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ABSTRACT
Neighborhood rough set is considered an essential approach for dealing with
incomplete data and inexact knowledge representation, and it has been widely
applied in feature selection. The Gini index is an indicator used to evaluate the
impurity of a dataset and is also commonly employed to measure the importance of
features in feature selection. This article proposes a novel feature selection
methodology based on these two concepts. In this methodology, we present the
neighborhood Gini index and the neighborhood class Gini index and then
extensively discuss their properties and relationships with attributes. Subsequently,
two forward greedy feature selection algorithms are developed using these two
metrics as a foundation. Finally, to comprehensively evaluate the performance of the
algorithm proposed in this article, comparative experiments were conducted on 16
UCI datasets from various domains, including industry, food, medicine, and
pharmacology, against four classical neighborhood rough set-based feature selection
algorithms. The experimental results indicate that the proposed algorithm improves
the average classification accuracy on the 16 datasets by over 6%, with improvements
exceeding 10% in five. Furthermore, statistical tests reveal no significant differences
between the proposed algorithm and the four classical neighborhood rough set-based
feature selection algorithms. However, the proposed algorithm demonstrates high
stability, eliminating most redundant or irrelevant features effectively while
enhancing classification accuracy. In summary, the algorithm proposed in this article
outperforms classical neighborhood rough set-based feature selection algorithms.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning
Keywords Neighborhood rough set, Gini index, Feature selection

INTRODUCTION
In data mining and machine learning, the goal of feature selection is to choose the most
representative and valuable features from the original dataset to improve the performance
and interpretability of models. In classification problems, a crucial feature selection step is
establishing an effective feature evaluation function for candidate feature subsets.
Common feature evaluation functions currently include consistency (Shin & Miyazaki,
2016), correlation (Gao et al., 2018;Malhotra & Jain, 2022), information gain (Zhang et al.,
2020; Prasetiyowati, Maulidevi & Surendro, 2022; Shu et al., 2023), mutual information
(Gao, Hu & Zhang, 2020; Lall et al., 2021), classifier error rate (Got, Moussaoui & Zouache,
2021; Moslehi & Haeri, 2020; Solorio-Fernández, Carrasco-Ochoa & Martínez-Trinidad,
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2016; Li et al., 2021), distance (Lee & Oh, 2016), Gini index (Park & Kwon, 2011; Manek
et al., 2017; Liu, Zhou & Liu, 2019), etc.

Rough set theory, proposed by Pawlak (1982) and continuously improved by
subsequent researchers, is a mathematical tool for dealing with uncertain and inexact
information. Recently, this theory has been widely applied to feature selection in data
mining and machine learning (Sang et al., 2022; Huang, Li & Qian, 2022; Zhang et al.,
2023; Wan et al., 2023; Yang et al., 2023). The rough set theory divides the dataset into
equivalence classes to reveal the dependency relationships among attributes and the
process of generating decision rules. For classification problems, rough set theory uses
features to induce binary relations and divides samples into different information granules
based on these binary relations. These information granules are then used to approximate
decision variables and represent upper and lower approximations of decisions. Based on
this, a feature evaluation function called the dependency function is defined. Different
types of binary relations lead to different granulation mechanisms, resulting in various
rough set models, such as classical rough set (Pawlak, 1982), similarity relation-based
rough set (Dai, Gao & Zheng, 2018), dominance relation-based rough set (Greco,
Matarazzo & Slowinski, 1999; Shao & Zhang, 2004), fuzzy rough set (Pawlak, 1985), and
other rough set models (Sang et al., 2018).

The neighborhood rough set (NRS) (Hu et al., 2008) is one of the most crucial rough set
models proposed to address the challenges of handling continuous features in classical
rough set theory. Since its application to feature selection (Hu et al., 2008), NRS has gained
widespread attention in data mining and machine learning (Liu et al., 2016; Zeng, She &
Niu, 2014). Many scholars have proposed different feature evaluation functions based on
this model and developed corresponding feature selection algorithms. Hu et al. (2011)
proposed neighborhood information entropy to address the fact that Shannon entropy
cannot directly evaluate uncertainty on continuous features. Wang et al. (2018) explored
some neighborhood distinguishability measures to assess data uncertainty. They proposed
the K-nearest neighbor NRS by combining the advantages of neighborhood and K-nearest
neighbors while focusing on data distribution (Wang et al., 2019b). Wang et al. (2019a)
proposed neighborhood self-information to utilize deterministic and uncertain
information better. Sun et al. (2019a, 2019b) introduced the Lebesgue measure into NRS,
enabling feature selection on infinite sets (Sun et al., 2019a) and incomplete sets (Sun et al.,
2019b). Li, Xiao &Wang (2018) extended discernibility matrices to NRS and applied them
to a power system stability assessment.

Many of the evaluation methods above extend the evaluation metrics for discrete
features to continuous random variables through neighborhood relations. For example,
neighborhood information entropy extends Shannon entropy to continuous random
variables, neighborhood discernibility matrix extends rough set discernibility matrix, and
neighborhood self-information extends self-information to continuous random variables.
The Gini index (GI) (Breiman et al., 1984), first introduced by Breiman in 1984 and
applied to node splitting in decision trees, accurately quantifies the impurity of a dataset.
Especially in classification problems, it effectively measures the contribution of features to
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classification results and has been widely used in feature selection in data mining and
machine learning (Breiman, 2001; Wang, Deng & Xu, 2023).

This article combines NRS with GI from two perspectives and proposes two unique
feature importance evaluation metrics. First, from the standpoint of sample
neighborhoods, the Neighborhood Gini index is proposed to measure the importance of
features through neighborhood information. Second, from the standpoint of class
neighborhoods, the Neighborhood Class Gini index is proposed to reveal the differences in
features among different classes. The properties of these two evaluation metrics and their
relationships with attributes are discussed. Based on these evaluation metrics, two forward
greedy algorithms are designed for feature selection. Finally, the effectiveness and stability
of the proposed algorithms are validated through experiments.

The structure of this article is as follows: In the “Materials and Methods” section, a
review of the fundamental concepts of NRS and GI is provided, and the combination of
NRS and GI is used to propose two distinct feature importance evaluation indicators. The
properties of these two evaluation indicators and their relationships with attributes are
discussed. Subsequently, the importance of candidate features is defined based on the two
evaluation indicators. Building upon this, two separate forward greedy feature selection
algorithms are formulated. In the “Experimental Analysis and Discussion” section, the
effectiveness and stability of the proposed algorithms are verified. In the “Conclusions”
section, we concluded the article with possible directions for future research.

MATERIALS AND METHODS
Neighborhood rough set
In rough sets, information tables are often represented by ,U;A. , where
U ¼ fx1; x2;…; xng is a non-empty finite set of samples and A ¼ fa1; a2;…; amg is a non-
empty finite set of attributes used to describe those samples.

