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ABSTRACT
In this article, a novel method for removing atmospheric turbulence from a sequence
of turbulent images and restoring a high-quality image is presented. Turbulence is
modeled using two factors: the geometric transformation of pixel locations represents
the distortion, and the varying pixel brightness represents spatiotemporal varying
blur. The main framework of the proposed method involves the utilization of low-
rank matrix factorization, which achieves the modeling of both the geometric
transformation of pixels and the spatiotemporal varying blur through an iterative
process. In the proposed method, the initial step involves the selection of a subset of
images using the random sample consensus method. Subsequently, estimation of the
mixture of Gaussian noise parameters takes place. Following this, a window is chosen
around each pixel based on the entropy of the surrounding region. Within this
window, the transformation matrix is locally estimated. Lastly, by considering both
the noise and the estimated geometric transformations of the selected images, an
estimation of a low-rank matrix is conducted. This estimation process leads to the
production of a turbulence-free image. The experimental results were obtained from
both real and simulated datasets. These results demonstrated the efficacy of the
proposed method in mitigating substantial geometrical distortions. Furthermore, the
method showcased the ability to improve spatiotemporal varying blur and effectively
restore the details present in the original image.

Subjects Computer Vision, Data Mining and Machine Learning, Scientific Computing and
Simulation
Keywords Atmospheric turbulence, Distortion, Image restoration, Mixture of Gaussian,
Spatiotemporal varying blur, Transformation matrix

INTRODUCTION
Atmospheric turbulence arises as a result of temperature variations within the air. This
phenomenon can be observed on hot summer days with the movement of hot air masses
from an asphalt road. Moving hot air masses between cold air masses in an environment
gives rise to turbulence, evident in images captured under such weather conditions. This
turbulence is manifested by the simultaneous occurrence of geometric distortion and
blurring. The main underlying cause of this phenomenon is the variation of the refractive
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index of light within the air under varying conditions. The density of air, as the main cause
of the refractive index, changes depending on the amount of moisture in the air and its
temperature. Warmer and humid air has a lower density, resulting in a lower refractive
index compared to colder and drier air (Pernechele, 2005). Hence, the turbulence of images
increases with increasing thermal energy; however, aerosols such as steam, fog, dust, and so
on can also exert a substantial impact on image quality. Figure 1 shows an example of a
turbulence-free image and some examples of turbulent images captured from the identical
scene.

Since the quality of an image can greatly affect the final results of any image processing
algorithm, eliminating turbulence from images greases the wheels for higher accuracy.
Turbulence removal can be used in many applications, such as long-distance surveillance
applications concerning astronomy, the military, processing images transmitted from
drones, surveillance, and medical imaging.

Astronomical images captured from large optical telescopes frequently encounter
corruption due to the fluctuations in the refractive index within Earth’s atmosphere. For
the purpose of image analysis, one of the initial pre-processing stages involves the removal
of turbulence (Zhang, Zhao & Wang, 2011). In military applications, the utilization of
long-range images renders them susceptible to turbulence. These images can be aerial
images that are acquired from drones or land-to-land images. Consequently, the
implementation of a turbulence removal process becomes imperative (Arora & Singh,
2018).

In surveillance and security systems, adverse weather conditions such as rain, fog,
smoke, and haze can significantly undermine the clarity and efficacy of captured images.
Consequently, these systems necessitate the integration of a turbulence removal
mechanism to increase their accuracy (Arora & Singh, 2018). In the realm of medical
imaging technologies, such as computer tomography (CT), nuclear magnetic resonance
(NMR), and positron emission tomography (PET), the technique of image fusion is
employed to generate a unified image from multiple viewpoints.

During the fusion process, the occurrence of distortion and blurring results in a decline
in image quality. As a consequence, the implementation of turbulence removal can help
medical experts to make safe decisions (Arora & Singh, 2018). The previous methods for
removing turbulence from a set of images can be divided into three main categories:

In the first category of these methods, individual processing is performed on each image
within the turbulent image set, with the application of the deblurring process. The second
category employs a two-stage approach involving image selection (lucky frame and lucky
region) and subsequent image composition. In these methods, the selection is based on
criteria such as sharpness, and then images are combined using techniques like kernel
regression and PCA. Ultimately, within the third category, the initial step involves
generating a reference image from the input images. Subsequently, each input image is
registered with this reference image. At this juncture, the registration process can involve
either all the input images or a subset of pre-selected images. The registered images are
merged to yield a singular composite image. Subsequently, the ultimate image is generated
by subjecting the image from the preceding step to a deconvolution process. The
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subsequent list showcases some of the cutting-edge methods introduced within this
domain.

Li, Mersereau & Simske (2007) employed the PCAmethod to conduct deconvolution on
multi-channel input images. This approach overlooks phase data and filters out high
frequencies, potentially leading to the restoration a few local textures. Aubailly et al. (2009)
introduced a localized variation of the lucky frame technique, termed the lucky region. In
this method, an image quality map is initially generated for each turbulent image. These
maps are constructed based on a local sharpness metric. Subsequently, in each stage, the
image quality map is compared with the fused image to select the optimal local quality
(lucky region). Ultimately, this selected region is merged with the corresponding region of
the fused image up to this stage. A primary challenge associated with this method lies in its
substantial reliance on the lighting conditions of the images. Additionally, determining the
composition parameters proves to be a complex endeavor.

Lau, Lai & Lui (2019a) devised a method for swiftly generating a high-quality image,
devoid of the need for image registration. They achieved this through the utilization of a
variational model and an appropriate energy function. This energy function incorporates a
specific term designed to quantify the level of disparity between the extracted and
subsampled images.

Oreifej et al. (2011) presented a two-step approach wherein the initial step involves
computing the temporal average of the image sequence through an iterative procedure. In
the subsequent step, the approach focuses on minimizing sparse errors, thereby effectively
reducing noise, accomplished through rank minimization.

Mao & Gilles (2012) employed optical flow to estimate distortion and employed a non-
local total variational model to mitigate blurring. Zhu & Milanfar (2012) produced a
reference image by averaging a sequence of images. The non-rigid image registration was
then applied individually to each image. The sequence of registered images was partitioned
into overlapping patches with the local sharpness of each patch being evaluated based on
its brightness variance. Subsequently, they employed temporal kernel regression to
determine the ultimate selection of image patches. Ultimately, the blind deconvolution
algorithm was implemented to alleviate image blur. This method had its limitations,
including the reliance on the average sequence of images during the registration phase,

Figure 1 Demonstration of turbulent images caused by atmospheric interventions. (A) Turbulence-free image. (B–E) Some examples of tur-
bulent images caused by atmospheric interventions. Photo credit: Chiman Kwan. Full-size DOI: 10.7717/peerj-cs.1713/fig-1
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which could potentially impact accuracy. Furthermore, it lacked the capability to rectify
any registration errors that might emerge in the subsequent stages of processing.

Meinhardt-Llopis & Micheli (2014) initially extracted the modified parts of each pair of
images using optical flow, and each part was wrapped with the mean vector of the
corresponding part, yielding a new central image for every individual image. Ultimately,
the resultant average image was employed as the reference image.

