasting
various outcomes (Ranganathan, 2021), and evaluating collaborative work (Pandian,
2021).

DL research methods can be divided into three categories: neural network systems based
on convolution, self-coding neural networks based on multilayer neurons, and deep belief
networks with optimized neural network weights. Figure 4 displays the DL model.

(2) CNN
CNNs represent a class of algorithms within DL and also function as a type of artificial

neural network, encompassing a series of mathematical operations and connection
schemes (Li et al., 2021). CNNs are engineered to emulate the visual perceptionmechanisms
observed in biological organisms (Mamalakis, Barnes & Ebert-Uphoff, 2022). They are
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Figure 3 Key challenges in image target detection.
Full-size DOI: 10.7717/peerjcs.1718/fig-3

Figure 4 DLmodel.
Full-size DOI: 10.7717/peerjcs.1718/fig-4
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Figure 5 CNNmodel.
Full-size DOI: 10.7717/peerjcs.1718/fig-5

adaptable to both supervised and unsupervised learning and offer versatile applications
across domains such as computer vision, natural language processing, agriculture (Dhaka
et al., 2021), social sciences, healthcare (Xu & Qiu, 2021), and numerous others.

CNN architectures primarily comprise input layers, hidden layers, and output layers.
Figure 5 shows the CNN model.

The input layer in CNN primarily serves as the data input interface and can effectively
handle multidimensional data. Specifically, a one-dimensional CNN can process one- or
two-dimensional (2D) datasets, whereas a 2D CNN can handle 2D or three-dimensional
(3D) datasets. When dealing with four-dimensional datasets, a 3D CNN is a suitable choice.
In the realm of CV, the 3D CNN is commonly employed.

Within the hidden layer of CNNs, one encounters pivotal components such as the
convolutional layer, activation function, pooling layer, and fully connected layer. Among
these, the convolutional layer occupies a prominent role. This layer comprises numerous
convolution kernels, primarily tasked with the extraction of data features. The dimensions
of the convolutional layer are contingent upon the size of the convolution kernel. Figure 6
illustrates a visual representation of convolution kernel operations.

The notation is defined as follows: a represents the bias difference, QL denotes the
convolution input, QL+1 signifies the convolution output, Q

(
x,y

)
represents the pixel of

the feature map, K stands for the number of channels of the feature map, F indicates the
size of the convolution kernel,W2 denotes the convolution step, OL+1

K signifies the output
size, and P represents the number of filling layers. With these definitions in place, the sum
of the input features in the receptive field can be expressed as follows:
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Figure 6 Convolution kernel operation.
Full-size DOI: 10.7717/peerjcs.1718/fig-6

QL+1(x,y)= K1∑
K=1

F∑
X=1

F∑
Y=1

[
QL
K
(
W1+x,W2+y

)
OL+1
K

(
x,y

)]
+a (1)

(
x,y

)
∈ {0,1,2,...,n}Ln+1 =

Ln+2P−F
W1

+1 (2)

Activation functions can help express complex features within CNN. Several common
activation functions include the rectified linear unit (ReLU), ReLU with slope, parametric
ReLU, randomized ReLU, exponential linear unit (ELU), sigmoid function, and hyperbolic
tangent function.

For instance, the ReLU function is calculated as Eq. (3), where max (0,x) represents the
ramp function in algebra.

F (x)=max (0,x)=

{
x x ≥ 0
0 x < 0

(3)

The sigmoid function is defined as Eq. (4), where e represents a natural function and y
is a variable, with a value range between 0 and 1.

F
(
y
)
=

1
1+e−y

. (4)

The hyperbolic tangent function is given by Eq. (5), where e represents the natural
function and x is the variable.

tanh x =
sinh x
cosh x

=
ex−e−x

ex+e−x
(5)
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Figure 7 Calculation process of pooling layer.
Full-size DOI: 10.7717/peerjcs.1718/fig-7

The pooling layer within the hidden layer plays a crucial role in feature selection and
information filtering. The size of the pooling layer area is determined by the pooling
layer size, the step size, and the number of filling layers. The output layer of the CNN is
responsible for connecting the hidden layer and outputting the model’s results. Figure 7
presents the calculation process of the pooling layer.

