
Submitted 30 June 2023
Accepted 31 October 2023
Published 6 December 2023

Corresponding author
Montdher Alabadi,
montdher10@gmail.com

Academic editor
Shahid Mumtaz

Additional Information and
Declarations can be found on
page 37

DOI 10.7717/peerj-cs.1712

Copyright
2023 Alabadi and Habbal

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Next-generation predictive maintenance:
leveraging blockchain and dynamic
deep learning in a domain-independent
system
Montdher Alabadi and Adib Habbal
Computer Engineering Department, Faculty of Engineering, Karabuk University, Karabuk, Türkiye

ABSTRACT
The fourth industrial revolution, often referred to as Industry 4.0, has revolutionized the
manufacturing sector by integrating emerging technologies such as artificial intelligence
(AI),machine anddeep learning, Industrial Internet of Things (IIoT), cloud computing,
cyber physical systems (CPSs) and cognitive computing, throughout the production
life cycle. Predictive maintenance (PdM) emerges as a critical component, utilizing
data analytic to track machine health and proactively detect machinery failures. Deep
learning (DL), is pivotal in this context, offering superior accuracy in prediction through
neural networks’ data processing capabilities. However, DL adoption in PdM faces
challenges, including continuous model updates and domain dependence. Meanwhile,
centralized DL models, prevalent in PdM, pose security risks such as central points
of failure and unauthorized access. To address these issues, this study presents an
innovative decentralized PdM system integrating DL, blockchain, and decentralized
storage based on the InterPlanetary File System (IPFS) for accurately predicting
Remaining Useful Lifetime (RUL). DL handles predictive tasks, while blockchain
secures data orchestration. Decentralized storage safeguards model metadata and
training data for dynamic models. The system features synchronized two DL pipelines
for time series data, encompassing prediction and training mechanisms. The detailed
material and methods of this research shed light on the system’s development and
validation processes. Rigorous validation confirms the system’s accuracy, performance,
and security through an experimental testbed. The results demonstrate the system’s
dynamic updating and domain independence. Prediction model surpass state-of-
the-art models in terms of the root mean squared error (RMSE) score. Blockchain-
based scalability performance was tested based on smart contract gas usage, and the
analysis shows efficient performance across varying input and output data scales. A
comprehensive CIA analysis highlights the system’s robust security features, addressing
confidentiality, integrity, and availability aspects. The proposed decentralized predictive
maintenance (PdM) system, which incorporates deep learning (DL), blockchain
technology, and decentralized storage, has the potential to improve predictive accuracy
and overcome significant security and scalability obstacles. Consequently, this system
holds promising implications for the advancement of predictive maintenance in the
context of Industry 4.0.

How to cite this article Alabadi M, Habbal A. 2023. Next-generation predictive maintenance: leveraging blockchain and dynamic deep
learning in a domain-independent system. PeerJ Comput. Sci. 9:e1712 http://doi.org/10.7717/peerj-cs.1712

https://peerj.com/computer-science
mailto:montdher10@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1712
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1712


Subjects Artificial Intelligence, Neural Networks, Internet of Things, Blockchain
Keywords Deep learning, Blockchain, Predictive maintenance, Smart contract, IIoT, IPFS

INTRODUCTION
The fourth industrial revolution, often referred to as Industry 4.0, marks a transformative
integration of the Industrial Internet of Things (IIoT) into various sectors (Alabadi, Habbal
& Wei, 2022). This integration ushers in an era of unparalleled efficiency, performance, and
data-centric decision-making (Namuduri et al., 2020).Within this landscape, PdM emerges
as a linchpin, leveraging data analytics to preemptively identify machinery malfunctions,
enabling businesses to shift from reactive to proactive maintenance strategies (Umair et
al., 2021; Askar et al., 2022). The significance of PdM is immense (Nunes, Santos & Rocha,
2023). By harnessing data from diverse sources, such as embedded machinery sensors,
historical maintenance records, and real-time operational data, PdM provides in-depth
insights into equipment health (Namuduri et al., 2020). This allows industries spanning
manufacturing, healthcare, transportation, and more to significantly reduce downtime,
ensure safety, optimize efficiency, and ultimately save substantial costs (Nunes, Santos &
Rocha, 2023). Deep Learning (DL) plays a pivotal role in this context (Ren et al., 2023).
Its multi-layered neural networks excel at processing vast datasets, unveiling intricate
patterns, and delivering predictions with superior accuracy compared to traditional
statistical models (Turker & Tan, 2022; Altunay & Albayrak, 2023). Traditional DL-based
PdM solutions primarily rely on static models hosted on centralized servers to analyze
incoming data and provide downtime forecasts, as shown in Fig. 1 (Ran et al., 2019).
However, despite its potential, the practical application of PdM within the continuously
evolving IIoT environment using DL presents notable challenges (Chen et al., 2022b). A
primary concern is the dynamism intrinsic to the IIoT environment—conditions change,
machinery evolves, and new variables emerge (Chen et al., 2022b). This dynamic setting
necessitates constant model updating to maintain prediction accuracy (Ren et al., 2023).
Traditional PdM solutions, being static, often struggle to adapt, leading to reduce model
effectiveness over time (Zhuang, Xu &Wang, 2023). Additionally, the absence of domain-
independent models capable of seamlessly handling various streams of multivariate time
series data introduces rigidity, limiting the flexible application of PdM across diverse
scenarios (Mushtaq, Islam & Sohaib, 2021).
The prevalent centralized data processing model in DL introduces a significant challenge

(Sengupta, Ruj & Bit, 2020). While this approach can be efficient in specific scenarios,
it also exposes critical security vulnerabilities. Centralized processing nodes become
attractive targets for potential cyberattacks, giving rise to concerns about data integrity,
confidentiality, and even the possibility of systemic failures (Sanka et al., 2021). The
transmission of substantial volumes of sensitive data across networks exacerbates these
risks, making the data susceptible to interception or malicious exploitation (Boobalan et
al., 2022). Furthermore, as the Industrial Internet of Things (IIoT) continues its rapid
expansion, centralized models struggle to scale effectively. The sheer volume of data
threatens to overwhelm these systems, resulting in inefficiencies, increased latency, and

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 2/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 1 Traditional DL based predictive maintenance.
Full-size DOI: 10.7717/peerjcs.1712/fig-1

the potential for data bottlenecks (Kumar et al., 2023). Edge computation and blockchain
have recently emerged as a potent combination to address the above challenges (Hafeez,
Xu & McArdle, 2021; Shafay et al., 2023). Edge computation enhances DL efficiency and
reduces latency, crucial for real-time data processing, such as PdM in the Industrial Internet
of Things (IIoT) (Raeisi-Varzaneh et al., 2023). However, handling DL’s data volume in
decentralized environments is a concern (Shafay et al., 2023). The InterPlanetary File
System (IPFS) provides a solution by offering decentralized and distributed storage (Kang,
Yang & Zheng, 2022). This pairing of edge computation and blockchain caters to efficient
data processing and secure, decentralized storage, making it a promising solution for
data-intensive DL applications like predictive maintenance. Given these limitations and
considerations, the motivation for this research is to develop a PdM system for accurate
Remaining Useful Lifetime (RUL) prediction that can adapt to dynamic environments,
scale across multiple domains seamlessly, and enhance data and system security, all without
being encumbered by the growing volume of data. To address these challenges and fulfill the
aforementioned motivation, this research introduces an innovative decentralized paradigm
for RUL prediction, harnessing blockchain, DL, and decentralized storage through IPFS.
The proposed system is structured into three distinct levels: Device, Edge, and Monitoring
levels. It leverages the combined power of blockchain technology, decentralized storage,
and DL to establish a robust and efficient DL-based PdM system. The primary objectives of
this research include enabling dynamic model updates, accommodating domain-specific
intricacies and data requirements, and partially decentralizing control entities. The system’s
core design revolves around two streamlined DL pipelines: the prediction pipeline for RUL
estimation and the training pipeline for continuous domain adaptation. This study’s
contributions can be summarized as follows:
1. Introducing a dynamic, decentralized PdM system for accurate RUL prediction by

harnessing blockchain, decentralized storage, and dual DL pipelines.
2. Crafting three distinct smart contracts tailored for node registration and authentication,

DL model configuration management, and the publication of newly trained model
addresses within the decentralized network.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 3/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-1
http://dx.doi.org/10.7717/peerj-cs.1712


3. A simulation based testbed has been developed for validation and assessment of the
proposed system using a benchmark dataset named (N-CMAPSS), emphasizing its
capability in the realm of PdM.
This article follows a specific organizational structure. ‘Related Work’ offers a detailed

examination of the relevant literature, situating the research within the current academic
framework. The novel approach is expounded upon in ‘Proposed System Architecture’,
providing a comprehensive analysis of the fundamental elements and principles of the
decentralized PdM system. ‘System Pipelines’ will focus on the examination and analysis of
system pipelines and algorithms. ‘Materials and Methods’ of this research paper is devoted
to providing a thorough and detailed account of the experimental setup, encompassing both
the materials used and the methodology employed. In ‘Results and Discussion’, the results
are presented, providing empirical validation and performance analysis. Additionally, the
significant findings are summarized, and potential avenues for future research in this field
are outlined. Ultimately, the research concludes with a final conclusion.

RELATED WORK
In this section, this research explores previously conducted work in the realm of predictive
maintenance. While many studies in the literature address PdM using diverse techniques,
this study focuses on those that implement ML and DL. ML and DL have driven
revolutionary transformations in industrial processes over the last decade (Zhang &
Chen, 2020). The data-rich environments of contemporary industries offer fertile ground
for ML applications, leading to enhancements in industrial procedures, system dynamics,
and decision support, particularly in PdM (Mohindru, Mondal & Banka, 2020). The study
by Feng & Li (2022) presents an integrated decision model for manufacturing system
concurrent production andmaintenance decisions. This method combines a Markov chain
for system analysis, a neural network for making decisions about dynamic maintenance,
and an event-based detection method for finding bottlenecks in machines that need to
stop. It proposes a neural network approach to determine the optimal maintenance policy
for each machine in the production system, considering the current state of the system,
machine health status, buffer levels, and maintenance decisions. A reinforcement learning
algorithm aids in real-time decision-making. The proposed paradigmmandates continuous
health monitoring for each machine, posing challenges, especially in expansive systems.
The model presupposes known deterioration modes for each machine, a presumption
that might not align with real-world scenarios. Additionally, it does not offer domain
independence and lacks provisions for data security.

Li et al. (2022) unveils a novel framework for time-series production forecasting,
merging the prowess of the Bidirectional Gated Recurrent Unit (Bi-GRU) network
with the Sparrow Search Algorithm (SSA) for optimal hyper-parameter tuning. While
the Bi-GRU network excels at decoding intricate relationships within production series,
the SSA ensures proficient model hyper-parameter optimization. Despite the promising
features of the framework, its evaluation is limited to three experimental trials, potentially
inadequately verifying its wider applicability and effectiveness. Moreover, the paper omits

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 4/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


discussions on potential limitations or concerns, especially regarding security and dynamic
model updates. Addressing these concerns is paramount for a holistic understanding and
successful implementation of the proposed framework.

In the study by Ong et al. (2022), the article delineates a comprehensive manufacturing
facility for predictive equipment maintenance in the IIoT, encompassing an edge cloud,
edge sensors, and human resources interconnected through a network. The proposed PdM
framework encompasses AI-based decision support systems, refining resourcemanagement
in both the physical and human domains. An innovative concept introduced in this study
is the equipment severity rating, which quantifies the likelihood of equipment failure in
comparison to health indicator values discussed in PdM literature. This method augments
data-driven maintenance decision-making. Nevertheless, the study overlooks critical
challenges such as data security, privacy, and the flexibility of the model to environmental
shifts, as well as its capability to manage data from diverse sources. These elements are vital
for a holistic, adaptable, and secure PdM system and merit further exploration.

Bharti & McGibney (2021) introduces SplitPred, an architecture designed for
collaborative PdM. It employs local edge devices within a federated learning (FL) client’s
network to collaboratively train a global model. Using split-learning techniques, SplitPred
facilitates edge devices to offload a segment of their model training tasks to other edge
resources in the same network, optimizing resource utilization. Notably, SplitPred does
better than standard horizontal cross-device FL because it ensures reliable model training
at FL clients, which fixes the problems with traditional FL-based methods that don’t let
you share resources. Despite its advantages, the paper does not delve deeply into the
framework’s adaptability to variations in data scale and dimensions. Handling concurrent
data streams from multiple sources also remains unaddressed. Both aspects are crucial for
a flexible and dynamic PdM architecture.