Xu et al. (2019) used low-rank matrix factorization (LRMF) (Meng & De La Torre, 2013)
for detecting a moving object in a turbulent environmental setting. Their approach
involved background subtraction from the images through LRMF. Following this,
employing a pipeline method (Wang, Inigo &McVey, 1990), they proceeded to identify the
moving object within the residual foreground.

Lau, Lai & Lui (2019b) made a sharp reference image from a sequence of images by
formulation of a pertinent energy function. Additionally, they generated a new image
sequence from the same set of images by aligning regions that were nearly sharp and
exhibited minimal distortion.

Subsequently, employing this novel image sequence alongside the reference image, they
applied the quasiconformal map and robust principal component analysis (RPCA) to the
image registration procedure. Following successful image registration, they proceeded with
the task of deblurring the lower rank regions of the images, accomplished through blind
deconvolution. Ultimately, through the amalgamation of these processed images, the final
image was generated. Xie et al. (2016) initially generated a high-quality reference image
characterized by high sharpness and minimal noise. They achieved this through the
utilization of low-rank decomposition. Subsequently, they engaged in a recursive
optimization process for refining the reference image, utilizing a variational model. This
model encompassed both local and non-local regularization elements, which significantly
aided the image registration process. In the subsequent step, they used spatial-temporal
kernel regression to produce a new image characterized by minimal blur. Ultimately, in the
concluding step, the final output was generated using space-invariant blind deconvolution.
Lou et al. (2013) employed a combined approach involving Sobolev gradient and Laplacian
methods to remove turbulence. The Sobolev gradient was employed to eliminate blurriness
from the images, while the Laplacian method rectified distortions. Essentially, they curbed
oscillations while enhancing image sharpness. Subsequently, they applied the lucky frame
method to yield the high-quality image. Zhang et al. (2018) introduced a novel turbulence
removal framework termed complex steerable pyramid (CSP). Initially, they decomposed
the incoming turbulent images through CSP, and subsequently computed an averaged
reference image from the decomposed phase images. Employing the disparity between the
phase of the current image and that of the reference image, they endeavored to minimize
distortions. Deblurring was carried out through incorporation of local energy and
displacement information, alongside CSP reconstruction that merged phase and amplitude
information. Eventually, the final image was obtained using blind deconvolution.

Mao, Chimitt & Chan (2020) remove turbulence effects in three steps. Initially, they
employ a non-local space-time averaging technique to construct a reference frame that
retains moving objects. Subsequently, they generate a lucky frame using sharpness and
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consistency metrics. The sharpness metric identifies the sharpest patches, while the
consistency metric eliminates residual jittering pixels stemming from the prior stage. Due
to the presence of space-time varying blur within input frames and blurring artifacts
introduced by previous processes, the ultimate step entails the utilization of blind
deconvolution. Chak, Lau & Lui (2021) proposed the Wasserstein Generative Adversarial
Network (WGAN) for atmospheric turbulence removal. The use of the l1 norm as the cost
function in GAN contributes to the preservation of essential textures within the restored
image. A data augmentation step was incorporated as preprocessing by them to counter
data scarcity. Additionally, the employment of a subsampling process resulted in enhanced
and more accurate results for their proposed method.Hua et al. (2020) introduced a three-
step methodology. The initial stage encompassed subsampling and reference image
generation processes. Within this stage, two distinct and independent segments were
employed to evaluate the degree of sharpness and geometric distortion. Subsequently, the
non-rigid image registration technique was harnessed in the second stage to reduce
geometric distortions. This step encompassed registering the sequences of sharply selected
images from the initial stage to the reference image, achieved through estimation of
deformation vectors. In the concluding stage, they sharpened the final image using the
blind deconvolution method.

In the proposed method, the turbulence is modeled as

xjk ¼ DðH fð ÞÞjk þ ejk (1)

In this equation, x denotes a turbulent image, while, k and j represent the pixel’s
position. H signifies the blurring operator, D corresponds to the geometric distortion
operator, ε represents the sensor’s noise, and f stands for the original image.

This article introduces a novel approach for turbulence removal within a sequence of
images.

This approach effectively removes severe distortions and yields an image with
prominently restored details. Unlike prior methodologies reliant on reference images and
image registration for turbulence removal, this article presents a new framework that uses
the concept of low-rank matrix factorization to remove turbulence. To achieve this
objective, the modeling of geometric distortion and spatiotemporal varying blur is
undertaken using the transformation matrix and mixture of Gaussian noise, respectively,
during the computation of the low-rank matrix. Consequently, the calculation of the low-
rank matrix encompasses two integral components: the estimation of blur, executed
through the expectation-maximization (EM) method (Dempster, Laird & Rubin, 1977),
and the estimation of distortion, accomplished via transformation matrix estimation.
Within this approach, the initial step involves the adoption of the random sample
consensus (RANSAC) method (Fischler & Bolles, 1981) to select a subset of optimal
turbulent images from the turbulent images. Following this, parameters related to
spatiotemporal varying blur, which are modeled as MOG (mixture of Gaussian) noise, are
estimated through the EM method. The distortion in this method is modeled as the
geometric transformation per pixel. Subsequently, in order to determine this
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transformation, a region is selected around each pixel. The size of this region is adaptive
and is computed according to the entropy of the respective region. Based on the region’s
entropy. Computation of the transformation matrix for each pixel—owing to the fact that
distortions on image pixels stem from a finite collection of transformations—the totality of
these transformations is modeled as a mixture of Gaussian (MOG) distribution.
Consequently, the mean value of each Gaussian model is adopted as the corresponding
transformation for that specific pixel. Then, the transformations are applied to each pixel,
and through the utilization of the low-rank matrix factorization method, the collection of
resulting images is decomposed. The ultimate image sets are acquired by multiplying the
two components yielded from the decomposition process. Subsequently, through
averaging the final image sets, the turbulence-free image is restored. Experimental results
underline the effectiveness of the proposed method in reducing distortion and
spatiotemporal varying blur. So, in a nutshell, the key contributions of the proposed
method can be succinctly outlined as follows:

� Modeling turbulence through low-rank matrix factorization as the composition of
geometrical distortion and spatiotemporal varying blur.

� Employing RANSAC for the selection of images exhibiting analogous turbulence
models.

The remainder of this article is structured as follows: The initial section provides a
detailed description of the proposed method. Subsequently, the subsequent section delves
into the presentation of experiments, their outcomes, and comparative analyses with
alternative turbulence removal algorithms. The ultimate section provides the conclusion.
Also, a list of all the variables and symbols utilized within this article is presented in
Table S1.

PROPOSED METHOD
In this article, the challenge of turbulence removal is modeled as a low-rank matrix
factorization problem, in which the distortion and spatiotemporal varying blur are
respectively modeled as a per-pixel transformation operator denoted as τ and a mixture of
Gaussian noise. By employing this model, the turbulence-free image can be restored
through the dual processes of noise elimination and the estimation of geometric
transformations for each pixel. This section expounds upon the comprehensive procedure
of the proposed method.