Let ,U ;A. be a table of information, B � A and dB is a binary functional relation
defined on U with an attribute subset B, that is, dB : U � U ! Rþ. Then, dB is said to be a
distance metric on U when it satisfies the following relation:

(1) dBðx1; x2Þ � 0, dB ¼ 0 if and only if x1 ¼ x2, 8x1; x2 2 U ;
(2) dBðx1; x2Þ ¼ dBðx2; x1Þ, 8x1; x2 2 U ;
(3) dBðx1; x3Þ � dBðx1; x2Þ þ dBðx2; x3Þ, 8x1; x2; x3 2 U .
The Euclidean distance is a commonly used distance measure, and all the subsequent

distance references in this article are in terms of the Euclidean distance. For any two
samples, the calculation of the Euclidean distance is as follows:

dBðxi; xjÞ ¼
X
a2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxai � xaj Þ2

q
(1)

In an information table ,U;A. , for any sample x 2 U , attribute subset B � A, the
neighborhood similarity relation Rr

B is defined as follows:

Rr
B ¼ fðx; yÞ 2 U � U jdBðx; yÞ � rg (2)
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where r � 0 is a user-defined constant. For any x 2 U , its neighborhood similarity class

½x�rB is defined as follows:

½x�rB ¼ fy 2 U : ðx; yÞ 2 Rr
Bg (3)

In an information system, neighborhood similarity classes are also referred to as
neighborhood information granules, abbreviated as neighborhood granules. Here, r is
called the radius of the neighborhood granules. In the information table ,U ;A. , the
neighborhood granule family f½xi�rBji ¼ 1; 2;…; ng forms a covering of U . The
neighborhoods of all objects in the domain constitute the granulation of the domain, and
the neighborhood granule family constitutes the fundamental concept system in the
domain space. Through these fundamental concepts, we can approximate any concept in
the space.

For any sample set X � U , its lower approximation Rr
B and upper approximation �Rr

B are
defined as follows:

Rr
B ¼ fx 2 U : ½x�rB � Xg (4)

�Rr
B ¼ fx 2 U : ½x�rB \ X 6¼ [g (5)

Let D be a classification decision attribute defined on U , and A \ D ¼ [. In this case,
the triple ,U ;A;D. is referred to as a decision table. In the decision table ,U ;A;D. ,
attribute D divides U into r decision classes, denoted as U=D ¼ fE1; E2;…; Erg. Here,
Eiði ¼ 1; 2;…; rÞ is called a general equivalence class, meaning that all the samples in Ei
have the same class labels. In a decision table ,U ;A;D. , where B � A, and Rr

B is a
neighborhood similarity relation defined on the attribute set B in U with a neighborhood
radius of r, the upper approximation �Rr

BðDÞ and lower approximation Rr
BðDÞ of the

decision attribute D with respect to the attribute set B at a neighborhood granule size of r
are defined as follows:

�Rr
BðDÞ ¼ [r

k¼1
�Rr
BðEkÞ (6)

Rr
BðDÞ ¼ [r

k¼1R
r
BðEkÞ (7)

The positive domain of the decision table is written as:

POSrBðDÞ ¼ [Ek2U=DR
r
BðEkÞ (8)

The boundary domain of the decision table is written as:

RnrBðDÞ ¼ UBðDÞ � POSrBðDÞ (9)

The dependency function crBðDÞ of D associated with B is formulated as:

crBðDÞ ¼
jPOSrBðDÞj

jUj (10)

where j:j indicates the cardinality of a set.
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Gini index
GI is a metric used to measure the impurity of a dataset and is commonly employed in
feature selection for decision tree algorithms. The values of GI range from 0 to 1. When GI
= 0, the dataset’s impurity is minimal, meaning all elements in the dataset are the same.
Conversely, when GI = 1, the dataset’s impurity is maximal, indicating that all elements in
the dataset are different. For a dataset D with r categories, where each category’s
proportion of samples is denoted as pi, the formula for calculating GI is as follows:

GIðDÞ ¼ 1�
Xr
i¼1

p2i (11)

GI evaluates the impurity of a dataset based on the distribution of class probabilities to
determine the importance of the corresponding features. A smaller GI indicates higher
dataset purity and better discriminative power of the feature. However, in the same dataset,
different feature subsets result in the same class probability distribution, making it
unsuitable for directly evaluating the classification performance of different feature
subsets. Therefore, a new influencing factor must be introduced to make the class
probability distributions vary across feature subsets. For instance, in the Classification and
Regression Trees, a tree-like structure is introduced to partition the dataset. This
partitioning leads to substantial differences between data subsets created by different
feature divisions, resulting in distinct class probability distributions. This makes the Gini
index enable the measurement of feature importance. In NRS, when the neighborhood
radius is consistent, different attribute sets lead to distinct neighborhoods for samples.
Conversely, when the attribute set is constant, various neighborhood radii correspond to
different neighborhoods. Different neighborhoods could lead to varying class probability
distributions. GI values would also differ. This makes GI applicable for feature selection in
NRS.

Next, two different feature importance evaluation metrics integrating NRS and GI will
be proposed.

The proposed method
Neighborhood Gini index
Samples with certain similarities should be grouped into the same category, and samples
within the neighborhood range of a sample are considered similar from a distance
perspective. Their features determine the similarity of samples. However, for reasons such
as data collection, some features may be redundant or irrelevant to class labels. Therefore,
the class labels of samples within a neighborhood range may not be consistent under a
subset of features. It is necessary to select features that can effectively represent the
characteristics of all categories so that the class labels within the neighborhood range of
samples are as consistent as possible.

The more consistent the class labels of samples within the neighborhood range, or the
higher the purity of classes within the neighborhood range, the better the corresponding
subset of features can represent that class. At this point, the subset of features can represent
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the local characteristics of that class well. If a subset of features can represent all the local
characteristics of all classes well, i.e., the class purity within the neighborhood range of all
samples in the dataset is high, then the subset of features can distinguish all classes well. In
this case, the importance of features is also higher.

Based on this idea, we use GI to represent the impurity of the dataset and propose the
Neighborhood Gini index (NGI). NGI evaluates the importance of a subset of features by
assessing the purity of all samples’ neighborhood ranges under that feature subset. The
definition of NGI is given below:

Definition 1: Given a decision table ,U ;A;D. , for any xi 2 U , B � A, the impurity
of r neighborhood Rr

BðxiÞ is defined as:

GIrBðxiÞ ¼ 1�
Xr
j¼1

p2j (12)

where r represents the number of categories, and pj signifies the proportion of the jth
category within the r neighborhood of xi.

Throughout the decision table, the impurity of the decision table is the mean value of
the impurity within the neighborhood of each sample:

NGIrBðDÞ ¼
1
n

Xn
i¼1

GIrBðxiÞ (13)

From Definition 1, it can be observed that NGI is influenced by two parameters: the
feature subset B and the neighborhood radius r. As GI focuses on the distribution of
classes, changes in the number of samples within the neighborhood range can lead to class
distribution changes, thereby affecting GI’s magnitude. However, the behavior of GI to
changes in the feature subset and neighborhood radius is not strictly monotonic. The
following will analyze the variations of NGI to changes in the feature subset and
neighborhood radius separately.