Lu & Lee (2022) focuses on equipment maintenance, emphasizing the role of Prognostic
and Health Management (PHM) in curbing maintenance costs. The study proposes
the Kernel-Based Dynamic Ensemble Technique (KDET), bolstered by an Inference
Confidence Index (ICI), to enable dynamic modifications and model retraining for
RUL predictions. The proposed KDET system comprises three modules: offline training,
weighted majority, and dynamic ensemble. The research juxtaposes KDET’s performance
with diverse ensemble and model retraining methods for RUL prediction, using two
datasets from an accelerated deterioration experiment and the 2012 IEEE PHM Challenge.
The study’s findings underscore KDET’s capability to dynamically amalgamate multiple
models for robust RUL prediction, thereby enhancing the PdM system. However, the
research doesn’t address data and model security. Handling heterogeneous data from a
plethora of sources also remains unexplored, underscoring vital considerations for a robust
PdM framework that necessitate further investigation.

The research by Catelani et al. (2021) outlines a hybrid approach for predicting the RUL
of lithium-ion batteries to improve operations andmaintenance. Thismethod amalgamates
a condition monitoring unit with a physical deterioration model. For RUL predictions, the
methodology employs state-space estimation combined with an AI estimation technique
anchored on a Deep Echo State Network (DESN). The proposed single exponential model

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 5/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


has been demonstrated to be effective, with fewer parameter prerequisites and reduced
complexity, for three out of the four tested batteries. Nonetheless, the primary limitation
is the requisition of a voluminous dataset, generated through state-space estimates of
recorded data, for network training. This procedure could be computationally taxing and
time-consuming. Furthermore, the research omits discussions on data security, which is
paramount in our data-driven era. The model’s scalability to manage data from diverse
sources is also unaddressed, potentially limiting its real-world applicability in heterogeneous
data environments.

The study by Wu et al. (2021) sketches a two-tiered approach using an autoencoder-
based deep neural network (AE-DNN) coupled with regression models grounded in
shallow neural networks. The research introduces the concept of a degradation-aware long
short-term memory autoencoder (DELTA) crafted to discern and capture varied levels
of RUL deterioration trends, enhancing prediction accuracy. The DELTA framework,
integrating ML-based classification with regression, has showcased superiority in RUL
predictions for industrial IoT systems over existing methodologies. The article underscores
the pivotal role of the AE within the DELTA framework and explicates the performance
enhancements brought about by the healthy stage classification and AE components.
However, the proposed methodology mandates a substantial volume of training data for
optimal accuracy, and it presupposes a system deterioration model without substantial
empirical evidence. Furthermore, the study overlooks vital facets like data and device
security, domain-independent operation, and dynamic model updates in response to
environmental fluxes. The ensemble long short-termmemory neural network (ELSTMNN)
is unveiled in Cheng et al. (2021). This method for making RUL predictions combines
predictions from different long short-term memory neural networks (LSTMNNs), each
of which was trained on a different set of historical data. A novel ensemble method based
on a Bayesian inference mechanism is proposed to coalesce these predictions for optimal
RUL estimations. The proposed RUL prognostication methodology, validated using two
discrete turbofan engine datasets, showcases its dominance over individual model-based
methodologies. However, the validation methodology remains confined to these two
datasets, evoking concerns regarding the method’s efficiency for diverse equipment types.
Moreover, the study remains silent on security considerations, which are indispensable
in our data-centric age. It also does not provide insights on dynamic model updating
mechanisms, potentially restricting the system’s adaptability to evolving data trends and
environmental transformations.

In the article by Zonta et al. (2022), a PdM model deploying deep neural networks is
showcased, with an emphasis on optimizing both maintenance and production schedules
in the domain of smart manufacturing. By fusing data-driven techniques with physical
model-based methodologies, the model aims to prognosticate the RUL of equipment.
The article acknowledges the escalating tilt towards data-driven solutions using ML. Yet,
it confronts challenges when managing noisy data, which impacts prediction quality.
Proposed solutions include a degradation index anchored on data similarity, but the paper
doesn’t provide a comprehensive validation of their efficacy. While the model offers an

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 6/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


innovative perspective on predictive maintenance, its potential limitations when managing
noisy data and navigating dynamic ecosystems are evident.

In Chen et al. (2022a), a data-driven PdM strategy deploying a bidirectional long-short
term memory (Bi-LSTM) model is put forth to gauge the uncertainties in RUL predictions
of systems. Trialed on aero-engine health monitoring, this methodology showcases
potential for slashing maintenance costs. However, the article underscores that existing
methodologies often dissociate RUL predictions from maintenance decisions without
taking prediction uncertainties into account. While their strategy appears promising, its
conservative approach might inadvertently amplify costs. The study recommends refining
this uncertaintymanagement in RUL predictions and emphasizes that data security remains
an ongoing concern.

In de Pater, Reijns & Mitici (2022), a dynamic PdM scheduling model for aircraft engine
fleets is presented, leveraging convolutional neural networks (CNNs) to prognosticate
the RUL of turbofan engines. While the results are on par with existing CNN-based
studies, they demonstrate the imperfect nature of RUL predictions, potentially causing
premature maintenance alarms. This imperfection, coupled with limited maintenance
slots and capacity, might even result in engine failures. The report’s framework is domain-
dependent, focusing on a specific dataset, and doesn’t evaluate the applicability of other
ML algorithms for RUL prognostication. For a more holistic and domain-independent
solution, further investigation across diverse aircraft systems and components is required.
Notably, the study’s dynamic nature and domain-specific focus hint at broader challenges
in predictive maintenance, including data security concerns. The extensive literature review
on the above PdM using ML and DL methodologies underscores the existence of several
as summarized in Table 1. These gaps are listed in the following points:
1. Dynamic model updating: A plethora of studies, such as those by Feng & Li (2022); Li

et al. (2022), introduce innovative methods yet grapple with constant adaptability in
ever-evolving industrial settings. The essence of dynamic adaptability is accentuated,
especially given the mutable nature of real-world data, as elucidated by de Pater, Reijns
& Mitici (2022).

2. Data security concerns: Recurrent themes across researches, notably in Chen et al.
(2022a); Ong et al. (2022), emphasize the significance of data security, particularly
within the expanding landscape of IIoT. Centralized data models pose pronounced
risks in data transfer and storage. This imperative for fortified security measures
is augmented by findings from Bharti & McGibney (2021), spotlighting the hazards
associated with sharing failure data on susceptible platforms.

3. Domain-specific limitations: Research outcomes, exemplified by de Pater, Reijns &
Mitici (2022), often exhibit domain-specific restrictions, potentially curtailing the
universal applicability of these methodologies. This domain-centric focus accentuates
the necessity for more adaptable solutions suitable for diverse industrial contexts.
This research aims to address the limitations observed in PdM within the existing

literature. It introduces a system explicitly engineered to adapt to dynamic scenarios,
ensuring domain independence and emphasizing robust securitymeasures. Fundamentally,
This study methodology integrates decentralized blockchain technology, DL techniques,

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 7/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Table 1 Summary of related works.

Ref Main area/use case Methods Main contribution Limitations

Feng & Li (2022) Manufacturing sys-
tem decisions

Neural Network Integrated decision model
for concurrent production

Requires continuous health
monitoring; Does not han-
dle dynamic environments

Li et al. (2022) Time-series produc-
tion forecasting

Bi-GRU Combines Bi-GRU with
SSA for hyper- parameter
tuning

Limited scope of evalua-
tion; Lacks dynamic model
updating;

Ong et al. (2022) IIoT-based PdM AI-based Full manufacturing facility
for PdM in IIoT

Lacks data security ; Model
flexibility ;

Bharti & McGibney (2021) FL-based PdM Split- learning Collaborative PdM
using local edge devices

Requires significant data
for accurate model;
Lacks data security
measures;

Lu & Lee (2022) Equipment mainte-
nance

Kernel- Based Dynamic integration of
models for RUL prediction

Lacks data and model secu-
rity; Doesn’t handle hetero-
geneous data sources;

Catelani et al. (2021) Lithium-ion battery
RUL prediction

Deep Echo State
Network

Capture various RUL dete-
rioration trends

Requires large dataset cre-
ated through state-space
estimation; Lacks data se-
curity measures;

Wu et al. (2021) RUL prediction AE-DNN Incorporating AE into the
RUL prediction framework

Requires significant train-
ing data; Lacks dynamic
model updating and data
security measures;

Cheng et al. (2021) RUL prediction for
turbofan engines

LSTMNN Combines predictions from
multiple LSTMNNs

Limited efficacy on other
equipment; Lacks data se-
curity;

Zonta et al. (2022) PdM in smart manu-
facturing

Deep neural
networks

Data-driven approach
combined with physical
model-based methods

Struggles with noisy data;
Lacks dynamic model up-
dating and data security
measures

Chen et al. (2022a) RUL prediction
with uncertainty
estimation

Bi-LSTM Combines RUL prediction
with MCR function

Tends to be conservative in
approach; Lacks data secu-
rity measures and dynamic
model updating;

de Pater, Reijns & Mitici (2022) PdM scheduling for
aircraft engine fleets

CNN Use alarms to trigger main-
tenance tasks

Domain-dependent ; Lacks
data security and doesn’t
handle dynamic environ-
ments;

and a steadfast dedication to continuousmodel updates. The integration process guarantees
the adaptability of the proposed system to other domains. One notable feature of this system
is its versatility in application across diverse fields, distinguishing it from conventional PdM
systems. Significantly, the design of the given system enables it to scale proportionally with
the expansion of data volumes. Furthermore, as environments change, given predictive
models adapt smoothly, ensuring remarkable precision. Significantly, the solution suggested
by this study has been enhanced with comprehensive security features in order to protect
data and users from any intrusions.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 8/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


PROPOSED SYSTEM ARCHITECTURE
Our proposed architecture introduces a decentralized, blockchain-based system for secure
and efficient PdM using DL models specifically tailored for RUL prediction. This system,
structured across three levels:Device, Edge, andMonitoring, ensures secure communication
with the blockchain and decentralized storage. The primary aim of the suggested system is
to provide a dynamic model updating mechanism that is robust, efficient, and adaptable to
the unique requirements of various domains and diverse data inputs. Its adaptability enables
the system to assimilate and learn from evolving patterns in the input data, yielding precise
and timely predictions for predictive maintenance. The system presents valuable insights
into time series data by dynamically adjusting to and learning from new incoming data,
ensuring effective PdM and elevated operational efficiency across a myriad of industries
and applications.

Our system efficiently integrates two DL pipelines—the training and the prediction—
which substantially reduces the reliance on centralized control entities. This design
facilitates the emergence of a PdM mechanism capable of autonomously updating and
predicting based on the processed data. Moreover, the interconnected nature of these
pipelines promotes efficient data sharing. This means additional data is not required to
train the dynamic model, as it can extract knowledge from the data already processed
by the prediction pipeline. In the suggested system, each node is endowed with a unique
class value. This identifier is pivotal for determining the node’s role in the system, be
it a predictor, trainer, or manager. This class value serves as a digital identifier that the
smart contract utilizes to dictate how to process each node’s requests. When a node issues a
request, the smart contract identifies its class value and adheres to a specific set of protocols,
allowing or restricting actions based on the node’s designated role. The architecture of
the system, including its components, is illustrated in Fig. 2. Detailed descriptions of each
component follow in subsequent sections.

Device level
In the context of predictive maintenance, the device level denotes the primary source of
observation from which data is gathered and subsequently analyzed to furnish accurate
RUL predictions. The proposed system boasts scalability across multiple domains, each
characterized by its distinctive time series data stream. The other components of the
system are crafted to function autonomously within each domain. Importantly, there is no
stringent environment prerequisite stipulated for the domain’s deployment. This flexibility
enables the system to serve a diverse array of sectors that stand to gain from predictive
maintenance, such as the oil and gas industry, healthcare, and others.