The initial subsection encompasses the discussion of the low-rank matrix factorization
(LRMF) technique, which constitutes the crux of the proposed method. This technique is
employed to decomposed input image sets, employing both expectation-maximization
(EM) and weighted alternating least squares (WALS) methods for the estimation of
parameters. Subsequently, the distortion model is referred to, describing how to obtain the
transformation matrix of each pixel. The following subsection explains how to use the
RANSAC method to select the most suitable set of images from the input images.
Ultimately, the overall process of the proposed method is expounded upon in
comprehensive detail.
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LRMF
Consider X ¼ x1; . . . ; xn½ � 2 Rd�n representing a sequence of turbulent images. Here, n
stands for the number of images and d signifies the dimension of each turbulent image,
with each image expressed as a vector. The input dataset can be decomposed into

X ¼ UVT , where U is the basis matrix and V is the coefficient matrix (Yong et al., 2017).
Consequently, each element within the input matrix X can be modeled as follows:

xij ¼ ui v
T
j þ eij (2)

where ui and vj represent the ith and jth row vectors, respectively, of matricesU and V. The
term eij corresponds to the noise within the jth pixel of the ith turbulent image. This noise
is the spatiotemporal varying blur inherent in turbulence images that is modeled as a
Mixture of Gaussians (MOG).

Hence, the noise can be formulated as follows:

eij �
XK

k¼1
pk N 0; r2k

� �
(3)

where N 0; r2k
� �

denotes a Gaussian distribution with zero mean and r2 variance and pk
signifies the mixing proportion of the MOG. By merging Eqs. (2) and (3), the following
relationship is established:

xij �
XK

k¼1
pkNðxijjuivTj ;r2kÞ (4)

Subsequently, by considering (Eq. (5)) as a cost function and finding its maximum
value, the estimations for the Gaussian noise parameters (Π, Σ) and the low-rank matrices
U and V are determined. To find the maximum value of Eq. (5), the EM method is
employed, as elaborated upon in the subsequent section.

max
U ;V;�; �

L U ;V;�; �ð Þ ¼ max
X

i;j
log
XK

k¼1
pk NðxijjuivTj ;r2kÞ (5)

where � ¼ p1;p2; . . . ; pKf g; and � ¼ r1;r2; . . . ; rKf g.

Estimation of LRMF model parameters using the EM method
Equation (5) can be solved through the utilization of the EM method. This iterative
technique computes the parameters of Eq. (5) in two steps: the Expectation (E) step and
the Maximization (M) step.

E step: Let zijk 2 0; 1f g P
k zijk ¼ 1

� �
: zijk takes the value of one (zijk ¼ 1) if the eij noise

is generated by the kth Gaussian distribution. If not, it equals zero (zijk ¼ 0). So, the
probability of the partial membership of the noise of data xij (eij) to the kth Gaussian model
can be formulated as follows:

E zijk
� � ¼ cijk ¼

pkNðxijjuivTj ;r2kÞPK
k¼1 pkNðxijjuivTj ;r2kÞ

(6)
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M step 1 (updatingΠ, Σ): To estimate the MOG parameters, includingΠ and Σ, Eq. (5)
is reformulated as follows:

pðX;ZjU ;V;�;�Þ ¼
Y

i;j

XK

k¼1
pkNðxijjuivTj ;r2kÞ
h izijk

(7)

Recall that zijk is equal to one if xij is generated by the kth Gaussian model; otherwise, it
is zero.

Now, as shown in Eqs. (8) and (9), through maximizing the logarithm of Eq. (7), the
parameters Π and Σ can be estimated, as presented in Eq. (10).

L X;ZjU ;V;�;�ð Þ ¼
X
i;j

XK

k¼1
zijkðlogpk � log

ffiffiffiffiffi
2p

p
rk �

ðxij � uivTj Þ2
2r2k

Þ (8)

EzL X;ZjU ;V;�;�ð Þ ¼
X
i;j

XK

k¼1
EðzijkÞðlogpk � log

ffiffiffiffiffi
2p

p
rk �

ðxij � uivTj Þ2
2r2k

¼
X
i;j

XK

k¼1
cijk logpk � log

ffiffiffiffiffi
2p

p
rk �

ðxij � uivTj Þ2
2r2k

 !
(9)

pk ¼ NkPK
k¼1 Nk

; r2k ¼
1
Nk

X
i;j
cijk xij � uiv

T
j

� �2
(10)

where Nk ¼
P

i;j cijk.

M step 2 (updating U, V): Employing the acquired estimations for the parameters Π
and Σ, the values of U and V are determined through the employment of the Weighted
Alternating Least Squares (WALS) method (Pan et al., 2008), which is described in the
subsequent subsection.

Hence, the general procedure for estimating the low-rank matrices U and V involves the
initial random initialization of the Π, Σ, and V matrices. Subsequently, by employing the
EM steps and updating the U and V matrices using Eqs. (15) and (16) respectively, the
process continues until the convergence criterion is satisfied (Pan et al., 2008).

Weighted alternating least squares (WALS)
Consider X¼ x1; x2; . . . ; xn½ � 2 Rd�n as the data matrix, andW¼ w1;w2; . . . ;wn½ � 2 Rd�n

as the matrix of non-negative weights. These weights are computed based on the estimated

noise values for each pixel, and they are formulated asW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1

cijk
2pr2k

r
. A higher weight

wij indicates that the data xij has a more influence on the generation of the restored image.

As demonstrated in the aforementioned equation, a greater value of cijk implies an
increased likelihood of partial membership of the data xij within the kth Gaussian model.
Consequently, the weight assigned to this data also rises. The weighted low-rank matrix
approximation of matrix X is computed by minimizing the subsequent function:

L Yð Þ ¼ jjW � X � Yð Þjj2F (11)
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where jj:jj2F signifies the Frobenius norm and � represents the Hadamard product. Let’s
assume that the matrix Y, comprising turbulence-free images, can be decomposed into two
lower-rank U and V matrices (r � min n; dð Þ): Y ¼ UVT . Consequently, Eq. (11) can be
reformulated as follows:

L U ;Vð Þ ¼
X

ij
wij � Xij � UiV

T
j

� ���� ������ ���2
F

(12)

To avoid overfitting, by adding new terms, Eq. (12) becomes the following:

L U ;Vð Þ ¼
X

ij
wij � Xij � UiV

T
j

� ���� ������ ���2
F
þk wij � Ui

�� ���� ��2
F
þ wij � Vj

�� ���� ��2
F

� �
(13)

Here, λ represent regularization parameter. By assuming V as a constant and solving the

equation
1
2
@L U ;Vð Þ

@Ui
¼ 0, the estimation of U is accomplished, as illustrated in Eq. (15):

1
2
@L U;Vð Þ

@Ui
¼ Ui VTdiag wið ÞV þ k

X
j
wij

� �
I

� �
� xidiag wið ÞV (14)

ui ¼ xidiag wið ÞV VTdiag wið ÞV þ k
X

j
wij

� �
I

� ��1
; 1 	 i 	 d (15)

Here diag wið Þ 2 Rn�n denotes a diagonal matrix with elements wi and I represents an
identity matrix with dimensions r � r.