The pool layer is a pivotal component in CNNs, which is used to diminish the size of
the feature map and extract essential features. The two most prevalent pooling operations
are maximum pooling and average pooling.

Maximum pooling achieves downsampling by selecting the maximum value within a
local area, thus retaining the primary features. The maximum pooling is given by Eq. (6).

OP(α,β,γ )=MaxIP(αs+ iβ+kγ ) (6)

In Eq. (6), OP(α,β,γ ) represents the element of the pooled output feature map.
IP(αs+iβ+kγ ) corresponds to an element of the input feature map. (i,k)∈win, signifying
the coordinates within the window. win denotes the window, and s signifies the stride.

Average pooling accomplishes downsampling by calculating the average value within
a local area, thus encapsulating the overall feature distribution. The average pooling is
aarticulated as Eq. (7).

OP(α,β,γ )=
1

winS

∑
(i,k)∈win

IP(αs+ iβ+kγ ) (7)

Here, winS signifies the number of elements in the window.
By employing both maximum pooling and average pooling, the pooling layer can

reduce the size of the feature map, enhance the calculational efficiency, and bolster the
robustness and generalization capabilities of the model while retaining crucial features.
These operations are widely used in various layers of CNN, facilitating the effective
processing of images and other data types.

To fine-tune the CNN target, the utilization of a loss function proves instrumental in
predicting weights through coordinate adjustments. Among the prominent loss functions
are loss functions are the mean squared error (MSE) loss function, cross entropy, Euclidean
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distance loss function, Manhattan distance loss function, smooth L1 loss function, and
Huber loss function.

MSE serves a frequently employed loss function, assessing the square of the average
difference between the predicted value and the actual value. The MSE is calculated using
Eq. (8).

MSE =
1
Z

Z∑
X=1

(
LX − L̈X

)2
(8)

In Eq. (8), Z represents the number of samples, LX denotes the real value of the X
sample, and L̈X signifies the predicted value of the X sample.

The image target detection algorithm based on the neural networks can employ the MSE
loss function, and its calculation equation is as follows:

Loss=
x2∑
y=0

CoordError+ IoUError+ClassError (9)

In Eq. (9), Loss represents the loss function; x and y are variables; IoUError denotes the
confidence value error; ClassError signifies the classification error; CoordError refers to the
coordinate error.

If x and y represent two probabilities, the probability’s cross entropy equation is defined
as:

C
(
x,y

)
=−

∑
n

x (n)logy (n) (10)

The normalized exponential function is adopted to optimize the cross entropy, and the
following equation is derived:

Softmax (x)=
exn∑
nexn

(11)

Experimental design
(1) A training model for dynamic image target detection built based on the CNN algorithm

This article conducts all the experiments related to building a trainingmodel for dynamic
image target detection utilizing the CNN algorithm on the Titan algorithm platform. The
training of our model is performed using the Jetson TX2 embedded algorithm, with the
Pascal VOC 2012 dataset used as the background database to augment the database. Several
key configurations are established for the training process, including:

(1) Definition of the training database location for image targets and background data.
(2) Specification of classification labels.
(3) Determination of image dimensions during CNN training.
(4) Selection of the number of samples for each training session.
(5) Assignment of image target categories.
(6) Setting precise values for the image target detection algorithm.
(7) Configuration of the number and size of anchor boxes.
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(8) Utilization of three distinct network models: a nine-layer CNN model, a seven-layer
CNN model, and a CNN model with residual modules.

(9) Establishment of a target loss function.
(10) Utilization of the Adam optimizer for training algorithm optimization.
The Pascal VOC 2012 dataset is a versatile resource suitable for tasks such as image

classification, object detection, and image segmentation. This dataset comprises an
extensive collection of 23,080 image datasets and 54,900 project datasets, making it a
benchmark dataset for image target detection. This article curates a training set consisting
of 3,500 images from this dataset.
(2) CNN simulation models based on CV

This article develops several CNN simulation models grounded in computer vision
principles. These models vary in architecture, and their specifications are detailed as
follows:

(1) For the nine-layer CNN model, the number of network convolution layer channels
follows the progression of 64, 128, 256, and 512, with an output set at 13 × 13 × 5 × 7.