Edge level
The edge level serves as an integral component of the system, housing nodes that work in
tandem to achieve the delineated objectives. Within this proposed framework, the edge
level comprises multiple virtual networks, or sets (S). Each set (S) is associated with a RUL
prediction derived from time-series data specific to a particular domain and mandates
the inclusion of at least one trainer class node (T ) and one predictor class node (P).

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 9/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 2 Proposed system design.
Full-size DOI: 10.7717/peerjcs.1712/fig-2

These nodes represent a diverse spectrum of devices capable of executing rudimentary DL
operations at the edge level (Raeisi-Varzaneh et al., 2023).

Trainer nodes orchestrate continuous DL model updates, ensuring domain
independence, whereas predictor nodes render RUL predictions, relying on two distinct
pre-trained models: the fixed model (Dle) and the dynamically updatable model (Dlu). The
former is ingrained during system initiation and disseminated across the network, while the
latter undergoes consistent updates. The system’s RUL estimation is an amalgamation of
outputs from both the static and dynamicmodels. This innovative approach is meticulously
crafted to tackle the inherent challenges of model stability, a recurrent impediment in DL
endeavors. To this end, the system employs incremental learning. Here, the dynamic model
continually evolves, absorbing and adjusting to novel data, thus preserving its relevance
and precision. This ensures that RUL predictions remain accurate even when confronted
with evolving data patterns or atypical inputs (Lomonaco & Maltoni, 2017).

Governance of the nodes and models affiliated with each set falls under the purview
of the system’s smart contracts, a subject to be elaborated upon subsequently. Moreover,
domains, along with their pertinent data corresponding to a given (S), are discernible
through a unique identifier (Id), securely ensconced within the smart contract memory.
Such a configuration streamlines processes like addition, modification, retrieval, and
removal from the smart contracts. To culminate, the edge-level nodes are devised to
interface seamlessly with both the blockchain and decentralized storage. Both the predictor
and trainer nodes come replete with the requisite resources and methodologies to navigate
the system’s DL pipelines. These resources and methodologies are listed in the following
sub-sections.

Encoder-decoder DL
Encoder-decoder DL architectures prove efficient at capturing complex temporal
dependencies and patterns in data, which is crucial for time series forecasting (Wang,

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 10/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-2
http://dx.doi.org/10.7717/peerj-cs.1712


Su & Ding, 2021). Long-term dependencies are common in time series data, where
events that occurred in the past might have an impact on events that will occur in the
future. Encoder–decoder systems are built to manage such relationships, where traditional
forecasting approaches may fail to predict them Wang, Su & Ding (2021). The encoder
processes the input time series data and then creates a context vector of a specified size
that is a compressed version of the original data. The input data’s most important features
and recurring patterns are summarized in this context vector. The decoder then uses the
context vector to make the prediction.

Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) and gated
recurrent units (GRU) (Li et al., 2022) are two types of recurrent neural networks (RNN)
commonly used in this architecture because of their ability to deal with input sequences
with long-term dependencies. The ability of these RNNs to learn and retain data from
previous time steps makes them an excellent choice for time series forecasting. In this
research, various combinations have been explored to implement the suggested system.
These diverse combinations were systematically tested to identify the most accurate
configuration, taking into consideration common hyper-parameters that significantly
impact the model’s performance. The proposed system ensures that only authorized
users can update or delete the hyper-parameters by securely storing them within a smart
contract. This approach offers multiple advantages, including enhanced security for the
hyper-parameters and the model training process, leading to more trustworthy (RUL)
predictions that accurately reflect the environmental observations.

Monitoring level
The top layer is responsible for system initialization, management, and monitoring of
the RUL. This level comprises the manager node (M ), which supervises other system
nodes, oversees DL initiation, and manages long-term operations. Similar to the edge level,
this layer also maintains secure communication with the blockchain and decentralized
storage. At this layer, system administrators have the capability to implement maintenance
strategies based on the determined RUL. This study, however, will not delve into this
aspect, as it predominantly centers on the system’s structural framework rather than
its operational intricacies. The system’s design emphasizes robustness, adaptability, and
efficiency, ensuring enhanced security and dependability.

Blockchain
Blockchain is a decentralized ledger designed to enable secure peer-to-peer transactions
(Li et al., 2021). While its initial introduction aimed to address financial issues like double-
spending, blockchain’s potential has expanded to bolster data security and privacy, given
its strong authentication methods that involve encryption, cryptography, and immutability
(Wang et al., 2023). A pivotal innovation in the blockchain realm is the emergence of smart
contracts, which capitalize on the inherent advantages of blockchain technology (Kumar et
al., 2023; Karim et al., 2023). A smart contract is a computer-coded, self-executing contract
where the terms of the agreement between parties are written directly into lines of code.
Stored and replicated on the blockchain, it offers a decentralized digital record (Hu et al.,

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 11/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Table 2 Access control contract functions.

Function
name

Description Authentication
requirements

Add node Add new node with specific class to the system Class=M , Status= True
Update node Update class and activation status of the given node Class = M , Status = True
Delete node Delete given node from the system authenticated list Class = M , Status = True
Get node Provide given node class and status C_c ,C_p

2021). These contracts automatically execute, monitor, or document events and actions
of legal relevance based on predefined terms, thus obviating the need for middlemen
(Al-Amri et al., 2019). They are architected to be secure, transparent, and resistant to
alterations within a decentralized system (Liu & Liu, 2019).

In the proposed model, this research develops three specific smart contracts: access
control (Cac), configuration (Cc), and publishing (Cp) contracts. Working in tandem,
these smart contracts aim to provide a domain-agnostic, dynamically updatable, and
secure PdM solution. By overseeing the RUL prediction process, smart contracts augment
the system’s efficiency and efficacy.

Access control contract
The access control contract, denoted as (Cac), serves as the cornerstone for system access
and role management. It maintains a comprehensive roster of all nodes in the system,
classifying each node with its respective class designation. A node, upon its initiation, is
cataloged within the memory of the smart contract alongside its associated class number.
Other contracts within the system liaise with this contract to validate the legitimacy of
the invoking source address. This ensures that only approved nodes have the privilege to
influence the RUL prediction mechanics. In essence, (Cac) acts as a gatekeeper, effectively
thwarting any unauthorized external nodes from interfering in the process.

Furthermore, since each node within the system possesses a replicated copy of the
smart contract, the process of assigning class numbers to individual nodes becomes
pivotal. This assignment not only demarcates roles but also orchestrates permissions. Such
decentralization eschews the conventional centralized oversight mechanism. Instead, the
entire network democratically oversees decisions, removing the dangers associated with
a single point of control or failure. Table 2 delineates the intrinsic functions embedded
within the (Cac) contract and outlines their pertinent execution prerequisites.

Configuration contract
The configuration contract, represented as (Cc), acts as the central repository for storing
the configurations—specifically, the hyper-parameters—of each DL model tied to a
specific set (S) within the PdM system. This contract is engineered to permit transactions
exclusively from manager nodes (M ) , identified by their unique identifier (Id). These
nodes make use of the ‘‘set’’ or ‘‘update’’ functions to either establish or modify the
hyper-parameters of the DLmodel. After these DL hyper-parameters have been established
or modified, the training nodes, labeled as (T ), and the prediction nodes (P) can retrieve

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 12/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Algorithm 1: Access Control Contract Algorithm
Data: NodeList: Data Structure containing status,address and class

1 Function addNode(Status, Class, address):
2 NodeList[address]← NodeList(Status, Class)
3 Function updateNode(Status, Class, address):
4 NodeList[address].nodeClass← (Status, Class)
5 Function deleteNode(address):
6 delete NodeList[address]
7 Function getNode(address):
8 return NodeList[address]

Table 3 Configuration contract functions.

Function name Description Authentication
requirements

Add Configuration Add new configuration given model
identification to the system

Class = M, Status = True

Update Configuration Update configuration of the given model Class = M, Status = True
Delete Configuration Delete given Configuration from the

system
Class = M, Status = True

Get Configuration Provide given configuration Class = P or T, Status = True
Change Train Status Change the status of automatic train Class = M, Status = True

these parameters to incorporate them in their operational processes based on model (Id).
To ensure authenticated function invocation, (Cc) communicates with the access control
contract (Cac). Moreover, (Cc) governs the automation of DLmodel training via a Training
Status (At ), which can be toggled between ‘‘true’’ and ‘‘false’’. When status is activated
as true, the training process persists according to the preset protocol initialized with the
system. Conversely, when the status is set to false, automatic training halts and can only
be re-initiated upon request from (M ). Before starting the training process, trainer nodes
must consistently check the status of (At ). An exhaustive description of the (Cc) function
is delineated in Table 3.

Publishing contract
The publishing contract, denoted as (Cp), is tasked with overseeing the locations of both
the model and training data within the decentralized storage system. In terms of DL,
this contract maintains a list presenting the address of each DL model corresponding
to every individual data stream from its associated domain. This relationship is tracked
using the unique identifier, (Id). At the system’s outset, managerial nodes (M ) initiate
a transaction directed at Cp that conveys the storage locations of both (Dle) and (Dlu).
Furthermore, post-training of a particular (Dlu), the trainer nodes (T ) refresh their location
by instigating a subsequent transaction directed at Cp. As a final point, prior to embarking
on RUL predictions, predictor nodes (P) consult Cp to fetch the location of their linked
model, encompassing both (Dlu) and (Dle).

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 13/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Algorithm 2: Configuration Contract Algorithm
Data: ConfigurationList:Data Structure containing model parameters

1 Function set Or Update Configuration(Id , Configuration):
2 ConfigurationList[Id]← Configuration
3 Function deleteConfiguration(Id):
4 delete ConfigurationList[Id]
5 Function changeTrainStatus(Id):
6 ConfigurationList[Id].train← !ConfigurationList[Id].train
7 Function getConfiguration(Id):
8 return ConfigurationList[Id]
9 Function getTrainingStatus(Id):
10 return ConfigurationList[Id].train

Table 4 Publishing contract functions.

Function name Description Authentication
requirements

Set Model Add new model address given
model identification to the sys-
tem

Class = M or T, Status = True

Update Model Update the address of the given
model based on the given identi-
fication

Class = M or T, Status = True

Get Model Provide the address of the given
model given provided identifica-
tion

Class = P or T, Status = True

Set Training Data Add the address of the train-
ing data given associated model
identification

Class = P or M, Status = True

Update Training Data Update the address of training
data associated with the given
identification

Class = P, Status = True

Get Training Data Provide the address of the train-
ing data given provided identifi-
cation

Class = T, Status = True

Shifting focus to training data management, predictor node (P) records the input data
alongside their corresponding prediction outcomes, storing them as fresh training datasets.
This process entails uploading the said training data to the decentralized framework,
followed by a subsequent location update within (Cp). This ensures that the trainer
nodes (T ) can easily locate and employ this data for retraining the specified (Dlu). A
comprehensive breakdown of the (Cp) contract’s operations is provided in Table 4.

Decentralized storage
Decentralized storage emerges as a transformative and optimal paradigm, especially when
interweaved with the domains of blockchain and DLmethodologies (Li et al., 2021;Doan et
al., 2022). Within this context, decentralized storage plays a pivotal role in accommodating

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 14/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Algorithm 3: Publishing Contract Algorithm
Data:ModelData:Data structures for storing address of Model metadata in the de-

centrlaized storage
Data: TrainingData:Data structures for storing address of training data in the de-

centrlaized storage
1 Function setModelData(Id , model address):
2 ModelData[Id]← (model address)
3 Function updateModelData(Id , model address):
4 ModelData[Id]← (model address)
5 Function getModelData(Id):
6 returnModelData[Id]
7 Function setTrainingData(Id , train data address):
8 TrainingData[Id]← (train data address)
9 Function updateTrainingData(Id , train data address):
10 TrainingData[Id]←(train data address)
11 Function getTrainingData(Id):
12 return TrainingData[Id]

DL metadata along with the accompanying training data. DL metadata comprises an
ensemble ofmodel-specific details, including its architectural design, associated parameters,
and key performance metrics. Concurrently, training data delineates the foundational data
that powers the training of these intricate models. Characterizing decentralized storage,
each fragment of data is disseminated and stored across a myriad of system nodes, each
piece earmarked with a distinct address to facilitate effortless access. Smart contracts, the
beating heart of the blockchain, take custody of these addresses, offering a decentralized,
immutable ledger that acts as a conduit to the data (Qammar et al., 2023). Such a structured
approach to data addressing catalyzes an uninterrupted, efficient interaction, which remains
paramount given the prodigious data appetites of DL paradigms.