Impact of feature on NGI

For any subset of features B1 � B2 � A, adding one or more features to B1 to obtain B2

does not necessarily guarantee that NGIB2ðDÞ will always be smaller than NGIB1ðDÞ, and
the process of its change is not completely monotonous, as shown in Fig. 1.

Figure 1 shows the relationship between different sizes of feature subsets and NGI under
the same neighborhood. The x-axis is the number of features, and the y-axis is the NGI of
the corresponding feature. The smaller feature subset is a proper subset of the larger
feature subset. In Fig. 1A, the feature subset consists of 18 continuous features, namely [17,
59, 1, 18, 51, 30, 21, 10, 52, 20, 50, 39, 53, 55, 29, 54, 48, 25], and the data is the “Sonar”
dataset from the UCIMachine Learning Repository (Kelly, Longjohn & Nottingham, 1998).
The neighborhood radius in Fig. 1A is set to 0.15. In Fig. 1B, the feature subset comprises
18 discrete features, namely [4, 7, 15, 10, 9, 13, 14, 6, 17, 16, 0, 12, 3, 2, 5, 8, 11, 1], and the
data is the “anneal” dataset from the UCI Machine Learning Repository. The
neighborhood radius in Fig. 1B is set to 0.4.
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When the features are continuous, the variation in the samples within the neighborhood
range is small, leading to minor changes in the class distribution. As a result, the variation
curve is relatively smooth, as shown in Fig. 1A. However, when the features are discrete,
introducing new features might drastically reduce the number of samples within the
neighborhood range, causing larger changes in the class distribution. This results in a
fluctuating variation curve, as depicted in Fig. 1B.

From Fig. 1, it is evident that the variation of NGI is not strictly monotonic at a local
level, yet it generally exhibits a descending trend as a whole. This phenomenon can be
attributed to the overarching effect that, with an increase in the number of features, the
data provides a more precise portrayal of the samples, making their inherent
characteristics more prominent. When the features a sample emphasizes are more aligned
with its class attributes, the purity of the sample’s neighborhood increases, leading to a
smaller NGI. Conversely, when the emphasized features deviate from the class attributes,
the neighborhood’s purity decreases, resulting in a larger NGI. As the number of features
expands, characteristics relevant to the class gradually come into sharper focus,
consequently contributing to the observed overall decreasing trend.

It is worth noting that not all continuous feature subsets follow smooth and monotonic
variation curves, and not all discrete features yield fluctuating curves. Continuous features
might also exhibit fluctuations, while discrete features can exhibit smooth and monotonic
behaviors. However, regardless of whether the features are continuous or discrete, the
overall tendency is characterized by a decrease.

The subsequent explanation illustrates the variation of NGI through changes in the class
distribution within the feature space neighborhood of sample xi:

We utilize the change in GI within the neighborhood feature subspace of sample xi to
symbolize the overall changes in NGI across the entire dataset. The distribution of samples

Figure 1 Impact of feature on NGI. (A) Continuous feature. (B) Categorical feature. Full-size DOI: 10.7717/peerj-cs.1711/fig-1
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within this localized neighborhood feature subspace is depicted in Fig. 2. Among them, the

hollow circle class accounts for
1
3
, and the solid circle class accounts for

2
3
. At this time,

NGIrBðxiÞ ¼ 1� 1
3

2

� 2
3

2

¼ 4
9
. Let ai 2 A� B,NGIrB[faig change relative toNGI

r
B as follows:

1. NGI increases when the number of samples in the neighborhood feature subspace
with a large proportion of categories decreases proportionally more than the number of
samples with a small proportion of categories. As shown in Fig. 3A, the number of samples

in the hollow circle category decreases by 1, at which point the percentage is
2
4
, and the

number of samples in the solid circle category decreases by 4, at which point the percentage

is
2
4
, NGIrB ¼ 4

9
< NGIrB[fa1g ¼ 1� 2

4

2

� 2
4
¼ 1

2
;

2. NGI remains unchanged when there is no change in the samples in the neighborhood
feature subspace or when the samples in the neighborhood, according to the proportion of
categories in equal, are reduced. As shown in Fig. 3B, at this time the proportion of the

hollow circle category is still
1
3
, and the proportion of the solid circle category is

2
3
,

NGIrB[fa2g ¼ NGIrB ¼ 4
9
;

3. NGI decreases when the number of samples in the neighborhood feature subspace
with a large proportion of categories decreases proportionally less than the number of
samples with a small proportion of categories. As shown in Fig. 3C, the hollow circle

category samples are reduced by 2, at this time the proportion of
1
5
, the solid circle category

samples are reduced by 2, at this time the proportion of
4
5
,

NGIrB ¼ 4
9
> NGIrB[fa3g ¼ 1� 1

5

2

� 4
5

2

¼ 8
25
.

1
( )B iR xix

Figure 2 Sample distribution in original neighborhood feature subspace.
Full-size DOI: 10.7717/peerj-cs.1711/fig-2

1
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Figure 3 (A–C) Sample distribution in the neighborhood feature subspace after adding one feature.
Full-size DOI: 10.7717/peerj-cs.1711/fig-3
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Impact of neighborhood radius on NGI

In addition to the influence of feature subsets on NGI, the size of the neighborhood radius
also affects the changes in the distribution of classes within the neighborhood feature
subspace, consequently impacting the magnitude of NGI. So, we have delved into the
impact of varying neighborhood radius sizes on NGI. We set the neighborhood radius to
range from 0 to 1 with a step size of 0.025, and the relationship between the neighborhood
radius and NGI is depicted in Fig. 4.

Figure 4 illustrates the relationship between different sizes of the neighborhood radius
and NGI for the same feature subset. The x-axis is the size of the neighborhood radius, and
the y-axis is the NGI of the corresponding neighborhood radius. In Fig. 4A, the feature
subset consists of 10 continuous features, namely [46, 8, 3, 2, 44, 53, 59, 24, 25, 42], sourced
from the “Sonar” dataset in the UCI Machine Learning Repository. In Fig. 4B, the feature
subset comprises five discrete features, namely [7, 14, 10, 1, 17], sourced from the “anneal”
dataset in the UCI Machine Learning Repository.

As the value of r gradually increases, the number of samples within the neighborhood
range also increases, leading to a rise in impurity. When r is relatively small, the change in
the number of samples within the neighborhood is small, and the newly added samples are
mostly from the same category. Consequently, the change curve remains relatively stable.
When r exceeds a certain threshold (as depicted in Fig. 4A, e.g., 0.195), the category labels
of the newly added samples start to deviate from those of the original samples. This leads to
a change in NGI, eventually converging to the GI of the entire dataset. While an overall
trend increases as the neighborhood radius gradually enlarges, this change is not
necessarily monotonic. The reasons behind the variation of NGI with r are analogous to
the reasons for its variation with the size of the feature subset. These reasons will not be
reiterated here.