By performing the same procedure, the value of V can also be calculated as follows:

vj ¼ xTj diag wj
� �

U UTdiag wj
� �

U þ k
X

i
wij

� �
I

� ��1
; 1 	 j 	 n (16)

Algorithm 1 outlines the pseudo-code for parameter estimation using the LRMF
method.

Since the count of Gaussian models has a significant impact on both the convergence
speed and the accuracy of the algorithm, the determination of the count for these models
was conducted in an adaptive manner.

As stated inMeng & De La Torre (2013), the process commences with the initialization
of the count of Gaussian models, set at a value suitable for modeling the noise distribution
(denoted asMaxk). Subsequent to each iteration of the EM algorithm, the distance between
each pair of Gaussian distributions is computed employing the Kullback-Leibler (KL)
divergence technique. If the distance between the two Gaussian models falls below the pre-
established threshold, these models are regarded as similar, prompting their
amalgamation. Given that the mean value of the Gaussian distributions utilized for noise
modeling is consistently taken as zero, the amalgamation of Gaussian models necessitates
the computation solely of the standard deviation and the mixing proportion for the
resultant hybrid Gaussian model.
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Distortion model
Alongside inducing spatiotemporal varying blur, turbulence also introduces image
distortion. Distortion encompasses abrupt shifts in the signal that lead to its degradation.
Distortions in turbulent images emerge when the pixel displacement within the local
vicinity can be modeled as a geometric transformation. Determining the optimal
alignment for each pixel reduces distortion and strives to minimize the rank of the
transformed image. With regard to the transformed image, the optimization equation for
LRMF is presented as follows:

min
U;V

W � x 
 s� UVT
� ��� ���� ��

F
(17)

As x 
 s involves a nonlinear operation, it is very difficult to optimize it within the same
formulation. However, considering the slight changes in τ, by linearizing (Eq. (17)), the
iterative estimation of τ becomes feasible, as delineated in Eq. (18).

X 
 sþ Dsð Þ ’ X 
 sþ
Xn

i¼1
JiDsi (18)

where Ji represents the Jacobian matrix corresponding to the ith image with respect to the
transformation parameters si:

Ji ¼
@

@e
ðxi 
 eÞ=e¼ti

(19)

Algorithm 1 MOG algorithm for LRMF.

input: X ¼ ðx1; x2; . . . xnÞ 2 Rd�n

Randomly initialize �;�;V

repeat

E Stepð Þ: Evaluate cijk for i ¼ 1; . . . :; n; j ¼ 1; . . . ; d; k ¼ 1; . . . ;Maxk by Eq. (6)

M Step for �;�ð Þ: Evaluate pk; r2k for k ¼ 1; . . . ;Maxk by Eq. (10)

M Step for U;Vð Þ: Evaluate U ;V by solving min
U;V

kW � X � UVTð Þk2F

through WALS where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPMaxk

k¼1

cijk
2pr2k

r
for i ¼ 1; . . . :; d; j ¼ 1; . . . ; n

Automatic Maxk tuningð Þ: If KL N li; r
2
i

� �
;N lj; r

2
j

� �� �
< e for some

i; j; then combine ith; jth gaussian component into a unique

gaussian by letting pi ¼ pi þ pj; r2i ¼ pir2i þ pjr2j

� �
= pi þ pj
� �

li ¼
pili þ pjlj
pi þ pj

removing the jthgaussian from �;�: let Maxk ¼ Maxk � 1

until meet the stop criteria

return U, V
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The Robust Alignment by Sparse and Low-rank decomposition (RASL) method (Peng
et al., 2012) has demonstrated the robustness of this approximation in cases of linearly
correlated images, even in the presence of drastic variations in brightness and occlusion.
Considering Eq. (19), the modification of the optimization function (Eq. (17)) for the ith

image transpires as follows:

min
U;V

Wi � xi 
 si þ JiDsi � UVT
i

� ��� ���� ��
F

(20)

where Vi ; and Wi denote the ith columns of matrices V andW, respectively, pertaining to
the ith image (xi). With the known values of U and V, the cost function is established in Eq.
(21) to estimate the transformation matrix:

min
Ds

ej jj j1; e ¼ xi 
 si þ JiDsi � UVT
i (21)

As Eq. (21) is a variation of the least absolute deviation problem, it can be effectively
solved using the Alternating Direction Method of Multipliers (ADMM) method (Boyd,
Parikh & Chu, 2011).

Subsequently, by formulating the Lagrangian function as Eq. (22) and incorporating the
input values of U ;Vi; ti ; and Ji, the optimal value of DsPþ1 is computed utilizing the
ADMM approach by Eq. (23):

L U ;V; e;Ds; kð Þ ¼ ej jj j1 þ kTh e;Dsð Þ þ l
2

h e;Dsð Þj jj j22 (22)

where h e;Dsð Þ ¼ UVT
i þ e� xi 
 si � JiDsi.

DsPþ1 ¼ JiJ
T
i

� ��1
JTi UVT

i þ eP � xi 
 si þ 1
lP

kP
� 	

(23)

where ePþ1 ¼ S 1
lP

xi 
 si þ JiDsPþ1
i � UVT

i � 1
lP

kP
� 	

, kPþ1 ¼ kP þ lPh ePþ1;DsPþ1
i

� �
,

and lPþ1 ¼ qlP.
In these equations, S 1

lP
stands for the elementwise soft thresholding operator (as

described in Boyd, Boyd & Vandenberghe (2004)). Here, q > 1 signifies the penalty value
that increases the μ value in the ascending order, and P denotes the step within the ADMM
algorithm. The overall procedure of this estimation is depicted in Algorithm 2.

As previously mentioned, the task entails determining the locally optimal
transformation matrix for every pixel. Thus, for each image pixel, a 3 × 3 transformation
matrix needs to be identified to effectively model the distortions. Rather than focusing on
the transformation of individual pixels, it is feasible to model the transformation of a
window encompassing the pixel at its center. After the application of the transformation
matrix to each window, the value of each transformed pixel (xi 
 ti) within the ith image
corresponds to the median value across all windows containing that pixel.