The onus of contributing to this decentralized storage lies heavily on the majority of
system nodes, encapsulating both the edge and monitoring echelons. By propagating
storage across a decentralized plane, the entire training conduit gains an efficiency boost.
Data, rather than trickling from a monolithic, centralized source, cascades in parallel
from divergent nodes, thereby abbreviating the traditionally elongated wait times for data
accession. This symphony of parallelism also embeds redundancy into the system’s DNA;
with data replicas ensconced across nodes, the system’s resilience to sporadic node outages
is bolstered.

IPFS
The proposed system is made up of smart contracts, an encoder–decoder DL model, and
the decentralized storage power of IPFS (InterPlanetary File System). These are all carefully
put together to create a safe and effective PdM environment. IPFS emerges as a peer-to-peer
file dissemination system, championing the tenets of security, transparency, and robust
fault tolerance in data storage and access routines (IPFS, 2020). The publishing contract,

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 15/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


denoted as (Cp), acts as a custodian of the addresses pointing to DL models and the
encompassing training data ensconced within IPFS. This structure paves the way for fluid
updates and data requisitions essential for training and subsequent predictions. The trainer
nodes, represented as (T ), are entrusted with the task of assiduously refining and training
the DL models. They operate under the guidelines prescribed by the hyper-parameters
domiciled within the configuration contract (Cc), tapping into the reservoir of training
data made available via IPFS. Concurrently, the predictor nodes, labeled as (P), serve up
RUL predictions predicated on pre-existing models. They consult the publishing contract
(Cp) to glean the model addresses, subsequently reaching out to IPFS to access the requisite
DL models, thereby paving the way for astute predictions.

SYSTEM PIPELINES
The proposed system is primarily anchored around two integral DL pipelines. The first,
termed the ‘training pipeline’, is tailored for consistent adaptation, adjusting itself to the
variations evident in the input data. The succeeding pipeline, the ‘prediction pipeline’,
undertakes the task of determining the RUL from the presented input data. This pipeline
leverages insights from two distinct models: the unwavering fixed model and the adaptable
dynamic model. In the suggested design, although these pipelines function autonomously,
they are intricately coordinated through the system’s ingrained smart contract functions,
guaranteeing a smooth, synchronized operation.

Figure 3 offers a comprehensive sequence diagram that delineates the operational
flow for both pipelines, encompassing the gamut of actions involved in both training
and prediction phases. The visual underscores the dynamic interplay between pivotal
components, such as data, models, and nodes, contributing to the successful execution
of the pipelines. Complementing this, Fig. 4 vividly elucidates the inter-node interactions
during the simultaneous functioning of the prediction and training pipelines. It sheds light
on the symbiotic relationship between the trainer and predictor nodes, emphasizing the
system’s prowess in managing multifaceted operations and accentuating its robustness and
adaptability in tackling real-world scenarios. Crucially, the deduced RUL in the prediction
pipeline emerges from the combined intelligence of two separate models: the fixed model
and the dynamic model. Such a design not only amplifies prediction accuracy but also
maintains the system’s evolving nature. Notably, the data from the prediction pipeline,
augmented by its resultant prediction, serves as a new input for the training pipeline,
fostering continuous system learning and honing its performance over time.

Training pipeline
The training pipeline is tasked with training the DL model (Dlu) associated with
each set (S). As previously discussed, each (S) involves at least one trainer node (T ).
Additionally, each RUL prediction for a given (S) is managed by models (Dle) and
(Dlu), fetched using addresses stored in the publishing contract (Cp). The training
pipeline for one (S) that encompasses one (T ) and (P) includes the subsequent steps:

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 16/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 3 Pipelines sequence diagram.
Full-size DOI: 10.7717/peerjcs.1712/fig-3

1. (T ) queries the configuration contract (Cc) to inspect the value of the training status
(At ), indicating if training is permissible for the associated set. If authorized, the
execution progresses to the subsequent step. This step mandates (Cc) to authenticate
the status and class of (T ) using (Cac).
If (Cc −→GetNode(Cac ,T ))=Class(Trainer),True

At =T −→GetStatus(Cc ,Id)
2. Node (T ) queries (Cp) to fetch the address of the associated model and training data

using their (Id) from the decentralized storage (IPFS). This step also necessitates (CP)
to authenticate the status and class of (T ) using (Cac).
If (Cp−→GetNode(Cac ,T ))=Class(Trainer),True

ModelAddress=T −→GetModel(Cp,Id)

DataAddress=T −→GetTrainData(Cp,Id)
3. Themodel and data are fetched fromdecentralized storage (IPFS) utilizing the addresses

acquired in the prior step.
Dlu=T −→GetFromIPFS(ModelAddress)

x,y =T −→GetFromIPFS(DataAddress)
4. The configuration embedding the hyper-parameters for the designatedmodel is queried

from (Cc) for application in subsequent steps, employing the associated (Id). Also,

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 17/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-3
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 4 Predictor and trainer collaboration diagram.
Full-size DOI: 10.7717/peerjcs.1712/fig-4

authentication is obligatory.
If (Cc −→GetNode(Cac,T ))=Class(Trainer),True

Config=T −→GetConfig(Cc ,Id)
5. The retrieved input data is processed according to the preprocessing procedure, taking

into consideration the hyper-parameters, especially concerning the input data shape
mandated for the encoder–decoder model.
Processed(x,y)=Preprocess((x,y),Config)

6. Model training initiates by optimizing the loss value to amplify the predictive model’s
efficacy.
ŷ = Dlu(x)

L(y,ŷ)=
1
N

∑
i= 1N (yi− ŷi)2

where: L is the loss function, y is the actual value, ŷ is the predicted value, and N is the
count of samples.

7. The trained and updated model is stored in IPFS, and its address is refreshed in (Cp)
by initializing a transaction alongside its (Id). Validation from (Cp) is indispensable
before its endorsement.
ModelAddress=T −→ StoreInIPFS(Trained(Dlu))

If (Cp−→GetNode(Cac,T ))=Class(Trainer),True then

T −→ SetModel(Cp,Id,ModelAddress)

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 18/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-4
http://dx.doi.org/10.7717/peerj-cs.1712


The trainer pipeline is crucial for ensuring that (Dlu) remains valid for most recent
observations and can respond to any changes in input data. This process contributes
to a robust and adaptable PdM system. Algorithm 4 illustrates the pipeline procedure
mentioned above. It’s worth mentioning that the process is similar when the case has
more than one trainer node, except that the (Dlu) in the smart contract will be the last one
updated in the (Cp).

Algorithm 4: Training Pipeline Algorithm

1 T queries Cc to check At

2 if Cc .GetNode(Cac ,T )=Class(Trainer),True then
3 At =T .GetStatus(Cc ,Id)
4 end

5 T queries Cp to get model and data addresses
6 if Cp.GetNode(Cac ,T )=Class(Trainer),True then
7 ModelAddress=T .GetModel(Cp,Id)
8 DataAddress=T .GetTrainData(Cp,Id)
9 end
10 DLu=T .GetFromIPFS(ModelAddress)
11 x,y =T .GetFromIPFS(DataAddress)

12 T queries Cc to get configuration
13 if Cc .GetNode(Cac ,T )=Class(Trainer),True then
14 Config =T .GetConfig(Cc ,Id)
15 end

16 Processed(x,y)=Preprocess((x,y),Config )
17 ŷ =DLu(x)
18 L(y,ŷ)= 1

N
∑N

i=1(yi− ŷi)
2

19 ModelAddress=T .StoreInIPFS(Trained(DLu))
20 if Cp.GetNode(Cac ,T )=Class(Trainer),True then
21 T .SetModel(Cp,Id,ModelAddress)
22 end

Prediction pipeline
The prediction pipeline stands as an integral part of the system, focusing on delivering RUL
predictions for time series data (x). Whenever a predictor node (P) receives observations
from the device level, the RUL is determined through the following sequence:
1. (P) initiates a query to the publishing contract (Cp) to retrieve the address of the

associated DL models ((Dle) and (Dlu)) within the decentralized storage. Prior to
releasing the necessary data, (Cac) must authenticate (P).
If (Cp−→GetNode(Cac,P))=Class(predictor),True

ModelAddress1(Dle)= P −→GetModel(Cp,Id)

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 19/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


ModelAddress2(Dlu)= P −→GetModel(Cp,Id)
2. Next, (P) extracts the relevant DL models from the decentralized storage system.

Dle = P −→GetFromIPFS(ModelAddress1)

Dlu= P −→GetFromIPFS(ModelAddress2)
3. To fetch the configuration necessary for preprocessing, (P) sends a query to (Cc).

If (Cc −→GetNode(Cac,P))=Class(predictor),True

Config= P −→GetConfig(Cc ,Id)
4. The incoming data (x) undergoes a preprocessing procedure.

Processed(x)=Preprocess(x,Config)
5. Both (Dle) and (Dlu) are deployed to furnish RUL predictions.

RUL1=Dle(x)

RUL2=Dlu(x)
6. Using parameters (A) and (B) (where (A+B= 1)), the final RUL is deduced via a

weighted average.
RUL= (A×RUL1)+ (B×RUL2)

7. Both the input data (x) and the predicted RUL get stored in IPFS, updating its address in
(Cp) by initiating a transaction with its (Id). It’s pivotal that (Cp) ratifies this operation
prior to its endorsement.
DataAddress= P −→ StoreInIPFS(x,RUL)

If(Cp−→GetNode(Cac,P))=Class(predictor),True then

P −→ SetTrainData(Cp,Id,DataAddress)
In scenarios with multiple predictor nodes, the average RUL can serve as the ultimate

RUL. Algorithm 5 delineates the above steps in pseudocode form.

MATERIALS AND METHODS
Materials
Testbed setting
To ascertain the efficacy of the proposed system, an intricate simulation environment
was established. The testbed is structured on cutting-edge hardware specifications,
encompassing a 12th Gen Intel (R) Core(TM) i9-12900H processor with a clock speed of
2.90 GHz, supported by a generous 32 GB RAM, operating on the latest Windows 11 OS.
System architecture incorporates multiple domains as shown before, signified as (S). Each
is distinguished by its unique input data but adheres to a consistent operational behavior.
Initially, one set (S) and one manager node (M ) were selected from the performance
evaluations. This set, (S), amalgamates distinct nodes: a trainer node (T ), a predictor node
(P). In concert, these nodes form a localized decentralized processing and storage network,
facilitating efficient decentralized computations and data management.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 20/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Algorithm 5: Predicting Pipeline Algorithm

1 P queries Cp for model addresses
2 if Cp.GetNode(Cac ,P)=Class(predictor),True then
3 ModelAddress1(DLe)= P.GetModel(Cp,Id)
4 ModelAddress2(DLu)= P.GetModel(Cp,Id)
5 end

6 DLe = P.GetFromIPFS(ModelAddress1)
7 DLu= P.GetFromIPFS(ModelAddress2)

8 P queries Cc for configuration
9 if Cc .GetNode(Cac ,P)=Class(predictor),True then
10 Config = P.GetConfig(Cc ,Id)
11 end

12 Processed(x)=Preprocess((x),Config )
13 RUL1=DLe(x)
14 RUL2=DLu(x)
15 RUL= (A∗RUL1)+ (B∗RUL2)

16 DataAddress= P.StoreInIPFS(Trained(x,RUL))
17 if Cp.GetNode(Cac ,P)=Class(predictor),True then
18 P.SetTrainData(Cp,Id,DataAddress)
19 end

For decentralized computations, the choice is to use the Ethereum blockchain (Buterin,
2017), predominantly using the GETH implementation, simulating an extensive blockchain
environment (Lange & Trón, 2022). To implement a decentralized computational network,
implementation instantiated a localized private GETH network. Concurrently, for
decentralized storage, the IPFS client software is harnessed, ensuring a perpetual and
decentralized mode of data storage and sharing. The network hosts three smart contracts:
(Cac), (Cc), and (Cp). System nodes are then registered to (Cac) using the ensuingmethods:

M −→Register(Cac,(T (Class: 2,Status: True)))

M −→Register(Cac,(P(Class: 3,Status: True)))

Dataset
In this research, the N-CMAPSS dataset has been used, which provides synthetic run-
to-failure degradation trajectories of a fleet of turbofan engines simulated under realistic
flight conditions (Chao et al., 2021). Specifically, the focus is on the DS02 subset of the
N-CMAPSS dataset. The dataset captures measurements, observations, and conditions
recorded during entire flights on a commercial jet, including various flight stages such as
climb, cruise, and descent. A CMAPSS system model is employed to generate this dataset,
where the inputs comprise scenario-descriptor operating conditions and latent model
health parameters. The outputs include RUL estimates and other unobserved properties

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 21/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


not part of the condition monitoring signals, thus acting as virtual sensors. The raw dataset
initially includes six categories of variables: operative conditions, measured signals, virtual
sensors, engine health parameters, RUL label, and auxiliary data. Furthermore, the given
dataset consists of nine engine units with numbers (2, 5, 10, 11, 14, 15, 16, 18, 20). These
units are similar in terms of feature number and scale of data but differ in terms of the
number of samples.