(2) The seven-layer CNN model has an input layer size of 512 × 512 ×35, with the
number of convolution kernels specified as 8, 16, 32, 64, and 128.

(3) In the residual module CNN model, the size of the convolution layer is established
at 3 × 3 × 140.

(4) In these CNN simulation models, designed within the realm of visual computing,
key parameters are set as follows:

(5) Initial learning rate: 0.0001
(6) Optimization method: Adam optimizer
(7) Number of iterations: 10
(8) Learning rate decay: 0.1
(9) Training cessation criterion: When the loss function remains unchanged for three

consecutive weeks.
Furthermore, the architecture details are as follows:
(1) The seven-layer CNN model comprises seven layers, each with 16 neurons.
(2) The nine-layer CNN model incorporates nine layers, with each layer containing 32

neurons.
(3) The residual module CNN model consists of seven layers, with each layer featuring

eight neurons.
In the evaluation process, this article conducts multiple training sessions to determine

the impact of varying network models and loss functions on precision, accuracy, IoU, and
FPS. Here, the article clarifies the definitions and significance of these performance metrics:

(1) Precision quantifies the proportion of correctly identified positive samples out of all
samples that the model predicts as positive. It serves as an essential measure of the model’s
ability to avoid false positives.

(2) Accuracy represents the ratio of correctly predicted samples to the total number
of samples across all categories. This metric provides a holistic assessment of the model’s
overall performance.
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(3) IoU is not a commonly used metric in target detection. Its purpose is to gauge the
degree of overlap between the model’s detected target area and the actual target area. The
IoU is calculated by dividing the intersection area of the target frame by the union area of
the target frame. Higher IoU values indicate that the model’s detection aligns closely with
the actual target.

(4) FPS signifies the number of frames the model can process in one second when
analyzing images or videos. It serves as a critical metric for assessing the model’s real-time
processing capability and performance in tasks requiring quick responses.

These performance indicators collectively provide a comprehensive evaluation of the
model’s effectiveness in the domain of target detection. It’s essential to note that each
metric emphasizes different aspects of performance, contributing to a comprehensive
understanding of the model’s capabilities and effectiveness in specific use cases.

This article is conducted on the Titan algorithm platform, with testing executed using
the Jetson TX2 embedded algorithm. The article employs the Pascal VOC 2012 dateset as
the background database, with a selection of 3,000 pictures images serving as the model’s
test set. TensorFlow framework was employed to implement the sample code for the target
detection model. The model architecture encompasses a nine-layer CNN, a seven-layer
CNN, and a residual module CNN model. The main function of this code is to define the
CNN model, along with its corresponding loss function and optimizer. Throughout the
training process, the loss function and accuracy metrics are computed at the conclusion of
each epoch.

Based on prior studies, this article sets two labels for the binary classification of images,
with the image dimension set at 512× 512× 3. The selection of the object detection
algorithm’s accuracy and the configuration of anchor frames parameters draw from
established practices in the field. In addition, the utilization of the Adam optimizer,
as a commonly used training algorithm, is motivated by its demonstrated capacity to
facilitate improved convergence and performance across various scenarios. The rationale
for selecting the Adam optimizer is rooted in its extensive utilization and effectiveness with
gradient descent optimization techniques (Freitas et al., 2019).
(3) Target image detectionmodel of the CNN algorithm based on the attentionmechanism.

The attention mechanism is prevalent in DL, enhancing the attention and processing
ability of neural networks to input data. By automatically assigning varying weights to
distinct segments of the input data, attention mechanisms prioritize crucial information
during processing, thereby augmenting the model’s performance and generalization
capability. The structural layout of the target image detection model, employing the CNN
algorithm integrated with an attention mechanism, is shown in Fig. 8.