To achieve this goal, the sliding windows approach is employed. The dimensions of each
window is adaptive depending on the entropy of the window. Initially, the window’s size is
set to the minimum size Wmin and it expands until its entropy becomes lower than a
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percent (0 < a < 1) of the image’s entropy. The maximum size allowed for windows is
Wmax. Wmin; Wmax and a constitute the free parameters of the proposed method. Since
higher entropy in the image indicates more intricate details, lower entropy (signifying
image smoothness) results in greater uncertainty when calculating the transformation
matrix. Thus, if the window’s size is expanded to the maximum permissible extent without
surpassing α percent of the overall image entropy, the calculation of the transformation
matrix for that window is skipped. Instead, its value is approximated using the
transformation matrix from neighboring windows. Despite distortion implying abrupt
shifts in pixel positions, these changes cannot be very drastic. Consequently, a mechanism
must be considered for removing transformation matrices that yield substantial pixel
displacements. To address this, the mean and variance of all estimated Dsi matrices are
calculated. Those matrices exceeding a threshold of β percent, in terms of their distance
from the mean value, relative to the total variance, are designated as outliers. Subsequently,
pixels with the Dsi matrix that are identified as outliers (pixels with a window size equal to
Wmax and those with a Dsi matrix with a drastic value) are assigned the mean value of Dsi
matrices from neighboring pixels. Ultimately, the transformation matrix for each window
is determined by accumulating the estimated Dsi values from different iterations.
(skþ1

i ¼ Dsi þ ski ).
Given that the distortion affecting pixels arises from a limited range of distinct

transformations, a MOG model is computed using the estimated transformation matrices.
This MOG model serves as a representation of all the distortions affecting image pixels.
Employing the computed MOG, the final transformation matrix for each window is

Algorithm 2 ADMM for estimate Ds.

input: U;V ; x; s

initialization: e1 ¼ 0;Ds1 ¼ 0; k1 ¼ 0; l ¼ 1

Cache Q ¼ JT Jð Þ�1
JT

for p ¼ 1:a do

update Ds: Dspþ1 ¼ Q UVT
i þ eT � xi 
 si þ 1

l k
P

� �

update e: epþ1 ¼ S 1
lP

xi 
 si þ JiDspþ1 � UVT
i � 1

l
kP

� 	

update k: kpþ1 ¼ kp þ lh epþ1;Dspþ1ð Þ
update l: l ¼ ql

if h epþ1;Dspþ1ð Þjj2 	 etollerance then
����
converge and break the loop

end if

end for

return Ds� ¼ Dspþ1
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established as the mean value of the Gaussian model, with the transformation matrix of
that window being a member of said Gaussian model.

As a reminder, similar to the adaptive determination of the number of Gaussian models
for noise (as outlined in Algorithm 1), the number of Gaussian models for distortions is
also computed adaptively using the same approach. The comprehensive process of
distortion removal is presented in Algorithm 3.

Selecting a subset of images using the RANdom SAmple Consensus
(RANSAC) method
Turbulent images can exhibit varying degrees of distortion and blurring due to different
conditions and intensities. Consequently, identifying and excluding images that exhibit
distinct turbulence patterns can lead to improved outcomes. The RANSAC method is
employed within the proposed approach to achieve this objective (refer to Algorithm 4).
To accomplish this, a subset of m images m � nð Þ ) is randomly selected, and the
proposed method (as described in Algorithm 5) is applied to this subset, yielding a restored
image (denoted as r1). Subsequently, each of the remaining images is processed using
Algorithm 5 along with the initial set ofm images. This leads to the generation of an output
matrix R ¼ UVT ; containing mþ 1 images. Instead of averaging the images, the

mþ 1ð Þth image is selected as the final image for the process.
By utilizing cross-correlation, the similarity between the restored image (r1) and the

mþ 1ð Þth image is calculated, denoted as C1. Similarly, the distances between two noise
distributions of the m images and the mþ 1 images and two transformation matrix
distributions sð Þ of the m images and the mþ 1 images are computed using the Kullback-
Leibler (KL) divergence. These are respectively termed C2 and C3.

If the weighted average of these three criteria (C1, C2, and C3) falls below a
predetermined threshold, this image is regarded as a member of the support set of the
initial m images. The procedure for calculating the KL divergence between two MOG
distributions is elaborated in Appendix A.

This process is iterated multiple times, and in the end, the m images with the largest
support set are selected. The selected m images and their associated support set are
combined to create the new subset. The final restored image is obtained by applying the
proposed method to this refined subset. In this process, the excluded images are the ones
that have different turbulence characteristics compared to the others. It is important to
note that the excluded images may not necessarily have lower turbulence than those that
were not selected. Nonetheless, due to the fact that the selected images have the same
conditions compared to each other, empirical evidence indicates that the proposed method
efficiently estimates the blur and distortion characteristics within this subset, leading to an
improved output.

Overall procedure
As stated, the turbulence present in the images is modeled as being influenced by two
distinct factors: distortion, characterized by geometric transformations that alter pixel
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positions, and spatiotemporal varying blur, which leads to variations in pixel brightness
values.

Taking into account the methodologies discussed in the LRMF and distortion model
sections, the comprehensive procedure of the proposed approach for removing turbulence
in a collection of images captured from a single scene can be outlined as follows:

To begin, employ the RANSAC method as detailed in the selecting a subset of images
using the RANSAC method section to identify the most suitable subset of input images.
Then calculate the R matrix using optimization described by Eq. (17), which is the main
optimization function of the proposed method, where R ¼ UVT is the set of final images.
Since the proposed procedure effectively eliminates turbulence, the R matrix includes n
images by minimal turbulence. Consequently, a straightforward averaging of these n
images yields the turbulence-free image (reference image). The estimation of both the U
and V matrices entails an iterative methodology based on the process elucidated in the
LRMF section. Nonetheless, due to the inherently nonlinear character of calculating the

Algorithm 3 Removing distortion from image.

input: x;U;V ; s

extract subregion of image x using sliding windows based on the entropy of each

pixel as fj ; j ¼ 1; . . . ; d

for each fj:

if fj satisfy entropy carcumestion

calculate Dsj using Algorithm 2

else

set Dsj as outlier

end if

end for

using variance and average of all Dsj to detect outlier ones

for each fj:

if Dsj is outlier

calculate Dsj using Ds matrix of neighboring windows

end if

end for

sj ¼ sj þ Dsj

estimate MOG using sj and assign mean of MOG models to each windows

for each pixel index j in x

L = set of all jth pixel exist in all transformed windows

jth pixel of x 
 s = median(L)

end for

return x 
 s
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x 
 s transformation, as expounded in the distortion model section, the transformation is
executed iteratively by estimating Δτ values. Consequently, to integrate these two iterative
procedures, the previously outlined steps are executed concurrently. At the initiation of the
procedure, all pixel transformation matrices are initially set as identity matrices
(8i si ¼ I). Subsequently, the algorithm commences with an iteration of Algorithm 1 (as
detailed in the LRMF section) to estimate the values of Vk and Uk (with k representing
the current iteration step of the algorithm). To achieve this, the initial step involves
estimating the parameters of the MOG. Following this, the weights needed for the WALS
method are calculated based on these parameters. Subsequently, utilizing the calculated

Algorithm 4 RANSAC method to best subset image selection.