Methods
Pre-processing
Data pre-processing is a pivotal phase in the DL pipeline, influencing the efficacy and
performance of the resulting models. In the proposed system, two pipelines leverage
DL, each mandating specific data preprocessing tailored to the demands of encoder–
decoder models (Ranjan, Prusty & Jena, 2021). The fundamental steps constituting this
preprocessing procedure include:
1. Handling missing values: Real-world datasets frequently suffer from incomplete or

absent data points. This preprocessing step rectifies the scenario either by substituting
missing values with suitable replacements or excising instances characterized by
data voids. Such rectification ensures algorithmic operations unhindered by data
inadequacies. An initial exploration led us to impute missing data via the forward fill
methodology, retaining the time series data’s continuity.

2. Feature selection: Discerning and selecting salient features can augment model
performance while simultaneously curtailing computational intricacy. Techniques
spanning filter methods, wrapper methods, or embedded methods assist in cherry-
picking themost germane features. A comprehensive exploratory data analysis, fortified
by domain knowledge and precedent studies on the dataset with the correlation test,
dictated the feature selection approach.

3. Feature scaling: Datasets often present features varying in scales. This variability
can disrupt model training. Preprocessing strategies, such as normalization or
standardization, harmonize feature scales, ensuring unbiased feature consideration
during the model’s learning phase. This was achieved this by scaling the chosen
features using the MinMaxScaler technique, ensuring data normalization and outlier
mitigation.

4. Data reshaping for encoder-decoder models: Encoder–decoder architectures demand
data tailored to specific configurations, often sequential data representations. Thus,
preprocessing adapts data to fit these prerequisites, which could involve transforming
time series data into sequenced, fixed-length windows or modifying input data
dimensions. The subsequent step involved reformatting the dataset into a three-
dimensional structure, making it compliant with the encoder–decoder model
prerequisites. The final dataset, post-processing, encapsulates 29 features, primed
for DL models.

Walk-forward validation
Walk-forward validation emerges as a potent tool to validate time series predictive models
(Makridakis, Spiliotis & Assimakopoulos, 2018). It particularly shines when evaluating

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 22/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


models on chronologically significant data. This technique aims to mirror a model’s
realistic forecasting prowess, capitalizing on the latest available data. In walk-forward
validation, the dataset is cleaved into sequential, non-overlapping training and validation
sets. Upon an initial training bout on the training set, model validation transpires on the
first test set. The training data set then ingests data from this initial validation, instigating
a subsequent retraining followed by evaluation on the succeeding test set. This cyclical
pattern persists until all validation sets undergo assessments.

The preeminence of walk-forward validation lies in its authentic representation of a
model’s real-world performance. As new data trickles in over time, the model continuously
adapts, resonating with the dynamic data landscape. It also diminishes overfitting
potential by iteratively testing across diverse datasets, countering any tendencies toward
overoptimizing for a single dataset. Algorithm 6 offers an illustrative portrayal of this
method as harnessed in suggested research.

Algorithm 6:Walk-Forward Validation for RUL Prediction
Data: nsplits,X ,npast,nfuture
Result: RUL Prediction

1 ntrain← shape(X)[0]/(nsplits+1)
2 nval← ntrain
3 i← 0
4 while i< nsplits do
5 train_data←X [: ntrain× (i+1)]
6 val_data←X [ntrain× (i+1) : ntrain× (i+1)+nval]
7 test_data←X [ntrain× (i+1)+nval : ntrain× (i+2)+nval]
8 X_train,y_train← reshape_dataset(train_data,npast,nfuture)
9 X_val,y_val← reshape_dataset(val_data,npast,nfuture)
10 X_test ,y_test← reshape_dataset(test_data,npast,nfuture)
11 fit(X_train,y_train,X_val,y_val)
12 predictions← predict(X_test )
13 i← i+1
14 end

Deep learning initialization
The study integrates two distinct DL models: the (Dle) (fixed model) and (Dlu) (dynamic
updatable model). The (Dle) model, once trained during system initialization, remains
constant within the decentralized storage. It leverages dropout as a regularizing mechanism
to counteract overfitting. In contrast, the (Dlu) model is inherently dynamic, warranting
regular updates via the training pipeline. The distinction between these models is
fundamentally anchored in their weight values; while the weights in the (Dle) model
remain unchanged post-initialization, the weights in (Dlu) are recurrently modified in sync
with incoming data streams.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 23/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 5 Basic DLmodel architecture.
Full-size DOI: 10.7717/peerjcs.1712/fig-5

Table 5 Basic setup configuration.

Hyper-parameter Value Hyper-parameter Value

Past observation steps 25 Dropout 0.4
Future observation Steps 10 Number of features 29
Validation split 5 A parameter 0.9
Learning rate 0.001 B parameter 0.1

An encoder–decoder-based DL architecture underpins the proposed system, as depicted
in Fig. 5. The model’s hyper-parameters, inclusive of dropout layers designed to deter
overfitting, are cataloged and stored within the (Cp) contract. A detailed exposition of
these hyper-parameters is presented in Table 5. Both the (T ) and (P) nodes can readily
access these hyper-parameters, which facilitates a harmonized functioning of the models
across divergent nodes. This configuration epitomizes the foundational setup utilized for
the majority of experimental facets. Notably, in line with the recommendations from Chao
et al. (2021), the RMSE serves as the primary metric for gauging system efficacy given the
employed dataset.

RESULTS AND DISCUSSION
System validation
To validate the dynamic updating capability and domain independence of the system, two
series of tests were conducted, comparing the proposed system with traditional PdM. The
results of these tests are presented in the following section.

Dynamic updating validation
To further assess the dynamic updating of the proposed system, extensive tests were
conducted using Root Mean Squared Error (RMSE) as the evaluation metric. Ten rounds
of testing were carried out, with each round processing approximately 100k observations of
test data through the predictor pipeline. The generated data, along with its corresponding
predictions, was integrated into the training pipeline, prompting the model to retrain and
adjust to this new data influx. Following this, the predictor pipeline was executed once
again with a distinct set of 100k observations, and the results were documented as shown
in Fig. 6.

In the time series prediction task, this study thorough tests showed how the dynamic
updatable model, the fixed model, and the weighted average approach each have their own
roles and benefits. The dynamic updatable model, crafted to adapt continuously and learn
from new data, demonstrated exceptional prowess in refining the average RUL predictions.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 24/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-5
http://dx.doi.org/10.7717/peerj-cs.1712


Given its inherent design, this model’s adaptability enables it to capture evolving trends in
time series data, thereby delivering more accurate and timely RUL estimates. For instance,
during the second round, the dynamic model produced an RMSE of 0.0051, contrasting
the fixed model’s 0.0067, leading to a conclusive RMSE of 0.0066. Such outcomes affirm
the dynamic model’s potential to elevate the quality of the final prediction. Comparable
enhancements were noticed in rounds 3, 4, 6, and 9. This commendable performance
substantiates its utility in real-world settings, where data is in a constant state of flux and
models are expected to adjust accordingly.

Conversely, the fixed model offers a consistent foundation for the required predictions.
Although it might not perpetually match the dynamic updatable model’s performance,
its worth is manifested in its unwavering consistency. Initialized during system setup and
remaining static thereafter, it furnishes a trustworthy benchmark for predictive endeavors.
As an illustration, in the seventh round, the dynamic model’s elevated RMSE of 0.0075 was
counterbalanced by the fixed model’s diminished RMSE of 0.0066, culminating in a final
RMSE of 0.0067.

The weighted average methodology serves a pivotal function by amalgamating the
predictions of both models. It melds the dynamic updatable model’s adaptability with the
unwavering nature of the fixed model. The weighted average’s parameters can be tailored
to either model, thus introducing predictive adaptability contingent on the task’s distinct
requirements. The parameters (A) and (B) were arbitrarily assigned values, ensuring (A) was
no less than 7 and (B) was no more than 3, while the sum is always 1. This strategy ensures
prediction stability while simultaneously leveraging the continuous insights furnished by
the dynamic updatable model.

Domain-independent validation
To showcase the domain-agnostic nature of the DL predictive system, experiments were
carried out with two unique and independent models. Each model tackled various sets and
domains with divergent features and hyperparameters. The initial model utilized a basic
setup configuration, while the second was designed around the ‘‘measured signals’’ segment
of the dataset, opting for distinct hyper-parameters and substituting LSTMwith GRU. Such
an approach facilitated a stark contrast in configurations between the two models. The
primary goal was to ascertain the system’s proficiency in managing diverse data series from
different domains while maintaining consistent performance. For performance evaluation,
a walk-forward validation method was applied, incorporating a 5-fold cross-validation
strategy. Uniform testing data was employed across both domains to guarantee a fair
comparison. RMSE served as the chosen evaluation metric to appraise the predictive
capabilities of the system.

To represent the results visually, a graph delineating the RMSE values derived from
the walk-forward validation for each domain was constructed, as depicted in Fig. 7. The
graph shows that the RMSE values are the same across all the folds, which shows that the
suggested decentralized DL system works across all domains. As evident from the figure,
domain 1 exhibited superior performance across most of the folds, predominantly due to
the efficacy of the LSTM-LSTM model configuration. This trend was consistent for folds

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 25/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 6 Dynamic updatable approach validation using basic setup configuration.
Full-size DOI: 10.7717/peerjcs.1712/fig-6

2, 3, 4, and 5. However, fold 1 stood as an exception, with model 2 outpacing model 1
by registering an RMSE of 0.00544 against 0.0061. Notably, the discrepancy between the
performances of the twomodels remainedmarginal. As a case in point, for fold 3, the RMSE
values mirrored each other closely, with only a slight deviation of approximately 0.00043.
In conclusion, the walk-forward validation outcomes showcased a consistent RMSE trend
across both domains. This strong uniformity proves that the suggested decentralized DL
system is domain-independent, showing that it can accurately predict the RUL across a
wide range of domains, even when the data has different properties.

System accuracy
The model was trained using data from units (2, 5, 7, 10, 11, and 15), adhering to the
specified initialization in the basic setup, and then tested on units (16, 18, and 20). A
Walk-Forward validation strategy was applied, dividing the training dataset into five
distinct folds. The insights derived from the experiments on the designed autoencoder
model are revealing. By observing the training and validation curves in Fig. 8, it is evident
that the suggested model demonstrates an impressive learning rate, with a slight divergence
between these curves. Optimal training loss results were achieved at epochs 9 and 12,
reaching a low of 0.0019. Regarding validation loss, the lowest value was noted at epoch 20,
registering at 0.0019, thanks to the implementation of an early stop approach during the
training process. These findings suggest that the suggested model is well balanced, showing

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 26/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-6
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 7 Domain-independent validation curves.
Full-size DOI: 10.7717/peerjcs.1712/fig-7

no signs of overfitting or underfitting, thereby reinforcing its capacity to generalize to new,
unseen data.