This article evaluates the CNN-based target image detection model with an integrated
attention mechanism using the KITTI dataset. A total of 3,600 images are designated
for the training set, while 3,500 images constitute the test set. To ensure consistency, all
images are standardized to a high resolution of 384 × 1,280. The model’s performance
is assessed based on the average accuracy of aerial view (AP-R40), which serves as a key
performance index. Three levels of recognition difficulty—simple, intermediate, and
challenging—are established, and the accuracy and detection time of various algorithmic
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Figure 8 Structure of target image detection model of CNN algorithm based on attentionmecha-
nism. Attention mechanism is a widely used technology in DL, which is used to enhance the attention and
processing ability of neural network to input data. Attention mechanism automatically assigns different
weights to different parts of input data, so as to pay more attention to important information in the pro-
cess of processing, thus improving the performance and generalization ability of the model. The target im-
age detection model structure of CNN algorithm based on attention mechanism is shown in in this figure.

Full-size DOI: 10.7717/peerjcs.1718/fig-8

models are compared across these conditions. Among these metrics, target detection
accuracy reflects the algorithm’s ability to correctly identify target objects and can be
quantified by such indicators as precision, accuracy, IoU, and FPS. High accuracy suggests
that the algorithm excels in precise target identification and localization, minimizing
instances of misjudgment and missed detection, thus yielding more reliable detection
outcomes. Detection time refers to the duration required for the algorithm to complete
the target detection task, with short detection times ensuring swift responsiveness and
adaptability to dynamic environments.

The KITTI dataset stands as an open dataset extensively employed in the fields of CV
and autonomous driving. It comprises a diverse range of data types, including images, laser
point clouds, calibration details, and vehicle trajectories, encompassing various scenes.
This dataset is collaboratively developed through the Karlsruhe Institute of Technology in
Germany and the Toyota European Research Center. It spans multiple different driving
environments, such as urban streets and highways. This expansive dataset offers researchers
a wealth of real-world data for studying and developing algorithms and technologies within
the realms of target detection, object tracking, stereo vision, and autonomous driving.

Chen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1718 16/27

https://peerj.com
https://doi.org/10.7717/peerjcs.1718/fig-8
http://dx.doi.org/10.7717/peerj-cs.1718


Figure 9 Simulation results of the seven-layer CNNmodel in the simple and significant environment.
Full-size DOI: 10.7717/peerjcs.1718/fig-9

This article conducts all experiments for constructing the target image detection model
using the CNN algorithm based on the attention mechanism with the PyTorch framework.
The ResNet-50 serves as the backbone network to acquire essential visual features related to
the target. Additionally, the attentionmechanism is used to reduce superfluous information
in the image. Notably, the CNN algorithm model is configured with a batch size of eight,
an initial learning rate of 0.0002, a learning attenuation rate of 0.1, a decay period of 50,
and a weight attenuation coefficient of 0.0001. Optimization is achieved through the Adam
optimizer, encompassing a total of 200 training rounds. The model consists of both coding
and decoding blocks, each comprising six layers. The number of queries is set to 50, and
the depth range spans from 0 to 60 m.

RESULTS AND DISCUSSION
Simulation of simple and salient environments
This article addresses the challenge of image target detection within simple and salient
environments. To conduct simulation experiments, a seven-layer CNN model is used.
The ensuing simulation results are shown in Fig. 9, showcasing the image target detection
performance derived from the seven-layer CNN model within such simple and salient
environments.

The analysis of Fig. 9 reveals that in a simple and salient environment, the utilization
of a seven-layer CNN model appears to be generally suitable. Notably, the loss function
within the image target detection algorithm steadily decreases as the training period
extends, reaching stability once the training period reaches 12 units. The confidence curve
for specific categories exhibits significant fluctuations throughout the training process,
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Figure 10 Simulation results of the nine-layer CNNmodel in the complex and significant environ-
ment.

Full-size DOI: 10.7717/peerjcs.1718/fig-10

initially declining between 0 and 12 units. Subsequently, from 12: 00 to 89: 00, units into
training, there is a discernible overall growth trend, albeit with minor fluctuations. Upon
surpassing the 100-unit training threshold, the confidence curve for specific categories
shows an upward trend, ultimately reaching a confidence level of 0.92 at the end of training.
In this simple and salient environment, the seven-layer CNN model demonstrates high
confidence and commendable accuracy. Nevertheless, some images remain undetected.
This outcome might be attributed to the limited diversity of objects within the simple
and salient environment, which potentially hinders the model’s ability to sufficiently
learn the characteristics of specific samples. In addition, factors such as model parameter
configurations, data quality in the training dataset, and network structure may also affect
the occurrence of undetected situations.