Figure 4 Impact of neighborhood radius on NGI. (A) Continuous feature. (B) Categorical feature.
Full-size DOI: 10.7717/peerj-cs.1711/fig-4
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Neighborhood Class Gini index
In the context of neighborhood rough sets based on decision tables, the upper
approximation of a category refers to the set of samples within the neighborhood range of
that category. This sample set includes all samples from the current category and some
from others. It is obvious that the fewer categories in the upper approximation and the
fewer samples from other categories, the higher the purity of the upper approximation of
the category. A higher purity indicates that the corresponding feature provides a more
accurate description of that category, making it easier to distinguish it from others. If the
upper approximations of all categories have higher purity, all types within the dataset can
be better distinguished, and the corresponding features are more important. Based on this
principle, this article proposes the Neighborhood Class Gini index (NCGI). It evaluates
features’ importance by assessing the upper approximation’s impurity under different
feature subsets. The definition of NCGI is provided below:

Definition 2:Given a decision table ,U ;A;D. , let B � A; Ek 2 U=Dðk ¼ 1; 2;…; rÞ,
and �Rr

BðEkÞ is the upper approximations of EK , so the impurity of �Rr
BðEkÞ is defined as:

GIrBð�Rr
BðEkÞÞ ¼ 1�

Xr
i¼1

pi
2 (14)

In the entire decision table, the impurity of the decision table is the average of the
impurities of all category upper approximations:

NCGIrBðDÞ ¼
1
r

Xr
k¼1

GIrBð�Rr
BðEkÞÞ (15)

Similar to NGI, the magnitude of NCGI is also influenced by the neighborhood radius r
and the feature subset B. The following comparison illustrates the changes in the two
evaluation metrics concerning the number of features and the neighborhood radius. The
data in Fig. 5 corresponds to the data in Fig. 1, while the data in Fig. 6 corresponds to that
in Fig. 4.

In the case of continuous features, the trend of NCGI with changing r is closely similar
to that of NGI, displaying relatively smooth changes. NCGI exhibits a lower overall
sensitivity to variations in the number of features and the neighborhood radius yet displays
higher sensitivity within certain intervals, such as when r ranges from 0.2 to 0.375 in
Fig. 5A. This phenomenon stems from NGI being rooted in the sample neighborhood,
with the class distribution altering as the neighborhood radius expands. Conversely, NCGI
assesses feature importance from a class neighborhood perspective. As the neighborhood
radius expands, the number of samples within the neighborhood increases. However,
when r is small, the newly added samples within the neighborhood share the same
category as the current sample. Consequently, the category distribution in the upper
approximation remains unchanged.When r is big enough, the upper approximation of the
class encompasses all samples within the dataset, resulting in NCGI equating to the overall
GI and ceasing to change with variations in the neighborhood radius.
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In the case of discrete data, as the neighborhood radius varies, a sudden influx of
samples within the neighborhood range can significantly alter the class distribution,
causing larger fluctuations in the change curve, particularly noticeable in Fig. 5B. However,
overall, NCGI experiences smaller changes in amplitude compared to NGI.

The number of samples within the neighborhood range gradually decreases with
increased features. In the context of continuous features, the reduction in sample count is
relatively smooth, as shown in Fig. 6A. Consequently, the class distribution alteration of
neighborhoods is similarly gradual. With the increase of purity within the neighborhood,
GI decreases until it converges to 0.

Figure 5 Impact of neighborhood radius on two evaluation metrics. (A) Continuous feature. (B) Categorical feature.
Full-size DOI: 10.7717/peerj-cs.1711/fig-5

Figure 6 Impact of feature on two evaluation metrics. (A) Continuous feature. (B) Categorical feature.
Full-size DOI: 10.7717/peerj-cs.1711/fig-6
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For categorical features, the introduction of new features can exert a substantial
influence on the class distribution within the neighborhood, leading to larger fluctuations,
as shown in Fig. 6B. This is particularly evident upon the inclusion of the 11th feature,
where both NGI and NCGI exhibit a sharp decline. This decline implies that adding this
feature enhances the purity within the neighborhood, facilitating the differentiation of
various categories. Beyond the 11th feature, sample neighborhoods and class
neighborhoods’ results diverge. These features can decrease the impurity within the sample
neighborhood but paradoxically lead to an increase in the impurity within the class
neighborhood.

Feature selection

Definition 3: Given a decision table ,U ;A;D. , B � A, ai 2 A� B, the importance of
ai with respect to B is calculated as follow:

SIGðai;B;DÞ ¼ GIrBðDÞ � GIrB[faigðDÞ (16)

where GIrB stands for NGI and NCGI proposed in this article.
In Definition 3, we defined the importance of feature ai relative to a given feature subset

B. In the case where feature subset B is known, it is adding a feature ai to B and observing
its GI (which refers to either NGI or NCGI). If GI decreases, it indicates that ai is a crucial
feature relative to B. Conversely, if the GI remains unchanged or increases, it suggests that
ai is a redundant feature relative to B or even an irrelevant feature with respect to the
decision table ,U ;A;D. .

To achieve better classification performance, we aim to select each feature ai in such a
way that it is the most crucial feature relative to B. Therefore, we have designed heuristic
algorithm based on Neighborhood Gini index (HANGI) and heuristic algorithm based on
Neighborhood Gini index (HANCGI) feature selection algorithms using a forward greedy
approach to select the optimal feature subset. The two algorithms differ only in calculating
SIGðai;B;DÞ, and their processes are illustrated in Fig. 7.

In HANGI and HANCGI, the algorithm starts by taking as input a decision table
,U ;A;D. , a neighborhood radius r, and a minimum threshold b for the relative
importance of candidate features with respect to the reduced subset. Subsequently, the
reduced subset and the candidate feature subset are initialized. An evaluation is made to
determine if the candidate feature subset is empty. The current reduced subset is directly
output if the candidate feature subset is empty. Conversely, if the candidate feature subset
is not empty, all candidate features are iterated through. Each candidate feature’s
importance concerning the reduced subset is computed using NGI or NCGI, denoted as
SIGðai; red;DÞ. The feature with the highest importance is selected, and its importance is
marked as SIGmax. Following this, an assessment is carried out to determine whether
SIGmax > b. If true, the feature with the highest importance is removed from the candidate
feature subset and incorporated into the reduced subset. The candidate feature subset is
then revisited. Output the reduced subset until the candidate feature subset is empty or
SIGmax � b.
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Figure 7 Flowchart of HANGI and HANCGI. Full-size DOI: 10.7717/peerj-cs.1711/fig-7

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 13/31

http://dx.doi.org/10.7717/peerj-cs.1711/fig-7
http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/


Assuming a dataset contains n samples, m features, and r categories, the best feature in
each iteration is the one with the longest search time, with a worst-case search time of

ðm2 þmÞ=2. Calculate the time nðn� 1Þ=2 required to determine the neighborhood
relationship between samples in the dataset. The time to compute the Gini index within the
neighborhood range is also nr. Therefore, the time complexity of the NGI and NCGI
forward greedy feature selection algorithms is both Oðm2n2Þ.