In comparison with other models based on RMSE, the autoencoder model exhibits
superior performance, recording lower error rates, as illustrated in Fig. 9. This reduced
RMSE suggests that the suggested model’s predictions are more consistently accurate. The
LSTM-LSTMmodel achieved the best performancewith anRMSEof 0.0022, reinforcing the
choice of this model setup. Other encoder–decoder models also showcased commendable
performance. For instance, the GRU-LSTM, GRU-GRU, and CNN GRU models yielded
RMSEs of 0.0025, 0.003, and 0.0051, respectively. The effectiveness of encoder–decoder
models can be attributed to the context vector, which conveys crucial features from
the encoder to the decoder, equipping the decoder with the necessary information
for better predictions. A lower RMSE indicates a higher quality of RUL predictions,
making the suggested model highly beneficial for precision-demanding applications.
In comparison to related studies, this research demonstrates remarkable precision in
predictive maintenance, as shown in Table 6. For instance, in the context of RMSE,
proposed model yields an impressive value of 0.0022. This stands in stark contrast to the
findings presented in the study (Maulana, Starr & Ompusunggu, 2023), where the RMSE
is reported as 0.05. Furthermore, when compared to Ma et al. (2021), which reports an
RMSE of 0.0994, proposed model excels in accuracy. Notably, the article Berghout et al.
(2022) presents an RMSE value of 5.64, which, when properly scaled, reduces to 0.01
in favorable scenarios. These comparisons highlight the exceptional performance of the
proposed predictive maintenance model, underscoring its capacity to enhance reliability

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 27/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-7
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 8 Training vs validation curve for basic setup configuration.
Full-size DOI: 10.7717/peerjcs.1712/fig-8

and precision in dynamic industrial settings. The encoder-decoder model, purposefully
crafted for this system and fine-tuned with dropout techniques, consistently delivers
outstanding performance results. This success is further reinforced by the systematic
preprocessing methods, affirming the model’s reliability and effectiveness.

Our model’s performance under varying scenarios of past and future observations,
depicted in Fig. 10, offers intriguing insights. The model showcases consistent performance
across a wide range of past and future observations, indicating its adaptability. There is a
trend where the model’s performance peaks with specific combinations of past and future
observations, especially when both are below 30. All tests with fewer than 30 past and future
observations recorded an RMSE below 0.003. However, the RMSE could rise to 0.0035
for past values nearing 100 observations. This trend suggests the model’s proficiency in
deciphering inherent patterns in time-series data when considering a specific window of
past and future observations.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 28/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-8
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 9 RMSE results using different DLmodels for basic setup configuration.
Full-size DOI: 10.7717/peerjcs.1712/fig-9

System performance
Our thorough performance evaluation included three main tests that were meant to see
how well and how easily the suggested system could be expanded: the amount of gas
used, the time it took to run for two different domain pipelines, and the time it took to
run for different amounts of past and future observations. Initially, gas consumption was
closely examined during various phases of contract execution, with results presented in
Table 7. It is discernible that contract deployment was the primary gas guzzler, with the
publish contract alone accounting for a gas usage of 1,362,320 wei. The initialization phase
was another notable gas consumer; for instance, the basic setup necessitated a total gas
expenditure of ((2∗add Node)+Set Configuration+(2∗Set model )+Set Training Data+
Change Training Status) ((2∗25782)+196584+(2∗145227)+145184+14819= 753406)
wei. Intriguingly, post-initialization, the suggested system’s gas consumption remained
consistently modest, a feat that persisted irrespective of the domain count. Such

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 29/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-9
http://dx.doi.org/10.7717/peerj-cs.1712


Table 6 Comparison of RMSE values with related studies.

Study RMSE

Our research 0.0022
Maulana, Starr & Ompusunggu (2023) 0.05
Ma et al. (2021) 0.0994
Berghout et al. (2022) 0.01 (scaled from 5.64)

Figure 10 RMSE given different past (P) and future (F) time steps for basic setup configuration.
Full-size DOI: 10.7717/peerjcs.1712/fig-10

efficiency can be attributed to strategic contract design, which eschewed loops in favor
of mapping structures for data storage. As a case in point, the predicting pipeline’s gas
requirement was ((2∗Get Model Data)+ (2∗Get Configuration)+Update Train Data)
((2 ∗ 24823)+ (2 ∗ 30830)+ 29222= 140528) wei, while the training pipeline’s gas
usage was (Get Train Status+Update model+Get Model Data+Get TrainData+
Get Configuration) (2829+31977+24823+28528+30830= 118510) wei. Such efficiency
benchmarks underscore the system’s scalability and cost-competitiveness.

Our subsequent analysis aimed at deciphering the system’s adeptness in multitasking
across domains, a metric gauged via pipeline execution duration for two contrasting
domains. The relevant data is cataloged in Table 8. Intriguingly, the examination revealed
minimal incremental increases in execution time, even with the concurrent operation of
both domains. Specifically, the cumulative execution duration for the first training pipeline
stood at 243.265 s, contrasting with 194.064 s for its second counterpart. On the flip side,
the execution duration for the prediction pipelines for the first and second domains was

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 30/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-10
http://dx.doi.org/10.7717/peerj-cs.1712


Table 7 Execution gas for smart contract aspects.

Function Contracts
deployment

Initiation Predicting
pipeline

Training
pipeline

Get train status 0 0 0 2,829
Update model 0 0 0 31,977
Update train data 0 0 29,222 0
Get model data 0 0 24,823 24,823
Get train data 0 0 0 28,528
Get configuration 0 0 30,830 30,830
Add node 0 25,782 0 0
Set configuration 0 196,584 0 0
Set model 0 145,227 0 0
Set training data 0 145,184 0 0
Change train status 0 14,819 0 0
Deploy access contract 520,152 0 0 0
Deploy configuration contract 881,819 0 0 0
Deploy publish contract 1,362,320 0 0 0

Table 8 Execution time for two domains use-case.

Aspect Training
pipeline 1(S)

Prediction
pipeline 1(S)

Training
pipeline 2(S)

Prediction
pipeline 2(S)

System initialization 0.074 0.067 0.079 0.072
Blockchain 0.21 0.26 0.187 0.22
Decentralized storage 0.205 0.31 0.152 0.286
Deep learning 242 51 193 42
Data conversion 0.626 0.84 0.522 0.763
Data preprocessing 0.15 5.23 0.124 4.97
Total 243.265 57.707 194.064 48.311

57.707 s and 48.311 s, respectively. Such variations in execution times were predominantly
dictated by data volume and the hyper-parameters tailored for preprocessing and data
transposition.

Lastly, an investigation was conducted to comprehend the relationship between the
size of past and future observations and the duration of the training pipeline’s execution.
The results of this endeavor are graphically represented in Fig. 11. Scrutiny unearthed a
proportional relationship between observation sizes and execution times: a surge in the
former corresponded to an elongation of the latter. For context, a round encapsulating both
the prediction and training pipeline had an execution span of 111 s for 15 past observations
juxtaposed with 5 future ones. Yet, this duration spiraled to 996 s when contending with
100 past and 50 future observations. This behavior can predominantly be traced back to the
amplified preprocessing and DL computations warranted by an augmented observation
window.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 31/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Figure 11 Execution time with different past observation (P) and future observation (F).
Full-size DOI: 10.7717/peerjcs.1712/fig-11

Summary of experimental findings
In summary, the comprehensive validation of the suggested decentralized predictive
maintenance system demonstrates its remarkable capabilities. Through extensive testing,
we have affirmed its dynamic updating capability, showing how it continuously adapts and
learns from new data to improve the accuracy of remaining useful life (RUL) predictions.
Additionally, this system exhibits domain independence, successfully managing diverse
data series from different domains while consistently delivering reliable RUL predictions.
The system’s superior performance in terms of RMSE and ability to generalize well to new,
untested data highlight its accuracy. Furthermore, it displays adaptability across a range
of past and future observation sizes, providing consistent performance. Proposed system’s
efficiency and scalability are evident in its modest gas consumption and minimal execution
time increases, even when multitasking across domains. These findings collectively affirm
the robustness and real-world applicability of the suggested decentralized predictive
maintenance system,making it a promising solution for dynamic and domain-independent
RUL prediction in various industrial settings.

Security discussion
Considering the attributes of the suggested decentralized DL system, its security can be
analyzed based on the CIA triad: confidentiality, integrity, and availability.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 32/41

https://peerj.com
https://doi.org/10.7717/peerjcs.1712/fig-11
http://dx.doi.org/10.7717/peerj-cs.1712


Confidentiality
Encryption and other methods of access control are frequently utilized in the context of
blockchain technology and decentralized data storage in order to protect confidentiality
resources (Warkentin & Orgeron, 2020). The data in the suggested system is spread
out across plenty of nodes, which lessens the likelihood of unauthorized access to the
information or its publication. In addition, because smart contracts automatically enforce
the business logic that is described within them, access controls are maintained by them
intrinsically. The purpose of a smart contract, and especially an (Cac) contract, is to give
authentication to every node in the system. This makes it possible for the data to be sourced
from authenticated entities. As an illustration, the prediction and training pipeline both
make use of a smart contract function that always triggers the check node function in the
(Cac) smart contract.

Integrity
Integrity is a key component of any system that exchanges or processes data, and it is
especially important when those data are used to make important predictions, like the
RUL forecasts in the suggested system (Warkentin & Orgeron, 2020). Due to a few crucial
components, the system’s design guarantees a high level of data integrity. Due to its
immutable nature, blockchain, which serves as the foundation of the suggested system,
delivers great data integrity by default (Warkentin & Orgeron, 2020). Data is unchangeable
once it is contained in a block and added to the blockchain (Akhter et al., 2021).

A permanent and irreversible record is produced in this way. The blockchain ensures the
authenticity of the model parameters and training data for the DL models utilized in the
system. Accordingly, once a model has been trained and its parameters have been recorded
in a block, they cannot be deliberately or unintentionally changed, resulting in predictions
that are dependable and consistent. The data integrity of the system is further improved by
the use of a decentralized storage solution like IPFS. Data does not change during storage
or retrieval because of its distributed nature. Each item of saved data has a distinct hash
that confirms its integrity. As a result, the system may be confident that the data it returns
for prediction is identical to what it was when it was saved.

Each smart contract in the suggested system ((Cac),(Cc),and(Cp)) has a specific purpose,
and together they work to maintain the integrity of the addresses of model metadata and
training data. The final forecast would not be affected even if an attacker were to successfully
inject false data or alter the address of a model or piece of data in the decentralized storage.
This is so that the system can confirm the data’s origin before processing it. For instance,
the outcome of the prediction would be unaffected if attacker (K ) is successful in adding
model metadata or training data to the decentralized storage. This is because A cannot
connect with (Cc) or the predicting contract (Cp) because (K ) is not registered by the
Access Control Contract (Cac).

Availability
The ability of a system to continue to be reachable and operational when its services are
needed is referred to as availability (Warkentin & Orgeron, 2020). The suggested system’s
decentralized architecture ensures high availability. The suggested solution makes use

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 33/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


Table 9 Comparison with the related work the field of PdM (1. Real-time processing, 2. resource limi-
tations, 3. heterogeneity, 4. mobility, 5. scalability, 6. connectivity).

Ref Main techniques Challenges

1 2 3 4 5 6

Feng & Li (2022) ML+DL X X X X X X

Li et al. (2022) ML+DL X X X X X X
Ong et al. (2022) DL + ML X X X X X X
Bharti & McGibney (2021) DL X X X X X X

Lu & Lee (2022) ML X X X X X X
Catelani et al. (2021) DL X X X X X X
Wu et al. (2021) DL X X X X X X
Cheng et al. (2021) DL X X X X X X
Ren et al. (2021) DL X X X X X X
Suggested solution DL X X X X X X

of blockchain technology, which allows data to be kept across several dispersed nodes
in a distributed ledger rather than on a single central server. This offers two significant
advantages. Data is disseminated throughout a network of nodes, preventing a single point
of failure in the system. The system can still retrieve the data from another node if a node
is rendered inaccessible by unforeseen events like hardware failure, network problems, or
other problems. Second, the immutability of the blockchain guarantees that once data has
been recorded, it is always accessible, preventing data loss. Decentralized storage enhances
availability in a similar way. Due to its decentralized structure, the network nodes only
keep the files they are interested in or that users pay them to store. Each file and each
block inside it are assigned a distinct fingerprint (Doan et al., 2022). A lot of nodes will
keep a single file if it is popular; thus, even if some nodes go offline, the file will still be
accessible. While the blockchain guarantees the availability of the data, the metadata of the
DL models, and the functionality of the smart contracts, the computational tasks related to
training and prediction are performed off-chain instead and are thus not constrained by
the blockchain’s restrictions. As a result, the system’s availability is preserved even under
tremendous load. The suggested system is incredibly durable and available thanks to the
interaction of these many parts, offering dependable service to its consumers.