Simulation of complex and salient environments
In the investigation of image target detection within a complex and salient environment, a
nine-layer CNN model, a seven-layer CNN model, and a residual module CNN model are
employed to conduct simulation experiments. The simulation outcomes are presented in
Figs. 10–12, offering insights into the performance of image target detection based on the
three CNN models in a complex and salient environment.

Figure 10 reveals that within the nine-layer CNN model in a complex and salient
environment, the model employing cross entropy as the loss function achieves an accuracy
of 0.77, a precision of 0.97, an IoU score of 0.81, and an FPS value of 29.2. Conversely,
when the loss function is the mean square error (MSE), the model attains an accuracy
of 0.7, a precision of 0.9, an IoU of 0.76, and a FPS value of 29.5. Comparing the two
models, it becomes evident that the nine-layer CNNmodel employing cross entropy yields
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Figure 11 Simulation results of the seven-layer CNNmodel in the complex and significant environ-
ment.

Full-size DOI: 10.7717/peerjcs.1718/fig-11

higher precision, IoU, and accuracy in image target detection. However, it is noted that
the detection speed is marginally lower compared to the nine-layer CNN model utilizing
MSE. This observation aligns with the expected characteristics of cross entropy as the
loss function in classification problems. While it enhances classification results, it may
introduce a slightly complicated training process, thus affecting the detection speed.

Figure 11 provides insights into the performance of the seven-layer CNN model
operating in a complex and salient environment. When employing cross entropy as the
loss function, the model exhibits an accuracy of 0.87, a precision of 0.91, an IoU score of
0.73, and a FPS value of 30.1. Conversely, when utilizing MSE as the loss function, the
model achieves an accuracy of 0.88, a precision of 0.79, an IoU value of 0.73, and a FPS
value of 33.8. A comparative analysis between these two models reveals that the seven-layer
CNN model using cross entropy as the loss function demonstrates superior accuracy in
image target detection. However, it exhibits slightly lower detection speed and overall
accuracy in comparison to the seven-layer CNN model utilizing MSE as the loss function.
This phenomenon accords with the application of cross entropy in classification problems,
which accentuates inter-class differences, ultimately enhancing accuracy. Nonetheless, it
may have a minor impact on detection speed and overall model accuracy.
Figure 12 presents a comprehensive analysis of the performance of the residual module

CNN model operating in a complex and salient environment under various conditions.
When the number of training iterations is set to 1, the model using cross entropy as the
loss function demonstrates an accuracy of 0.77, a precision of 1, an IoU score of 0.75, and
an FPS value of 19.9. When employing MSE as the loss function, the model achieves an
accuracy of 0.85, a precision of 0.98, an IoU of 0.8, and a FPS value of 20.4. Additionally,
the model employing a combination of MSE and cross entropy as the loss function exhibits
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Figure 12 Simulation results of residual module CNNmodel in the complex and significant environ-
ment.

Full-size DOI: 10.7717/peerjcs.1718/fig-12

an accuracy of 0.93, a precision of 0.99, an IoU of 0.76, and an FPS value of 26.3. With an
increase in the number of training iterations to 2, the residual module CNN model with
cross entropy as the loss function achieves an accuracy of 0.92, a precision of 1, an IoU of
0.71, and an FPS value of 20.1. Upon comparing the four models, it becomes evident that
when the number of training iterations is set to 1, the residual module CNN model with
loss function of MSE and cross entropy simultaneously attains higher precision, accuracy,
IoU scores, and FPS values. These metrics were slightly lower than the CNN model using
MSE as the loss function alone. The observed improvement in accuracy with increased
training iterations is accompanied by a reduction in the IoU score. This phenomenon
aligns with the iterative training process of DL models. The choice of different training
strategies and loss functions can balance the model’s performance between accuracy and
IoU scores.

Simulation of intricate micro-environments
In complex micro-environment, this article conducts comprehensive simulation
experiments to evaluate the performance of the residual module CNN model within
intricate micro-environments. The experiments are executed across three distinct network
states, and the results are visualized in Fig. 13. It illustrates the model’s capabilities for
image target detection in various network states in intricate micro-environments.