input: X ¼ ½x1; x2; . . . ; xn�
Initialization: r1 as restored image by averaging on m restored images, r2 as ðmþ 1Þth restored image

for k = 1:C

select mi images randomly

for l ¼ 1:n�m

calculate r1: apply Algorithm 5 on mi images

calculate r2: apply Algorithm 5 on mi images in addition to each remaining image fgj ¼ 1; . . . ; n�mg
calculate C1j: calculate similarity of r1 and r2 images using cross correlation

calculate C2j: calculate noise distribution distance of m and m + 1 image sets using KL divergence

calculate C3j: calculate transformation distribution distance of m and m + 1 image sets using KL divergence

add gi image to support set of mi images if weighted average of C1j;C2j;C3j is less than predefined threshold

end for

end for

select fmi ¼ 1; . . . ;Cg that have largest support set as m* and related support set as s*

return fm� þ s�g

Algorithm 5 Calculating low rank matrix using LRMF method.

input: X ¼ ½x1; x2; . . . ; xn�
initilization : xi 
 s1i ¼ xi ; random initilization V1;�1;�1

repeat:

step 1: estimate U, V

use Algorithm 1 to estimate Ukþ1;Vkþ1;�kþ1;�kþ1 based on Uk;Vk;�k;�k; xi 
 ski
step 2: estimate s

use Algorithm 3 to estimate xi 
 skþ1
i based on Ukþ1;Vkþ1

until meet the stop criteria

return R� ¼ Ukþ1Vkþ1T

Jafaei et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1713 15/29

http://dx.doi.org/10.7717/peerj-cs.1713
https://peerj.com/computer-science/


Vk and Uk values obtained through the WALS method (as described in the LRMF
section), the second step is executed. This involves computing Δτ for all images in
accordance with Algorithm 2 (elaborated upon in the distortion model section), and
subsequently generating xi 
 ski (the transformed image in the kthstep). The algorithm’s
detailed steps are presented in Algorithm 3. After this, the previously described procedure
is repeated, and the U and V matrices are updated using the calculated xi 
 ski values. This
iterative process continues until the predetermined stopping condition is met. The
complete procedure is visually depicted in Fig. 2. The main part of the proposed method is
the calculation of the low rank matrix, which is shown by the green box in the mentioned
figure. A detailed algorithmic representation of this part is provided in Algorithm 5.

EXPERIMENTS AND RESULTS
In this section, we conduct experiments to evaluate the performance of the proposed
method on both simulated and real datasets. The obtained results are then compared with
the performance of several existing algorithms, namely Two-Stage (Oreifej et al., 2011),
BNLTV (Mao & Gilles, 2012), NDL (Zhu & Milanfar, 2012), HVDKR (Xie et al., 2016),
SGL (Lou et al., 2013), Centroid (Meinhardt-Llopis & Micheli, 2014), RPCA (Lau, Lai &
Lui, 2019b), JSUB (Lau, Lai & Lui, 2019a), PCA-Based (Li, Mersereau & Simske, 2007),
Lucky-Region (Aubailly et al., 2009), and UCSPF (Zhang et al., 2018). For this purpose, in
this section, first, the datasets that were utilized for the experiments, are introduced.
Subsequently, we evaluate the proposed method’s performance on these datasets and
conduct a comparative analysis of the results with the aforementioned algorithms.

Datasets
The evaluation of the proposed method encompasses both simulated and real datasets. The
real datasets consist of the Chimney, Building, Moon-surface, and Water-tower sets, each
of which includes corresponding ground truth images (Zhu &Milanfar, 2012). Meanwhile,
the simulated datasets encompass the Car-front (Lau, Lai & Lui, 2019a) and Road (Lau,
Lai & Lui, 2019a) sets. The simulated dataset is generated using two distinct approaches.
The first method involves warping through a Gaussian deformation vector and
introducing blurring through Gaussian noise. This dataset is referred to as the Gaussian
simulated dataset. The second approach employs inter-modal and spatially correlated
Zernike coefficients (Chimitt & Chan, 2020). This dataset is referred to as the Zernike
simulated dataset. Further comprehensive information about these datasets is available in
Appendix B.

Criterion for comparison of algorithms
In this article, the two criteria of PSNR (peak signal-to-noise ratio) and SSIM (structural
similarity index) are used to evaluate the proposed method. The PSNR criterion uses the
root mean square error between two images. Larger PSNR values indicate greater similarity
between images. Unlike PSNR, which uses error estimation, SSIM is a perception-based
approach that incorporates important perceptual information such as structure and
contrast.
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The value of SSIM is in the range of [0, 1] and equals one if the two images are exactly
equal.

Free parameters and implementation details
The proposed method involves thirteen free parameters, which can be fine-tuned by
experts and users who utilize the method. The specific values of these parameters,
employed in all experiments within this section, are presented in Table 1. The free
parameters can be classified into six distinct groups. The first group encompasses the
convergence criteria of the EM method. This parameter involves a trade-off between
runtime and algorithm accuracy. Given that turbulence removal is not a real-time
computation but rather an offline problem, the chosen value strikes a balance between
achieving satisfactory accuracy and ensuring a reasonable runtime. The intention is to

Figure 2 Overall procedure of proposed method. Full-size DOI: 10.7717/peerj-cs.1713/fig-2
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avoid an excessively stringent threshold that could lead to impractical computation times
while still maintaining attainable levels of accuracy. The second group of parameters
pertains to the calculation of Ds matrices and includes a, Wmin; and Wmax;, which are
utilized in determining the size of the sliding window. Additionally, β is employed to
identify outlier Δτ. These parameter values were chosen through a process of trial and
error, involving thorough examination of the datasets. It is important to note that the value
of Wmin should be chosen small enough to encompass local transformation information,
while Wmax should not be too large, as it might include a substantial portion of the image,
causing the estimated transformation to become out of locality. The third group of free
parameters is used to determine the optimal value of Δτ through the ADMMmethod. This
group comprises parameters q and etolerance with their values set to the ones according to
the recommendations of He et al. (2014). The fourth group of free parameters pertains to
the number of MOG models used in noise and distortion estimation. This group
encompasses the maximum number of models and the threshold for model integration,
determined through a trial-and-error process. When selecting the value of the integration
threshold, ensure that it is not too small, which would preserve similar models, and not
excessively large, as it might lead to the merging of dissimilar models. The fifth group of
free parameters encompasses the RANSAC parameters: the parameter m represents the
minimum number of images required for the algorithm to function accurately. Through
the examination of the datasets, it has been determined that the proposed method can
effectively remove turbulence with a set of 25 images. Therefore, the parameterm has been
set to 25. Within this group, a threshold value is defined for the purpose of identifying the
support set. If the weighted mean of the three criteria introduced in selecting a subset of

Table 1 Free parameters of the proposed method and their values, which have been used in all experiments.