Comparative analysis
This research suggest extensive analyses for the above research in comparison with the
suggested approach. The analysis focuses on the challenges encountered in the field of PdM,
as shown in Table 9. Considering the challenges of PdM, insights are derived from Alabadi,
Habbal & Wei (2022), which specifically addresses the challenges associated with IoT in
the context of predictive maintenance. As the suggested system relies on data collected
from IoT devices, these challenges are directly relevant to the suggested approach. The
decentralized system presented effectively tackles these challenges, showcasing its potential
to surmount major hurdles encountered in the domain.

Firstly, in terms of real-time processing (Yasumoto, Yamaguchi & Shigeno, 2016),the
suggested system is designed to handle observations in real time, particularly at the

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 34/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


edge level. This ensures timely and efficient predictions. Secondly, the suggested system
addresses resource limitations by distributing the prediction and training processes among
separate nodes, thereby reducing resource requirements. Thirdly, scalability concerns are
addressed by illustrating the system’s capability to manage multiple domains, showcasing
its versatility for potential applications across diverse sectors (Gupta, Christie & Manjula,
2017). Connectivity is the final issue that the suggested solution addresses. This challenge
is partially solved by using blockchain-secure data communication mechanisms, but there
is still a need for further improvement regarding the data connectivity between device
level and edge level. Acknowledging the need for further improvements in addressing data
heterogeneity and mobility challenges is a step towards enhancing the system’s robustness
and adaptability (Ghaleb et al., 2016; Montori, Bedogni & Bononi, 2016).

Our system excels at managing time-series data, but heterogeneity is a significant
obstacle. Data heterogeneity in the context of PdMmay originate from a variety of sources.
Diverse varieties of machinery, for instance, will generate distinct sensor readings and
operational data, each with its own format and scale. Additionally, data can be collected
from multiple locations or under various operational conditions, which adds an additional
layer of complexity. Variability in data quality and granularity can be introduced by the use
of various types of sensors for data collection. All of these variables contribute to the data
heterogeneity. Handling mobility in a decentralized system for PdM based on DL presents
several challenges. These include addressing data variability due to changes in equipment
location and environmental conditions, managing potential network connectivity issues
in remote areas, addressing latency introduced by longer distance data transmissions, and
ensuring data security during transmission. For the system to function proficiently in a
variety of operational and geographical scenarios, each of these factors requires careful
consideration and inventive solutions.

Limitations and future work
This research, while advancing the field of predictive maintenance, acknowledges certain
limitations with plans to address them in future studies:
1. Blockchain constraints: Current implementation, while robust, may face challenges

in terms of transaction time and processing, particularly when handling large-scale
networks.

2. Dataset limitation: The proposed solution has been validated for a specific type of
dataset. Scaling the solution to accommodate various types of datasets remains a
challenge and demands further exploration.

3. Access list limitations: As this research presents access list approach, though effective,
has its set of constraints, particularly when it comes to scalability in large-scale networks.

4. Data privacy: Although we’ve incorporated decentralized storage, there’s still room
to enhance data privacy. Current encryption mechanisms can be improved further to
safeguard against evolving threats.

5. Data heterogeneity & systemmobility: Further exploration of data heterogeneity
and system mobility challenges is essential to enhance the system’s robustness and
versatility.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 35/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


In light of these limitations, future work is set out to explore the following avenues:

• Proposing scalable solutions that can manage larger-scale networks without
compromising on the blockchain’s inherent advantages.
• Investigating advanced encryptionmechanisms to reinforce data privacy in decentralized
storage systems.
• Delving into the challenges presented by data heterogeneity and system mobility to
ensure the system’s seamless functioning across diverse scenarios.
• Considering strategies to optimize the system’s performance, especially when handling
vast observation sizes, will be pivotal.

CONCLUSIONS
This study introduces a novel decentralized Predictive Maintenance (PdM) system tailored
for accurate Remaining Useful Lifetime (RUL) predictions. By seamlessly integrating
blockchain technology, decentralized storage based on IPFS, and deep learning (DL), the
proposed system offers innovative solutions to long-standing challenges in traditional PdM
methods. In the proposed system, DL handles prediction tasks based on observed data,
while blockchain ensures the secure and efficient movement of data. Decentralized storage
safeguards crucial model metadata and training data. System in this study is organized into
three distinct levels: Device, Edge, and Monitoring levels. It efficiently manages training
and prediction pipelines in a decentralized manner, harnessing the coordinated efforts of
trainer nodes, predictor nodes, and manager nodes. A notable contribution of this research
is the introduction of a dynamic model updating mechanism, a departure from commonly
used static models. This mechanism empowers the given system to continuously adapt to
evolving conditions within the Industrial Internet of Things (IIoT) environment, ensuring
enduring accuracy and practicality in real-world applications. Furthermore, proposed
system demonstrates domain-agnostic capabilities, offering the flexibility to handle diverse
streams of time-series data. This adaptability eliminates the constraints often associatedwith
traditional PdM approaches, ushering in a new era of flexibility across various industrial
domains. The implementation results underscore the feasibility and effectiveness of the
proposed system. Lower RootMean Square Error (RMSE) scores compared to cutting-edge
models show that this study achieve superior prediction accuracy. These results validate the
dynamic updating and domain independence features of proposed system. Additionally,
the performance analysis highlights the system’s scalability, even when dealing with
varying input and output data scales. Given the paramount importance of security in the
IIoT landscape, Suggested system has been fortified with rigorous security measures. A
comprehensive analysis encompassing Confidentiality, Integrity, and Availability (CIA)
demonstrates the system’s robust ability to safeguard both data and entities from potential
breaches. Finally, this study provide a transparent overview of the system’s limitations and
outline directions for future research.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 36/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1712


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Montdher Alabadi conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.
• Adib Habbal supervised the project, prepared the conceptual framework, analyzed the
results, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at the NASA Prognostics Center of Excellence Data Set Repository
under ’’17. Turbofan Engine Degradation Simulation-2’’: https://data.phmsociety.org/nasa/.

The code is available at Zenodo: Montdher Alabadi. (2023). montdher10/Dynamic_DL:
Next-generation predictive maintenance: leveraging blockchain and dynamic deep learning
in a domain-independent system. (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8429718

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1712#supplemental-information.

REFERENCES
Akhter AF, AhmedM, Shah AF, Anwar A, Zengin A. 2021. A secured privacy-preserving

multi-level blockchain framework for cluster based VANET. Sustainability (Switzer-
land) 13:1–25 DOI 10.3390/su13010400.

Al-Amri R, Zakaria NH, Habbal A, Hassan S. 2019. Cryptocurrency adoption: current
stage, opportunities, and open challenges. International Journal of Advanced
Computer Research 9:293–307 DOI 10.19101/IJACR.PID43.

Alabadi M, Habbal A,Wei X. 2022. Industrial Internet of Things: requirements,
architecture, challenges, and future research directions. IEEE Access 10:66374–66400
DOI 10.1109/ACCESS.2022.3185049.

Altunay HC, Albayrak Z. 2023. A hybrid CNN+LSTM-based intrusion detection system
for industrial IoT networks. Engineering Science and Technology, an International
Journal 38:101322 DOI 10.1016/j.jestch.2022.101322.

Askar NA, Habbal A, Mohammed AH, Sajat MS, Yusupov ZYZ, Kodirov D. 2022.
Architecture, protocols, and applications of the Internet of Medical Things (IoMT).
Journal of Communications 900–918 DOI 10.12720/jcm.17.11.900-918.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 37/41

https://peerj.com
https://data.phmsociety.org/nasa/
https://doi.org/10.5281/zenodo.8429718
http://dx.doi.org/10.7717/peerj-cs.1712#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1712#supplemental-information
http://dx.doi.org/10.3390/su13010400
http://dx.doi.org/10.19101/IJACR.PID43
http://dx.doi.org/10.1109/ACCESS.2022.3185049
http://dx.doi.org/10.1016/j.jestch.2022.101322
http://dx.doi.org/10.12720/jcm.17.11.900-918
http://dx.doi.org/10.7717/peerj-cs.1712


Berghout T, Mouss M-D, Mouss L-H, BenbouzidM. 2022. ProgNet: a transferable
deep network for aircraft engine damage propagation prognosis under real flight
conditions. Aerospace 10:10 DOI 10.3390/aerospace10010010.

Bharti S, McGibney A. 2021. Privacy-aware resource sharing in cross-device fed-
erated model training for collaborative predictive maintenance. IEEE Access
9:120367–120379 DOI 10.1109/ACCESS.2021.3108839.

Boobalan P, Ramu SP, PhamQV, Dev K, Pandya S, Maddikunta PKR, Gadekallu TR,
Huynh-The T. 2022. Fusion of federated learning and industrial Internet of Things:
a survey. Computer Networks 212:109048 DOI 10.1016/J.COMNET.2022.109048.

Buterin V. 2017. Ethereum—design rationale. EthereumWiki. Available at https://github.
com/ethereum/wiki/wiki/Design-Rationale.

Catelani M, Ciani L, Fantacci R, Patrizi G, Picano B. 2021. Remaining useful life
estimation for prognostics of lithium-ion batteries based on recurrent neural
network. IEEE Transactions on Instrumentation and Measurement 217:1830–1838
DOI 10.1109/TIM.2021.3111009.

ChaoMA, Kulkarni C, Goebel K, Fink O. 2021. Aircraft engine run-to-failure dataset
under real flight conditions for prognostics and diagnostics. Data 2021 6:5
DOI 10.3390/DATA6010005.

Chen C, Shi J, Lu N, Zhu ZH, Jiang B. 2022a. Data-driven predictive maintenance strat-
egy considering the uncertainty in remaining useful life prediction. Neurocomputing
494:79–88 DOI 10.1016/J.NEUCOM.2022.04.055.

Chen P, Pei J, LuW, Li M. 2022b. A deep reinforcement learning based method for real-
time path planning and dynamic obstacle avoidance. Neurocomputing 497:64–75
DOI 10.1016/J.NEUCOM.2022.05.006.

Cheng Y,Wu J, Zhu H, Or SW, Shao X. 2021. Remaining useful life prognosis based
on ensemble long short-term memory neural network. IEEE Transactions on
Instrumentation and Measurement 70:3503912 DOI 10.1109/TIM.2020.3031113.

De Pater I, Reijns A, Mitici M. 2022. Alarm-based predictive maintenance scheduling
for aircraft engines with imperfect Remaining Useful Life prognostics. Reliability
Engineering & System Safety 221:108341 DOI 10.1016/J.RESS.2022.108341.

Doan TV, Psaras Y, Ott J, Bajpai V. 2022. Toward decentralized cloud storage with
IPFS: opportunities, challenges, and future considerations. IEEE Internet Computing
26:7–15 DOI 10.1109/MIC.2022.3209804.

FengM, Li Y. 2022. Predictive maintenance decision making based on reinforce-
ment learning in multistage production systems. IEEE Access 10:18910–18921
DOI 10.1109/ACCESS.2022.3151170.

Ghaleb SM, Subramaniam S, Zukarnain ZA, Muhammed A. 2016.Mobility manage-
ment for IoT: a survey. Eurasip Journal on Wireless Communications and Networking
2016 DOI 10.1186/s13638-016-0659-4.

Gupta A, Christie R, Manjula R. 2017. Scalability in Internet of Things: features, tech-
niques and research challenges. International Journal of Computational Intelligence
Research 13:1617–1627.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 38/41

https://peerj.com
http://dx.doi.org/10.3390/aerospace10010010
http://dx.doi.org/10.1109/ACCESS.2021.3108839
http://dx.doi.org/10.1016/J.COMNET.2022.109048
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/wiki/wiki/Design-Rationale
http://dx.doi.org/10.1109/TIM.2021.3111009
http://dx.doi.org/10.3390/DATA6010005
http://dx.doi.org/10.1016/J.NEUCOM.2022.04.055
http://dx.doi.org/10.1016/J.NEUCOM.2022.05.006
http://dx.doi.org/10.1109/TIM.2020.3031113
http://dx.doi.org/10.1016/J.RESS.2022.108341
http://dx.doi.org/10.1109/MIC.2022.3209804
http://dx.doi.org/10.1109/ACCESS.2022.3151170
http://dx.doi.org/10.1186/s13638-016-0659-4
http://dx.doi.org/10.7717/peerj-cs.1712


Hafeez T, Xu L, McArdle G. 2021. Edge intelligence for data handling and predictive
maintenance in IIoT. IEEE Access 9:49355–49371
DOI 10.1109/ACCESS.2021.3069137.