The analysis of Fig. 13 sheds light on the performance of the residual module CNN
model within an intricate micro-environment. When employing cross entropy as the loss
function, the model achieves an accuracy of 0.85, a precision of 1, an IoU score of 0.8, and
a FPS value of 28.4. Conversely, when utilizing MSE as the loss function, the model attains
an accuracy of 0.97, a precision of 0.99, an IoU score of 0.75, and a FPS value of 28.6.
The model employing both MSE and cross entropy as loss functions achieves an accuracy

Chen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1718 20/27

https://peerj.com
https://doi.org/10.7717/peerjcs.1718/fig-12
http://dx.doi.org/10.7717/peerj-cs.1718


Figure 13 Simulation results of three different state models in the complex andmicro environment.
Full-size DOI: 10.7717/peerjcs.1718/fig-13

of 0.98, a precision of 0.99, an IoU score of 0.83, and an FPS value of 29.9. Comparative
analysis reveals that the residual module CNN model employing a combination of MSE
and cross entropy as loss functions excels in precision, accuracy, IoU scores, and FPS
values. This result is attributed to the distinct effects that different loss functions impart
on the model’s optimization process, ultimately striking a balance between accuracy and
other metrics.

Analysis of target image detection results of the CNN algorithm
model based on the attention mechanism
This article strategically employs a CNN model based on the attention mechanism for
comparative experiments to explore the effect of this novel technology on image target
detection within the IoT framework. Specific comparative results are presented in Fig. 14,
which illustrates the juxtaposition of detection accuracy and detection time across various
CNN algorithmic models and those integrating attention mechanisms in target image
detection.

Upon scrutinizing Fig. 14, an examination of the accuracy comparison results for
different algorithmic models reveals intriguing insights. It is apparent that the CNN
model’s detection accuracy, when exposed to multimodal information, is notably the
lowest, registering at merely 14.5%. By contrast, CNN models employing non-maximum
suppression or real-time monocular 3D detection networks exhibit relatively similar
detection accuracies, standing at 19.72% and 20.1%, respectively. Remarkably, the CNN
model operating within the depth-constant network framework demonstrates outstanding
detection performance, boasting an impressive accuracy rate of 24.59%. Significantly,
the CNN model reported here, fortified with an attention mechanism, yields substantial
improvements in detection efficacy, showcasing a 0.27% accuracy enhancement compared
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Figure 14 Analysis and comparison results of target image detection results of different algorithm
models. According to the comparison results of the accuracy of different algorithm models, the figure
shows that the detection accuracy of CNN under multimodal information is the lowest, only 14.5%. The
detection of CNN under non-maximum suppression is similar to that under real-time monocular 3D de-
tection network, with the accuracy of 19.72% and 20.1% respectively. The detection effect of CNN un-
der the depth-constant network is excellent, and the accuracy is as high as 24.59%. The detection effect of
CNN model based on attention mechanism used in this article has been significantly improved, and the
accuracy has been improved by 0.27% compared with the CNN model under the depth-invariant network
with the second performance. Under the medium and difficult levels, the accuracy ranking of the model
has not changed, and the accuracy of the CNN model based on attention mechanism is 17.8% and 14.77%
respectively. According to the comparison results of detection time of different algorithm models, it shows
that the detection time of CNN based on depth-invariant network, CNN based on real-time monocular
3D detection network, CNN based on non-maximum suppression, CNN based on multimodal informa-
tion and CNN based on real-time multimodal 3D are basically the same, all of which are 0.03s, and the de-
tection time of CNN model based on attention mechanism is 0.05s. It is slightly higher than other models.