In HANGI and HANCGI, two parameters, r and b, are present. Parameter r controls
the neighborhood radius, which determines the granularity of the neighborhood particles.
The parameter b is a threshold that stops the algorithm when the reduction of the GI is less
than a particular value. Theoretically, the optimal values for these two parameters should
be searched from the entire range of the dataset's space. Fortunately, as discussed in Hu
et al. (2008, 2011), for algorithms with two parameters, such as the neighborhood rough set
model, it is possible to approximate the optimal performance of the algorithm if one
parameter is fixed at a particular value and the optimal value of the other parameter is
searched across the entire space. Since the meaning of the same-sized evaluation metric in
different algorithms is not the same, in this case, all b values in all algorithms are set to 0.
This means that adding a new feature will not lead to any improvement. Based on this, in
the experimental analysis section, the value of parameter b is set as a constant 0, and the
optimal value for the neighborhood radius r is searched within the interval [0, 1], with a
step size of 0.025.

EXPERIMENTAL ANALYSIS AND DISCUSSION
In this section, we conduct experiments to validate the effectiveness and stability of the
proposed methods. We select four classic feature importance evaluation metrics based on
NRS to form corresponding forward greedy feature selection algorithms: Neighborhood
Rough Set Dependency (HANRS) (Hu et al., 2008), Neighborhood Entropy (HANRE) (Hu
et al., 2011), Neighborhood Discrimination Index (HANDI) (Wang et al., 2018), and
Neighborhood Self-Information (HANSI) (Wang et al., 2019b). We compare these
algorithms with the two proposed methods. The stopping parameter b ¼ 0 is employed as
the termination condition for these algorithms.

All the datasets are sourced from the UCI Machine Learning Repository, and their
specific descriptions are provided in Table 1. Where “Continuous” and “Categorical”
represent the number of continuous and categorical features in each dataset. Before feature
selection, all attributes are normalized to the interval [0, 1], and missing values are filled
using the mean.

We compare the selected feature count and the corresponding classification accuracy to
evaluate the algorithms’ performance comprehensively. We employ four classical
classifiers, support vector classifier (SVC), K-nearest neighbors (KNN), Extreme Gradient
Boosting (XGBoost), and artificial neural network (ANN), to assess the performance of
these feature selection algorithms. Since our primary focus is evaluating the feature
selection algorithms, default parameter settings are used for SVC and ANN from the
scikit-learn library. XGBoost also uses default parameters. For the KNN classifier, K is set
to 3.
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Ten-fold cross-validation is employed to perform feature selection on these datasets.
Specifically, for a given neighborhood radius r stopping parameter b and a dataset, the
dataset is randomly divided into ten parts, with nine parts used as the training set and one
used as the test set. During the training phase, feature selection is performed on the
training set to identify an optimal feature subset. The optimal feature subset is then used to
extract a sub-dataset from the original dataset. During the testing phase, ten-fold cross-
validation is applied to the sub-dataset, computing the accuracy of the four classifiers.
Finally, the mean of the output accuracy values obtained from four classifiers serves as the
ultimate evaluation metric, providing a comprehensive assessment of feature selection
effectiveness across the entire dataset.

Training parameters
In NRS-based models, the size of the neighborhood granule significantly impacts the
model results. Determining the neighborhood granule’s size is essential to achieve optimal
experimental outcomes. Thus, we employ ten-fold cross-validation with a step size of 0.025
in the range (0, 1) (Wang et al., 2019b) to obtain the optimal neighborhood radius
parameter r for each algorithm. The search range in the “Spambase” dataset is (0, 0.225).
Subsequently, we use four datasets and one algorithm to illustrate the selection process.
Figure 8 displays the variation of classification accuracy with changing neighborhood
radius for different datasets, using NGI as the evaluation metric.

Evidently, the neighborhood radius has a pronounced impact on classification accuracy.
As the parameter changes, the four datasets exhibit varying accuracy levels in all classifiers.
We select the radius that corresponds to relatively higher accuracy in all classifiers as the

Table 1 Description of datasets.

Datasets Samples Features Continuous Categorical Classes

Anneal 798 19 1 18 5

Arrhythmia 452 263 32 231 13

Autos 205 27 5 22 6

Breast-cancer 286 10 1 9 2

DARWIN 174 452 429 23 2

Dermatology 366 35 1 34 6

HillValley 606 101 101 0 2

Horse_colic 300 28 2 26 2

Ionosphere 351 34 33 1 2

Musk1 476 169 85 84 2

Parkinsons 195 24 23 1 2

Sonar 208 61 61 0 2

Spambase 4,601 59 3 56 2

Toxicity 171 1,204 857 347 2

Voting_records 434 17 1 16 2

Wine 178 14 12 2 3

Note:
Continuous and categorical respectively represent the number of continuous and categorical features in each dataset.
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optimal radius. For instance, in the “Anneal” dataset, r ¼ 0:05 is deemed the optimal
neighborhood radius. Using the same training methodology, we determine the optimal
neighborhood radius for each algorithm on various datasets, as presented in Table 2. In
subsequent comparisons of algorithm performance, the neighborhood radius parameters
are set based on this table.

In Table 2, the first column represents the dataset name, and each subsequent column
header corresponds to the algorithm’s name. The values inside the table indicate the
optimal neighborhood radius for each algorithm.

It is important to note that for the “Voting_records” dataset, HANRS cannot select
features at any neighborhood radius. Therefore, we set it to the minimum value of 0.025 for
subsequent comparisons.

Figure 8 Variation of classification accuracies with a neighborhood radius. Full-size DOI: 10.7717/peerj-cs.1711/fig-8
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Evaluation of feature validity
In the context of classification problems, feature selection algorithms aim to extract the
most representative and discriminative features from the original feature set, creating a
more compact subset. Constructing a classification model using the selected feature subset,
achieving higher accuracy indicates that these features are more effective for the
classification task on the given data. Based on the optimal neighborhood radius, the feature
selection algorithms (HANRS, HANRE, HANDI, HANSI, HANGI, and HANCGI) were
applied to 16 datasets, and the number of features selected is presented in Table 3. Where
“Original” denotes the original dataset’s number of features, each subsequent column
represents the average number of features selected by each algorithm over ten runs.
Underscored numbers indicate the fewest selected features relative to other algorithms.
Notably, HANRS did not select features in the “Voting_records” dataset and, therefore, is
not included in the comparison.

Comparing the number of selected features in Table 3, we observe that HANGI and
HANCGI successfully achieve feature reduction. There is no significant difference in the
average number of features reduced among the six algorithms. HANMI shows the
strongest reduction capability, while HANSI demonstrates the weakest. Across the 16
datasets, the average number of features was reduced by HANGI to 18, ranking fifth on
average among the six algorithms. HANCGI reduces the average number of features to 11,
ranking second on average among the six algorithms.

Next, we employ SVC, KNN, XGBoost, and ANN to train the selected feature subsets
and compare their classification accuracies, as presented in Tables 4–7. Table 8 presents

Table 2 Optimal neighborhood radius parameters.