Value Parameter name Parameter group

MaxIter ¼ 40 Number of iterations EM convergence criteria (Algorithm 4)

a ¼ 0:56 The ratio of entropy of each window w.r.t. the
entropy of the whole image

Calculation of Dt

Wmin ¼ max 7;
1
20

min width; heightð Þ
� 	

Minimum size of sliding window

Wmax ¼ max 19;
1
8
min width; heightð Þ

� 	
Maximum size of sliding window

b ¼ 1:3 Coefficient of selecting outlier transformation matrix

q ¼ 2 Penalty amount Finding the optimal value of Δτ by the
ADMM methodetollerance ¼ 10�7 Threshold of determination of convergence condition

e ¼ 0:15 Merge threshold Number of MOG models in estimating
distortion and noiseMaxk ¼ 10 Number of primary Gaussian models

m ¼ 25 Number of data choices RANSAC method

C ¼ 10 Number of iterations

eRansac ¼ 0.5 Similarity threshold for selecting support set

λ = 0.0001 Regularization parameter WALS method
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images using the RANSAC method section becomes lower than this threshold, the current
image is regarded as a member of the support set of the initial set ofm images. The value of
this threshold is also determined through trial and error. The stopping criteria for the EM
method (Algorithm 1), RANSAC method (Algorithm 4), and calculating low rank matrix
(Algorithm 5) are the number of iterations, which are set to 40, 10, and 100 iterations,
respectively. The sixth group of free parameters involves the λ parameter applied in the
WALS method. The determination of this parameter value was achieved through an
iterative process of trial and error, conducted specifically on the applied datasets.

Compare the results of the proposed method with the existing
methods
As mentioned, the results of the proposed method are compared with the results of the
other eleven methods. The results of the Gaussian simulated dataset are compared with the
Two-Stage, NDL, SGL, Centroid, RPCA, and JSUB methods, and the results of the
Chimney and Building image sequences are compared with the PCA-Based, Lucky Region,
Two-Stage, BNLTV, NDL, HVDKR, SGL, Centroid, and UCSPF methods. These
comparative results are presented in Tables 2 and 3, respectively. The results of the
proposed method on the sequences of the Moon-surface and Water-tower images are
provided in Appendix C. As none of the previous methods reported results on these two
sequences and their code was unavailable, only the results of the proposed method are

Table 2 The results of the proposed method and other existing methods based on PSNR (first rows)
and SSIM (second rows) criteria on Gaussian simulated datasets.

Sequence Criteria Two-stage NDL SGL Centroid RPCA JSUB Proposed

Car-front PSNR 15.3815 19.9009 16.7093 19.5172 24.0959 20.9223 25.1344

SSIM 0.5448 0.8136 0.6801 0.8163 0.9137 0.8375 0.9460

Road PSNR 26.58 27.4061 23.9782 30.03 33.8682 32.1232 32.0174

SSIM 0.7822 0.8036 0.7638 0.8608 0.9063 0.9005 0.9226

Mean PSNR 20.9807 23.6535 20.3437 24.7736 28.9820 26.5227 28.5759

SSIM 0.6635 0.8086 0.7219 0.8385 0.91 0.869 0.9343

Note:
The best result in each row is shown in bold.

Table 3 The results of the proposed method and other existing methods based on PSNR (first rows) and SSIM (second rows) criteria on the
chimney and building sequences.

Sequence Criteria PCA-baced Lucky region Two-stage BNLTV NDL HVDKR SGL Centroid UCSPF Proposed

Chimney PSNR 16.2921 31.0421 30.6152 31.4314 31.0052 32.0103 28.4552 24.0133 31.0484 30.8352

SSIM 0.0539 0.1137 0.1193 0.112 0.1075 0.1632 0.9065 0.8736 0.9155 0.9231

Building PSNR 14.346 24.0679 25.0724 24.808 26.2145 26.4822 15.8501 24.0312 25.3721 28.4178

SSIM 0.1858 0.3271 0.3882 0.3855 0.4857 0.5137 0.6449 0.7214 0.7926 0.8802

Mean PSNR 15.3190 27.555 27.8438 28.1197 28.6098 29.2462 22.1526 24.0222 28.2102 29.6265

SSIM 0.1198 0.2204 0.2537 0.2487 0.2966 0.3384 0.7757 0.7975 0.8540 0.90165

Note:
The best result in each row is shown in bold.
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presented for these datasets. Similarly, Table 4 contains results only for the Zernike
simulated dataset. According to the results presented in Tables 2 and 3, it can be observed
that the proposed method outperformed the previous methods in terms of the SSIM
criterion for all datasets. However, in terms of the PSNR criterion, the proposed method
exhibited lower performance compared to the previous methods for the Road and
Chimney datasets.

Figures 3–6 provide visual representations of the restored images obtained from the
proposed method and the results of the previous methods. It is evident from these images
that the Centroid, RPCA, JSUB, Two-Stage, NDL, HVDKR, and UCSPF methods yield
higher visual quality in terms of the final restored image compared to the other methods.

The Centroid method exhibits a restored image with lower quality compared to other
methods. Despite the restoration of the geometric structure, the resulting image appears
blurry and overly brightened due to the effects of temporal averaging.

The RPCA method, lacking a mechanism to effectively remove distortion, primarily
focuses on selecting a subset of turbulent images with minimal distortion and maximal
sharpness during the subsampling stage. As a result, the restored image obtained using the
RPCA method continues to exhibit some degree of distortion. Nonetheless, due to its
emphasis on the selection of a subset of sharp images and using the appropriate energy
function to merge these subsampled images, coupled with the application of the blind
deconvolution method, the restored image has little blur.

The JSUB method closely resembles the RPCA method except that its energy function
uses TV regularization, the L2 norm, and adaptive Gaussian noise for joint subsampling.
This method also lacks a blind deconvolution step, resulting in a mildly distorted but
blurred image.

The Two-Stage method’s deficiency caused by from the generation of an unsuitable
reference image through the averaging process, leading to errors during the registration
stage and ultimately resulting in a blurred final image.

Similar to the Two-Stage method, the NDL method also suffers from the impact of the
erroneous reference image generated through the averaging process. This issue
substantially affects the performance of the registration stage, and even though the method
employs the blind deconvolution technique, the resulting image lacks clarity in terms of
capturing image details. HVDKR uses the RPCA method to generate a reference image

Table 4 The results of the proposed method based on PSNR (first rows) and SSIM (second rows)
criteria on Zernike simulated datasets.

Sequence Criteria Proposed

Car-front PSNR 23.0173

SSIM 0.9208

Road PSNR 31.7254

SSIM 0.9167

Mean PSNR 27.3714

SSIM 0.9188
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with reduced blur and distortion. This approach then further enhances the reference image
using a variational model. Employing deformation-guided fusion the method not only
models and mitigates the impact of the image but also effectively reduces blurriness in the
final restored image. But since it is a step-by-step process, the interaction between the two
factors of blur and distortion has not been taken into account. As a result, while the output
images may exhibit relatively improved sharpness, the overall restored image tends to
retain some level of blurriness and distortion, and also the fine details in the image are not
well-defined.

In the UCSPF method, by separating the phase and magnitude components in the
frequency domain, structural information and brightness intensity are separated to process
the two distortion and blur factors separately. Through multiscale and multidimensional
operations applied to these distinct components, the UCSPF method effectively produces
an output image characterized by reduced levels of distortion and blur. Moreover, this
approach facilitates the preservation of sufficient image details. Nonetheless, the
processing conducted in the frequency domain lacks access to spatial information. For this
reason, frequency-domain processing, although well-restored in detail in high-energy
areas, has caused fluctuations in the brightness intensity in smooth regions. Despite the

Figure 3 (A) The reference image of the car-front sequence (B) one observed image, and the
qualitative results of (C) the proposed method, (D) NDL, (E) SGL, (F) centroid, (G) RPCA, (H)
JSUB, and (I) two-stage, on this sequence. Photo credit: Pui Anantrasirichai.