Full-size DOI: 10.7717/peerjcs.1718/fig-14

to the CNN model within the depth-invariant network, which claims the second-best
performance. Under the medium and challenging difficulty levels, the accuracy ranking
among models remains consistent, with the CNN model incorporating an attention
mechanism, maintaining accuracy rates of 17.8% and 14.77%, respectively. Transitioning
to the assessment of detection times of various algorithmic models, it becomes evident
that CNN models predicated on depth-invariant networks, real-time monocular 3D
detection networks, non-maximum suppression, multimodal information, and real-time
multimodal 3D share nearly identical detection times of 0.03 s. Conversely, the CNN
model based on an attention mechanism slightly extends its detection time to 0.05 s. In
summary, the CNN model leveraging an attention mechanism exhibits superior detection
performance and higher accuracy in the context of IoT target image analysis. However,
as image complexity increases, the model’s accuracy experiences a corresponding decline.
Furthermore, a trade-off relationship exists between detection accuracy and processing
time, where algorithms achieving higher accuracy invariably incur extended processing
times.
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DISCUSSION
In this article, CNN algorithms are harnessed to tackle image recognition challenges within
the realm of the IoT. A spectrum of dynamic image object detection models is crafted,
encompassing diverse convolutional configurations, including nine-layer, seven-layer, and
residual module convolutional models. These models facilitate an extensive exploration of
performance across varying environmental complexities, spanning simple and significant
settings, complex and significant contexts, as well as microenvironments. An attention
mechanism is also introduced and seamlessly integrated into the CNN object detection
models, permitting performance assessments at multiple levels. The findings demonstrate
variations in computational complexity across distinct models. Particularly noteworthy,
CNN models enhanced with the attention mechanism exhibited superior object detection
accuracy while upholding lower computational complexity. This innovation accentuates
the critical role of methodology, model states, and attention mechanisms in the pursuit
of performance optimization. In contrast to prior research, this article introduces an
innovative solution that combines the CNN algorithm with an attention mechanism for
image object detection within the IoT domain. This integrated approach not only elevates
the accuracy of image object detection but also effectively mitigates the need for manual
identification, thereby offering a more intelligent and efficient method for dynamic image
object detection within IoT systems. It fully leverages the potent capabilities of CNN in
feature extraction. By constructing multiple dynamic image object detection models, this
article significantly enhances the accuracy and efficiency of image object detection. The
innovative contribution of this study resides in the proposal of a cutting-edge solution
that maximizes the potential of DL technology and attention mechanisms to augment the
accuracy and efficiency of image object detection within IoT systems. This article holds the
potential to drive advancements in the field and promote the application and innovation
of image object detection technology in IoT systems.

CONCLUSION
This article strives to enhance the accuracy and speed of image object detection while
fortifying the recognition capabilities of IoT systems. By leveraging the CNN algorithm
in DL, a range of dynamic image recognition models were established, encompassing
nine-layer, seven-layer, and residual module convolutional models. The article unveils
substantial performance disparities among these models within varying environments.
Notably, the residual CNN model showcases outstanding performance in complex micro-
environments, achieving remarkable accuracy and efficiency. Furthermore, CNN models
incorporating attention mechanisms demonstrate higher accuracy in IoT object image
detection, opening up new possibilities for the field. This article heralds a new direction for
optimizing and innovating image object detection technology. This article delves into the
intricacies of image object detection and optimizes it within the framework of DL in the
context of the IoT. This article bears substantial industrial significance, as the optimized
model significantly amplifies the accuracy and efficiency of object detection. Consequently,
this forms a robust foundation for automation and intelligence in various domains, such

Chen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1718 23/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1718


as smart surveillance, autonomous driving, and intelligent manufacturing. Moreover,
the incorporation of attention mechanisms contributes to the automatic detection of
objects, thus reducing manual identification costs and elevating operational efficiency.
This advancement positively impacts the application and proliferation of IoT technology,
propelling industrial innovation and augmenting overall production efficiency.

While this article has made significant strides in IoT image object detection, certain
limitations still exist. Firstly, the research scope is relatively constrained, as it did not
comprehensively encompass various types of CNN models and lacks a comprehensive
evaluation of other potential models. Future research should diversify the models, delving
into each model’s trade-off between accuracy and transmission speed to enhance object
detection performance more precisely. Secondly, despite the introduction of attention
mechanisms to improve object detection accuracy and efficiency, further research and
optimization of this mechanism are required to achieve better performance. Additionally,
future research could consider integrating other DL technologies to enhance image
object detection performance. In conclusion, this article provides pivotal innovations
and foundations for IoT image object detection. However, many avenues for future
development exist, including broader model exploration, further optimization of attention
mechanisms, and increased integration of DL technologies. Research in these areas will
continue to propel the practical application and development of artificial intelligence image
recognition technology in various domains.
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