Datasets HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.05 0.725 0.05 0.05 0.05 0.05

Arrhythmia 0.35 0.95 0.275 0.875 0.275 0.3

Autos 0.1 0.6 0.075 0.15 0.125 0.125

Breast-cancer 0.4 0.025 0.725 0.4 0.125 0.25

DARWIN 0.075 0.925 0.975 0.85 0.975 0.025

Dermatology 0.175 0.025 0.425 0.225 0.275 0.575

HillValley 0.225 0.525 0.2 0.425 0.425 0.425

Horse_colic 0.325 0.825 0.15 0.325 0.225 0.575

Ionosphere 0.175 0.525 0.175 0.2 0.15 0.125

Musk1 0.65 0.95 0.975 0.65 0.95 0.425

Parkinsons 0.1 0.375 0.1 0.1 0.1 0.375

Sonar 0.475 0.775 0.55 0.525 0.45 0.325

Spambase 0.175 0.15 0.1 0.175 0.15 0.125

Toxicity 0.975 0.075 0.05 0.95 0.075 0.925

Voting_records 0.025 0.025 0.875 0.25 0.875 0.425

Wine 0.025 0.95 0.025 0.025 0.025 0.05

Note:
The underlines represent that the results corresponding to all neighborhood radii under this algorithm are exactly the
same.

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 17/31

http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/


the mean accuracy of each dataset across the four classifiers. In these tables, underscored
numbers indicate the best classification accuracy achieved through feature reduction
relative to other algorithms.

Tables 4–8 demonstrate that the HANGI and HANCGI algorithms proposed in this
article effectively improve classification accuracy. On average, HANGI improved
classification accuracy on 14 datasets across the four classifiers, with improvements
exceeding 10% on four datasets and an average accuracy improvement of 7%. HANCGI
improved classification accuracy on 12 datasets, with improvements exceeding 10% on five
datasets and an average accuracy improvement of 6.6%. Among the classifiers, XGBoost
showed the smallest improvement in classification accuracy, with an average accuracy
decrease of 0.8% for the selected features by HANCGI. This is because XGBoost not only
acts as a classifier but also is an embedded feature selection model, automatically selecting
features during the classification process to enhance accuracy. The results in Table 6
indicate that XGBoost’s feature selection results are similar to those of HANGI and
HANCGI, with no significant difference in overall classification accuracy. In some
datasets, the proposed algorithms have improved the classification accuracy of XGBoost by
removing redundant and irrelevant features. For example, on the Toxicity dataset, both
HANGI and HANCGI improved classification accuracy on XGBoost.

In the case of the 16 datasets, most of them showed improved classification accuracy
after feature selection using the six feature selection algorithms. Although HANMI
exhibited the strongest feature reduction capability, it had the poorest performance in
terms of classification accuracy across the four classifiers. This suggests that HANMImight

Table 3 Number of selected features.

Datasets Original HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 19 7.20 3.20 8.50 8.00 7.70 7.60

Arrhythmia 263 34.00 6.80 17.10 115.60 16.40 28.20

Autos 27 9.10 1.10 7.20 10.00 9.10 8.60

Breast-cancer 10 1.00 1.00 5.80 1.00 8.10 1.00

DARWIN 452 4.80 9.60 36.90 48.60 45.40 3.40

Dermatology 35 10.10 1.00 12.60 11.20 10.30 18.80

HillValley 101 5.00 1.90 2.40 2.80 18.60 2.40

Horse_colic 28 16.00 3.00 10.90 15.90 13.30 1.00

Ionosphere 34 10.80 2.00 8.90 11.90 8.10 7.70

Musk1 169 34.90 9.50 64.60 35.50 63.70 16.60

Parkinsons 24 4.00 1.30 4.00 4.40 4.00 4.20

Sonar 61 21.70 3.00 24.90 25.60 18.40 11.10

Spambase 59 50.10 58.00 36.20 50.10 49.00 44.40

Toxicity 1,204 6.60 4.90 4.00 6.60 4.90 1.30

Voting_records 17 0.00 1.00 10.60 10.80 13.00 9.80

Wine 14 2.90 2.00 2.90 2.90 2.90 3.00

Mean 157.3125 13.64 6.83 16.09 22.56 18.31 10.57

Note:
Underscored numbers indicate the fewest selected features relative to other algorithms.
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Table 4 Average accuracy on SVC.

Datasets Original HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.7619 0.7998 0.8344 0.8047 0.8046 0.8047 0.7997

Arrhythmia 0.6106 0.5961 0.5839 0.6306 0.6024 0.6534 0.6454

Autos 0.4105 0.3385 0.4418 0.4428 0.3665 0.4009 0.3997

Breast-cancer 0.6873 0.7622 0.7622 0.7449 0.7622 0.7405 0.7622

DARWIN 0.4647 0.7611 0.7178 0.5897 0.5654 0.5654 0.7631

Dermatology 0.7297 0.9520 0.3240 0.9209 0.9550 0.9566 0.9758

HillValley 0.5100 0.4774 0.4751 0.4777 0.4764 0.4745 0.4759

Horse_colic 0.6567 0.6730 0.6823 0.6613 0.6740 0.6637 0.7667

Ionosphere 0.9344 0.9378 0.8766 0.9387 0.9432 0.9312 0.9359

Musk1 0.7737 0.8075 0.7557 0.8482 0.8100 0.8382 0.7405

Parkinsons 0.8100 0.8250 0.7970 0.8250 0.8225 0.8250 0.8164

Sonar 0.6395 0.8104 0.6921 0.8095 0.7961 0.8108 0.7645

Spambase 0.9538 0.9940 0.9946 0.9940 0.9940 0.9940 0.9939

Toxicity 0.6500 0.6717 0.6717 0.6729 0.6717 0.6729 0.6711

Voting_records 0.9585 0.0000 0.6154 0.9636 0.9621 0.9641 0.9344

Wine 0.6810 0.8610 0.5833 0.9096 0.9096 0.9096 0.8576

Mean 0.7020 0.7042 0.6755 0.7646 0.7572 0.7628 0.7689

Note:
Underscored numbers indicate the best classification accuracy achieved through feature reduction relative to other
algorithms.

Table 5 Average accuracy on KNN.

Datasets Original HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.8622 0.9698 0.9123 0.9750 0.9800 0.9696 0.9639

Arrhythmia 0.6106 0.6012 0.5583 0.6226 0.6000 0.6227 0.6311

Autos 0.3964 0.6976 0.6117 0.6955 0.6800 0.7050 0.6933

Breast-cancer 0.7326 0.7622 0.7622 0.7533 0.7622 0.7580 0.7622

DARWIN 0.6690 0.7978 0.7867 0.7561 0.7168 0.7322 0.7364

Dermatology 0.9040 0.9418 0.2965 0.9437 0.9531 0.9505 0.9734

HillValley 0.5663 0.5515 0.5077 0.5097 0.5469 0.5400 0.5306

Horse_colic 0.6067 0.6473 0.7343 0.6480 0.6427 0.6727 0.8233

Ionosphere 0.8348 0.8905 0.8573 0.8892 0.8715 0.8908 0.9034

Musk1 0.7905 0.7988 0.7809 0.8354 0.8117 0.8288 0.7799

Parkinsons 0.7984 0.8771 0.7532 0.8771 0.8504 0.8771 0.8076

Sonar 0.5952 0.8384 0.6794 0.8357 0.8280 0.8372 0.7834

Spambase 0.9538 0.9989 0.9985 0.9988 0.9989 0.9988 0.9989

Toxicity 0.5275 0.6523 0.5831 0.6038 0.5398 0.6201 0.6688

Voting_records 0.9469 0.0000 0.6086 0.9426 0.9339 0.9393 0.9008

Wine 0.7209 0.8962 0.5992 0.9436 0.9436 0.9436 0.9124

Mean 0.7197 0.7451 0.6894 0.8019 0.7912 0.8054 0.8043

Note:
Underscored numbers indicate the best classification accuracy achieved through feature reduction relative to other
algorithms.
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Table 6 Average accuracy on XGBoost.