Full-size DOI: 10.7717/peerj-cs.1713/fig-3
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visually satisfactory quality of the final images, it is noteworthy that the computed PSNR
and SSIM values are lower than expected.

As evident in Figs. 3–6, the resulting images from the proposed method exhibit sharper
edges and finer details in comparison to those generated by other methods. The smooth
regions within the ground truth images are returned as smoothly in the output images. The
distortion is removed as much as possible, but the brightness of the output image in the
Chimney sequence produced by the proposed method appears slightly darker compared to
the corresponding ground truth image. Figure 7 presents the restored images generated by
the proposed method on the Zernike turbulence dataset. A visual comparison of both
Gaussian and Zernike turbulence images reveals that blurring is more obvious than
distortion in the Zernike images. While the proposed method effectively restores Zernike
turbulence images with notable accuracy, as evident in Fig. 7F, it is worth noting that the
details of the asphalt road are not fully restored to their original quality.

Indeed, conventional images typically exhibit characteristics of low-frequency signals,
rendering them low rank. Distortion, characterized by sudden change in the signal
changes, introduces high-frequency components that elevate the signal’s rank.

The time-varying blur in an image sequence from a single scene results in images that
are distinct from one another. Consequently, the overall diversity of the image sequence
increases. This phenomenon elevates their temporal rank. Turbulence images, caused by
both distortion and spatiotemporal varying blur, possess high ranks. Consequently, by
generating a low-rank matrix, it becomes possible to obtain an image that encompasses all

Figure 4 (A) The reference image of the road sequence, (B) one observed image, and the qualitative
results of (C) the proposed method, (D) NDL, (E) SGL, (F) centroid, (G) RPCA, (H) JSUB, and (I)
two-stage, on this sequence. Full-size DOI: 10.7717/peerj-cs.1713/fig-4
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Figure 5 (A) The reference image of the chimney sequence, (B) one observed image, and the
qualitative results of (C) the proposed method, (D) lucky region, (E) two-stage, (F) BNLTV, (G)
NDL, (H) HVDKR, (I) SGL, (J) centroid, (K) UCSPF, and (L) PCA-based, on this sequence. Photo
credit: Chiman Kwan. Full-size DOI: 10.7717/peerj-cs.1713/fig-5
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Figure 6 (A) The reference image of the building sequence, (B) one observed image, and the
qualitative results of (C) the proposed method, (D) lucky region, (E) two-stage, (F) BNLTV, (G)
NDL, (H) HVDKR, (I) SGL, (J) centroid, (K) UCSPF, and (L) PCA-based, on this sequence. Photo
credit: Chiman Kwan. Full-size DOI: 10.7717/peerj-cs.1713/fig-6
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high-rank images derived from it. This image aims to closely resemble the reference
(turbulence-free) image. Consequently, the creation of a low-rank matrix can be used to
eliminate turbulence. Accordingly, the LRMF method was adopted for this particular
objective. Through the iterative integration of these two techniques within the LRMF
method, a comprehensive framework has been established. This framework is capable of
generating turbulence-free images while minimizing the presence of turbulence. The
performance of the proposed method was assessed in terms of the PSNR and SSIM criteria
using the t-test statistical method. To accomplish this, the maximum values obtained from
the previous methods were compared with those of the proposed method. The outcome of
the PSNR-based t-test indicated a 50% similarity, signifying that the proposed method’s
accuracy is on par with the best outcomes of the previous methods. Conversely, the t-test
conducted based on the SSIM yielded a result of 95%, underscoring the superior accuracy
of the proposed method in comparison to the preceding previous methods. Since the PSNR
criterion is based on MSE, even slight changes in the image’s brightness can lead to a
decrease in the numerical values of this criterion. Therefore, the relative darkening
observed in the results of the proposed method might contribute to the decrease in the
numerical values of this criterion. On the other hand, SSIM is a perception-based criterion
that, like the human visual system, considers structural, luminance, and contrast
similarities between the two images. Therefore, higher numerical values of this criterion in
the results of the proposed method indicate a high perceptual similarity between the
resultant images and the reference images. Further detailed evaluation of the proposed
method is provided in Appendix D.

CONCLUSION
In this article, a new method is proposed to remove turbulence effects in a sequence of
images that simultaneously eliminates distortion and spatiotemporal varying blur. The

Figure 7 (A) The reference image of the car-front sequence (B) one Zernike simulated image, and (C)
the qualitative results of the proposed method, (D) the reference image of the road sequence (E) one
Zernike simulated image (F) the qualitative results of the proposed method. Photo credit: Pui Ana-
ntrasirichai. Full-size DOI: 10.7717/peerj-cs.1713/fig-7
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approach involves modeling blur using a mixture of Gaussian (MOG) noise
representation, while distortion is modeled as local geometric transformation matrices.
Given that turbulence introduces high-rank characteristics to input images, we employ the
low-rank matrix factorization (LRMF) technique to generate low-rank images with
minimal turbulence. To address this, we introduce a novel framework that integrates two
models, namely MOG noise and transformation matrices, into the LRMF method to
effectively eliminate turbulence. Furthermore, accurate MOG parameter estimation and
transformation matrix estimation are achievable for images with similar turbulence
characteristics, we have leveraged the RANSAC method to identify and exclude images
with distinct turbulence models. Our evaluation, conducted on both real and simulated
datasets, consistently demonstrates that the proposed method outperforms its
predecessors. This method does have its limitations, including relatively slower processing
speed compared to certain previous methods, as well as instances where the resulting
images may appear darker than the reference image. While the proposed method
demonstrates a degree of robustness to variations in its free parameters, the experiments
conducted across diverse datasets indicate that the values suggested in this article generally
lead to satisfactory accuracy in the output. However, if these free parameters were fine-
tuned based on the images used, better results could be achieved.

FUTURE WORK
Indeed, the proposed method encompasses numerous free parameters that require expert
regulation. While these parameters might not significantly impact the method’s
performance and processing speed, the intention behind offering adjustable parameters is
to allow practitioners to tailor them according to specific image conditions. This
adaptability ensures that other developers can readily apply the method to their own
applications with ease. Enhancing the speed of the proposed method is feasible by
incorporating a frequency-domain distortion modeling approach. This strategy involves
introducing an appropriate term during the noise removal process, thereby generating an
image that more closely aligns with the ground truth in terms of brightness. This
frequency-domain distortion modeling technique holds potential for improving both the
computational efficiency and the quality of the final output image. One of the authors’
future plans involves extending this method to address turbulence removal in dynamic
environments that include moving objects. This expansion would center around refining
the estimation of the transformation matrix model to account for changes caused by the
presence of moving objects within the scene.
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