Hochreiter S, Schmidhuber JU. 1997. Long shortterm memory. Neural Computation
9:17351780.

Hu B, Zhang Z, Liu J, Liu Y, Yin J, Lu R, Lin X. 2021. A comprehensive survey on
smart contract construction and execution: paradigms, tools, and systems. Patterns
2:100179 DOI 10.1016/J.PATTER.2020.100179.

InterPlanetary File System (IPFS). 2020. IPFS documentation—IPFS Docs. Available at
https://docs.ipfs.tech/.

Kang P, YangW, Zheng J. 2022. Blockchain private file storage-sharing method based on
IPFS. Sensors 2022 22:5100 DOI 10.3390/S22145100.

Karim SM, Habbal A, Chaudhry SA, Irshad A. 2023. BSDCE-IoV: blockchain-based
secure data collection and exchange scheme for IoV in 5G environment. IEEE Access
11:36158–36175 DOI 10.1109/ACCESS.2023.3265959.

Kumar P, Kumar R, Gupta GP, Tripathi R, Jolfaei A, Islam AKN. 2023. A blockchain-
orchestrated deep learning approach for secure data transmission in IoT-enabled
healthcare system. Journal of Parallel and Distributed Computing 172:69–83
DOI 10.1016/j.jpdc.2022.10.002.

Lange F, Trón V. 2022.Welcome to go-ethereum. Available at https://geth.ethereum.org/
docs.

Li X, Ma X, Xiao F, Xiao C,Wang F, Zhang S. 2022. Time-series production forecasting
method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU)
network and Sparrow Search Algorithm (SSA). Journal of Petroleum Science and
Engineering 208:109309 DOI 10.1016/J.PETROL.2021.109309.

Li Z, Zhong RY, Tian ZG, Dai HN, Barenji AV, Huang GQ. 2021. Industrial blockchain:
a state-of-the-art survey. Robotics and Computer-Integrated Manufacturing
70:102124 DOI 10.1016/J.RCIM.2021.102124.

Liu J, Liu Z. 2019. A survey on security verification of blockchain smart contracts. IEEE
Access 7:77894–77904 DOI 10.1109/ACCESS.2019.2921624.

Lomonaco V, Maltoni D. 2017. CORe50: a new dataset and benchmark for continuous
object recognition. ArXiv arXiv:1705.03550v1.

Lu HW, Lee CY. 2022. Kernel-based dynamic ensemble technique for remain-
ing useful life prediction. IEEE Robotics and Automation Letters 7:1142–1149
DOI 10.1109/LRA.2021.3137909.

MaQ, ZhangM, Xu Y, Song J, Zhang T. 2021. Remaining useful life estimation for
turbofan engine with transformer-based deep architecture. In: 2021 26th inter-
national conference on automation and computing (ICAC). Piscataway: IEEE, 1–6
DOI 10.23919/ICAC50006.2021.9594150.

Makridakis S, Spiliotis E, Assimakopoulos V. 2018. Statistical and machine learning
forecasting methods: concerns and ways forward. PLOS ONE 13(3):e0194889
DOI 10.1371/JOURNAL.PONE.0194889.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 39/41

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2021.3069137
http://dx.doi.org/10.1016/J.PATTER.2020.100179
https://docs.ipfs.tech/
http://dx.doi.org/10.3390/S22145100
http://dx.doi.org/10.1109/ACCESS.2023.3265959
http://dx.doi.org/10.1016/j.jpdc.2022.10.002
https://geth.ethereum.org/docs
https://geth.ethereum.org/docs
http://dx.doi.org/10.1016/J.PETROL.2021.109309
http://dx.doi.org/10.1016/J.RCIM.2021.102124
http://dx.doi.org/10.1109/ACCESS.2019.2921624
http://arXiv.org/abs/1705.03550v1
http://dx.doi.org/10.1109/LRA.2021.3137909
http://dx.doi.org/10.23919/ICAC50006.2021.9594150
http://dx.doi.org/10.1371/JOURNAL.PONE.0194889
http://dx.doi.org/10.7717/peerj-cs.1712


Maulana F, Starr A, Ompusunggu AP. 2023. Explainable data-driven method combined
with bayesian filtering for remaining useful lifetime prediction of aircraft engines
using NASA CMAPSS datasets.Machines 11:163 DOI 10.3390/machines11020163.

Mohindru G, Mondal K, Banka H. 2020. Internet of Things and data analytics: a current
review.Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
10(3):e1341 DOI 10.1002/widm.1341.

Montori F, Bedogni L, Bononi L. 2016. On the integration of heterogeneous data sources
for the collaborative Internet of Things. In: 2016 IEEE 2nd international forum on
research and technologies for society and industry leveraging a better tomorrow, RTSI
2016 DOI 10.1109/RTSI.2016.7740616.

Mushtaq S, IslamMMM, SohaibM. 2021. Deep learning aided data-driven fault
diagnosis of rotatory machine: a comprehensive review. Energies 2021 14:5150
DOI 10.3390/EN14165150.

Namuduri S, Narayanan BN, Davuluru VSP, Burton L, Bhansali S. 2020. Review—deep
learning methods for sensor based predictive maintenance and future perspectives
for electrochemical sensors. Journal of the Electrochemical Society 167:037552
DOI 10.1149/1945-7111/AB67A8.

Nunes P, Santos J, Rocha E. 2023. Challenges in predictive maintenance—a review. CIRP
Journal of Manufacturing Science and Technology 40:53–67
DOI 10.1016/j.cirpj.2022.11.004.

Ong KSH,WangW, Niyato D, Friedrichs T. 2022. Deep-reinforcement-learning-based
predictive maintenance model for effective resource management in industrial IoT.
IEEE Internet of Things Journal 9:5173–5188 DOI 10.1109/JIOT.2021.3109955.

Qammar A, Karim A, Ning H, Ding J. 2023. Securing federated learning with blockchain:
a systematic literature review. Artificial Intelligence Review 56:3951–3985
DOI 10.1007/s10462-022-10271-9.

Raeisi-VarzanehM, Dakkak O, Habbal A, Kim B-S. 2023. Resource scheduling in edge
computing: architecture, taxonomy, open issues and future research directions. IEEE
Access 11:25329–25350 DOI 10.1109/ACCESS.2023.3256522.

Ran Y, Zhou X, Lin P,Wen Y, Deng R. 2019. A survey of predictive maintenance:
systems, purposes and approaches. IEEE Communications Surveys and Tutorials
ArXiv arXiv:1912.07383.

Ranjan KG, Prusty BR, Jena D. 2021. Review of preprocessing methods for univariate
volatile time-series in power system applications. Electric Power Systems Research
191:106885 DOI 10.1016/J.EPSR.2020.106885.

Ren L, Dong J, Wang X, Meng Z, Zhao L, DeenMJ. 2021. A data-driven auto-CNN-
LSTM prediction model for lithium-ion battery remaining useful life. IEEE Trans-
actions on Industrial Informatics 17:3478–3487 DOI 10.1109/TII.2020.3008223.

Ren L, Jia Z, Laili Y, Huang D. 2023. Deep learning for time-series prediction in IIoT:
progress, challenges, and prospects. IEEE Transactions on Neural Networks and
Learning Systems Epub ahead of print DOI 10.1109/TNNLS.2023.3291371.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 40/41

https://peerj.com
http://dx.doi.org/10.3390/machines11020163
http://dx.doi.org/10.1002/widm.1341
http://dx.doi.org/10.1109/RTSI.2016.7740616
http://dx.doi.org/10.3390/EN14165150
http://dx.doi.org/10.1149/1945-7111/AB67A8
http://dx.doi.org/10.1016/j.cirpj.2022.11.004
http://dx.doi.org/10.1109/JIOT.2021.3109955
http://dx.doi.org/10.1007/s10462-022-10271-9
http://dx.doi.org/10.1109/ACCESS.2023.3256522
http://arXiv.org/abs/1912.07383
http://dx.doi.org/10.1016/J.EPSR.2020.106885
http://dx.doi.org/10.1109/TII.2020.3008223
http://dx.doi.org/10.1109/TNNLS.2023.3291371
http://dx.doi.org/10.7717/peerj-cs.1712


Sanka AI, IrfanM, Huang I, Cheung RC. 2021. A survey of breakthrough in blockchain
technology: adoptions, applications, challenges and future research. Computer
Communications 169:179–201 DOI 10.1016/J.COMCOM.2020.12.028.

Sengupta J, Ruj S, Bit SD. 2020. A comprehensive survey on attacks, security issues and
blockchain solutions for IoT and IIoT. Journal of Network and Computer Applications
149:102481 DOI 10.1016/j.jnca.2019.102481.

Shafay M, Ahmad RW, Salah K, Yaqoob I, Jayaraman R, OmarM. 2023. Blockchain
for deep learning: review and open challenges. Cluster Computing 26:197–221
DOI 10.1007/s10586-022-03582-7.

Turker I, Tan SO. 2022.Machine learning vs. deep learning in 5G networks—a compari-
son of scientific impact. ArXiv arXiv:2210.07327.

Umair MB, Iqbal Z, Bilal M, Almohamad TA, Nebhen J, Mehmood RM. 2021. An
efficient internet traffic classification system using deep learning for IoT. Computers,
Materials and Continua 71:407–422 DOI 10.32604/cmc.2022.020727.

Wang S, Sheng H, Zhang Y, Yang D, Shen J, Chen R. 2023. Blockchain-empowered
distributed multi-camera multi-target tracking in edge computing. IEEE Transactions
on Industrial Informatics 1–10 DOI 10.1109/TII.2023.3261890.

Wang Z, Su X, Ding Z. 2021. Long-term traffic prediction based on LSTM encoder-
decoder architecture. IEEE Transactions on Intelligent Transportation Systems 22
DOI 10.1109/TITS.2020.2995546.

WarkentinM, Orgeron C. 2020. Using the security triad to assess blockchain technology
in public sector applications. International Journal of Information Management
52:102090 DOI 10.1016/j.ijinfomgt.2020.102090.

Wu JY,WuM, Chen Z, Li XL, Yan R. 2021. Degradation-aware remaining useful life
prediction with LSTM autoencoder. IEEE Transactions on Instrumentation and
Measurement 70(2021):3511810 DOI 10.1109/TIM.2021.3055788.

Yasumoto K, Yamaguchi H, Shigeno H. 2016. Survey of real-time processing tech-
nologies of IoT data streams. Journal of Information Processing 24:195–202
DOI 10.2197/ipsjjip.24.195.

Zhang C, Chen Y. 2020. A review of research relevant to the emerging industry trends:
industry 4.0, IoT, blockchain, and business analytics. Journal of Industrial Integration
and Management 05:165–180 DOI 10.1142/s2424862219500192.

Zhuang L, Xu A,Wang XL. 2023. A prognostic driven predictive maintenance frame-
work based on Bayesian deep learning. Reliability Engineering and System Safety
234:109181 DOI 10.1016/J.RESS.2023.109181.

Zonta T, da Costa CA, Zeiser FA, de Oliveira Ramos G, Kunst R, da Rosa Righi
R. 2022. A predictive maintenance model for optimizing production schedule
using deep neural networks. Journal of Manufacturing Systems 62:450–462
DOI 10.1016/J.JMSY.2021.12.013.

Alabadi and Habbal (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1712 41/41

https://peerj.com
http://dx.doi.org/10.1016/J.COMCOM.2020.12.028
http://dx.doi.org/10.1016/j.jnca.2019.102481
http://dx.doi.org/10.1007/s10586-022-03582-7
http://arXiv.org/abs/2210.07327
http://dx.doi.org/10.32604/cmc.2022.020727
http://dx.doi.org/10.1109/TII.2023.3261890
http://dx.doi.org/10.1109/TITS.2020.2995546
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102090
http://dx.doi.org/10.1109/TIM.2021.3055788
http://dx.doi.org/10.2197/ipsjjip.24.195
http://dx.doi.org/10.1142/s2424862219500192
http://dx.doi.org/10.1016/J.RESS.2023.109181
http://dx.doi.org/10.1016/J.JMSY.2021.12.013
http://dx.doi.org/10.7717/peerj-cs.1712