Datasets Original HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.9900 0.9913 0.9461 0.9903 0.9900 0.9898 0.9815

Arrhythmia 0.7342 0.6891 0.5483 0.7056 0.7299 0.6971 0.7295

Autos 0.6660 0.6934 0.4899 0.6750 0.6954 0.6944 0.6820

Breast-cancer 0.6701 0.7623 0.7623 0.7014 0.7623 0.6772 0.7623

DARWIN 0.8428 0.8057 0.7900 0.8525 0.8289 0.8317 0.7681

Dermatology 0.9565 0.9454 0.3307 0.9576 0.9556 0.9598 0.9590

HillValley 0.6123 0.5925 0.5273 0.5539 0.6275 0.6044 0.6062

Horse_colic 0.8467 0.8357 0.7737 0.8240 0.8417 0.8457 0.8433

Ionosphere 0.9089 0.9192 0.8339 0.9307 0.9192 0.9288 0.9189

Musk1 0.7778 0.7880 0.7418 0.7690 0.7779 0.7775 0.7556

Parkinsons 0.8611 0.8863 0.7178 0.8863 0.8791 0.8863 0.7817

Sonar 0.7360 0.7433 0.6513 0.7414 0.7531 0.7723 0.6887

Spambase 0.9501 0.9501 0.9501 0.9501 0.9501 0.9501 0.9501

Toxicity 0.5618 0.6614 0.6094 0.6434 0.6567 0.6191 0.6637

Voting_records 0.9585 0.0000 0.6152 0.9626 0.9569 0.9615 0.9299

Wine 0.9667 0.9460 0.6397 0.9589 0.9589 0.9589 0.9192

Mean 0.8149 0.7631 0.6830 0.8189 0.8302 0.8222 0.8087

Note:
Underscored numbers indicate the best classification accuracy achieved through feature reduction relative to other
algorithms.

Table 7 Average accuracy on ANN.

Datasets Original HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.7379 0.8557 0.8205 0.9041 0.9171 0.8865 0.8989

Arrhythmia 0.6106 0.5711 0.5471 0.5904 0.5737 0.5839 0.6156

Autos 0.2286 0.4590 0.3219 0.4760 0.4905 0.4135 0.4475

Breast-cancer 0.6942 0.7623 0.7623 0.6964 0.7623 0.7106 0.7623

DARWIN 0.8203 0.6229 0.5761 0.6946 0.7357 0.7210 0.5719

Dermatology 0.9699 0.9518 0.3348 0.9587 0.9565 0.9609 0.9703

HillValley 0.5775 0.6203 0.5155 0.5615 0.6456 0.6205 0.6427

Horse_colic 0.5767 0.6997 0.6753 0.6717 0.7013 0.6530 0.7587

Ionosphere 0.9260 0.9269 0.7953 0.9233 0.9300 0.9165 0.9215

Musk1 0.7738 0.7245 0.7101 0.7324 0.7243 0.7400 0.6736

Parkinsons 0.7129 0.7466 0.7487 0.7422 0.7424 0.7529 0.7558

Sonar 0.6550 0.6985 0.6965 0.6959 0.6903 0.7144 0.6728

Spambase 0.9776 0.9688 0.9708 0.9670 0.9680 0.9676 0.9664

Toxicity 0.4794 0.6656 0.6552 0.6412 0.6649 0.6399 0.6708

Voting_records 0.9608 0.0000 0.6152 0.9635 0.9608 0.9633 0.9343

Wine 0.5471 0.7879 0.4799 0.8788 0.8823 0.8788 0.8113

Mean 0.7030 0.6913 0.6391 0.7561 0.7716 0.7577 0.7546

Note:
Underscored numbers indicate the best classification accuracy achieved through feature reduction relative to other
algorithms.
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have discarded some crucial features during the feature selection process, resulting in lower
classification accuracy.

HANDI, HANSI, the proposed HANGI, and HANCGI all showed relatively similar
classification accuracy for the selected features across the four classifiers, but there were
significant differences in some datasets. For example, on the DARWIN dataset, the features
selected by HANCGI performed significantly better with SVC than HANDI, and the
number of features selected by HANCGI was also much fewer than HANDI. On the
“Parkinsons” dataset, despite a similar number of selected features between HANCGI and
HANSI, HANCGI exhibited significantly lower classification accuracy with XGBoost.

It is worth mentioning that on the “Spambase” dataset, the selected features by all six
feature selection algorithms achieved the same accuracy with XGBoost as the original
dataset, even though the number of selected features differed among the algorithms. This
suggests that all six feature selection algorithms got what XGBoost considered the crucial
features, with HANDI selecting the fewest features and HANGI and HANCGI following
closely behind.

Through comprehensive analysis of the experimental results, it is evident that the
proposed methods often select fewer features while maintaining or improving
classification accuracy. This suggests that the proposed methods can effectively eliminate
more redundant attributes. Next, we evaluate the statistical significance of the performance
differences among the six algorithms for feature selection through hypothesis testing. We

Table 8 Average accuracy on four classifiers.

Datasets Original HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.8380 0.9042 0.8783 0.9185 0.9229 0.9127 0.9110

Arrhythmia 0.6415 0.6144 0.5594 0.6373 0.6265 0.6393 0.6554

Autos 0.4254 0.5471 0.4664 0.5723 0.5581 0.5535 0.5556

Breast-cancer 0.6961 0.7623 0.7623 0.7240 0.7623 0.7216 0.7623

DARWIN 0.6992 0.7469 0.7177 0.7232 0.7117 0.7126 0.7099

Dermatology 0.8900 0.9478 0.3215 0.9452 0.9551 0.9570 0.9696

HillValley 0.5665 0.5604 0.5064 0.5257 0.5741 0.5599 0.5638

Horse_colic 0.6717 0.7139 0.7164 0.7013 0.7149 0.7088 0.7980

Ionosphere 0.9010 0.9186 0.8408 0.9205 0.9160 0.9168 0.9199

Musk1 0.7790 0.7797 0.7472 0.7962 0.7810 0.7961 0.7374

Parkinsons 0.7956 0.8338 0.7542 0.8326 0.8236 0.8353 0.7904

Sonar 0.6564 0.7726 0.6798 0.7706 0.7669 0.7836 0.7273

Spambase 0.9588 0.9779 0.9785 0.9775 0.9777 0.9776 0.9773

Toxicity 0.5547 0.6628 0.6298 0.6403 0.6333 0.6380 0.6686

Voting_records 0.9562 0.0000 0.6136 0.9581 0.9534 0.9570 0.9248

Wine 0.7289 0.8728 0.5755 0.9227 0.9236 0.9227 0.8751

Mean 0.7349 0.7259 0.6717 0.7854 0.7876 0.7870 0.7842

Note:
Underscored numbers indicate the best classification accuracy achieved through feature reduction relative to other
algorithms.
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first examine whether there are significant differences among the six algorithms on these
datasets, utilizing the Friedman test statistic (Friedman, 1940):

v2 ¼ 12n
kðkþ 1Þ

Xk
i¼1

r2i �
kðkþ 1Þ2

4

 !
(17)

F ¼ ðn� 1Þv2
nðk� 1Þ � v2

(18)

where ri represents the average rank of the algorithm, n denotes the number of datasets,
and k represents the number of algorithms. The random variable “F” follows an F-
distribution with degrees of freedom k� 1 and ðk� 1Þðn� 1Þ. The critical value of the F-
distribution at a significance level a can be obtained by invoking the subroutine ‘scipy.stats.
f.ppf(1-α, n-1, (k-1)*(n-1))’ in Python 3.9. Thus, when a ¼ 0:05, we obtain the critical
value F(5,75) = 2.337. If the performance of the six algorithms is similar, the value of the
Friedman statistic should not exceed the critical value F(5,75). Otherwise, there would be a
significant difference in the feature selection performance among these six algorithms.

Table 9 displays the performance ranking order of the six algorithms’ selected features
across the four classifiers arranged in ascending order. More significant numbers indicate
better classification performance. According to the Friedman test statistic, we can obtain
that F = 2.507 > 2.337 for the four classifiers. Evidently, there is a significant difference
among the six algorithms on the four classifiers.

At this point, further post hoc tests are necessary to examine the differences among the
six algorithms. The post hoc test employed here is the Nemenyi test. This statistical test

Table 9 Rank of the six algorithms with the average accuracy on four classifiers.

Datasets HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 2.00 1.00 5.00 6.00 4.00 3.00

Arrhythmia 2.00 1.00 4.00 3.00 5.00 6.00

Autos 2.00 1.00 6.00 5.00 3.00 4.00

Breast-cancer 4.50 4.50 2.00 4.50 1.00 4.50

DARWIN 6.00 4.00 5.00 2.00 3.00 1.00

Dermatology 3.00 1.00 2.00 4.00 5.00 6.00

HillValley 4.00 1.00 2.00 6.00 3.00 5.00

Horse_colic 3.00 5.00 1.00 4.00 2.00 6.00

Ionosphere 4.00 1.00 6.00 2.00 3.00 5.00

Musk1 3.00 2.00 6.00 4.00 5.00 1.00

Parkinsons 5.00 1.00 4.00 3.00 6.00 2.00

Sonar 5.00 1.00 4.00 3.00 6.00 2.00

Spambase 5.00 6.00 2.00 4.00 3.00 1.00

Toxicity 5.00 1.00 4.00 2.00 3.00 6.00

Voting_records 1.00 2.00 6.00 4.00 5.00 3.00

Wine 2.00 1.00 4.50 6.00 4.50 3.00

Mean 3.44 2.03 3.97 4.03 3.91 3.62
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requires determining the critical distance between average ranking values, defined by the
following formula:

CDa ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r
(19)

where qa is the critical tabulated value for this test. FromDemšar (2006), we can obtain that
q0:05 ¼ 2:850 when the number of algorithms is 6 and a ¼ 0:05. It follows from the above
formula that CD0:05 ¼ 1:885ðk ¼ 6; n ¼ 16Þ. If the corresponding average rank distance is
greater than the critical distance CD0:05, it indicates a significant difference between the
two algorithms.

It is easy to observe from Table 9 that the average ranking distance between HANSI and
HANDI compared to HANMI is bigger than 1.885, indicating a significant difference in
performance. However, the proposed HANGI and HANCGI, compared to the other four
algorithms, have an average ranking distance of less than 1.885. This suggests that the
algorithms proposed in the article do not exhibit a significant difference in average
performance compared to the other four algorithms across the four classifiers.

Evaluation of algorithm stability
The stability of a feature selection algorithm refers to its ability to produce consistent or
similar feature selection results when the dataset undergoes certain perturbations, such as
removing or adding some samples. To discuss algorithm stability, we simulate removing a
portion of samples. The procedure is as follows: First, the samples are randomly divided
into ten subsets. In each iteration, nine subsets are chosen, and the feature selection
algorithm is applied to obtain an optimal feature subset. This process is repeated ten times,
resulting in 10 feature subsets. Features that appear at least five times out of the ten subsets
are selected using a majority voting principle to form the final feature subset. Table 10
shows the number of features appearing at least once in each dataset’s ten feature selection
results. Table 11 shows the number of features that appear at least five times in the ten
feature selection results. Table 12 presents the ratio of feature numbers before and after
voting, where a higher ratio indicates higher stability of the corresponding feature selection
algorithm.

If a feature repeats occurrences across the ten feature subsets, it indicates a high level of
reproducibility for that feature. The features that appear frequently in the ten subsets are
selected through voting. If the final selected feature subset contains more features, it
suggests a higher degree of algorithm stability. Table 12 presents the stability performance
of the six algorithms across different datasets, with the most stable algorithm for each
dataset marked with an underline.

Table 12 shows that HANSI has the highest stability, reaching 0.64, followed by
HANCGI, with a stability of 0.59. The remaining algorithms have relatively similar
stability, with HANMI showing the poorest stability. This difference in stability can be
attributed to the fact that HANSI and HANCGI assess feature importance based on the
class distribution within the class neighborhood range. However, other algorithms evaluate
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feature importance based on the class distribution within the sample neighborhood. When
some samples are perturbed or removed, it inevitably affects the class distribution within
their respective neighborhood range, thus influencing the assessment of feature
importance.

Table 10 Number of features before voting.

Datasets HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 11 4 11 9 13 10

Arrhythmia 107 30 59 186 52 110

Autos 18 3 17 16 16 17

Breast-cancer 1 1 8 1 9 1

DARWIN 16 39 155 199 182 18

Dermatology 18 2 18 25 18 23

HillValley 12 9 19 4 67 3

Horse_colic 23 6 20 22 24 1

Ionosphere 20 4 19 28 21 19

Musk1 98 34 140 104 142 61

Parkinsons 4 2 4 7 4 5

Sonar 49 8 51 55 49 40

Spambase 56 58 47 56 56 52

Toxicity 15 25 18 15 21 5

Voting_records 0 1 16 13 15 15

Wine 5 5 3 3 3 8

Table 11 Number of features after voting.

Datasets HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 7 3 9 8 8 8

Arrhythmia 27 4 12 122 12 19

Autos 11 1 6 9 10 9

Breast-cancer 1 1 5 1 8 1

DARWIN 4 6 19 29 24 2

Dermatology 10 2 13 13 9 19

HillValley 5 1 1 3 12 3

Horse_colic 19 3 13 18 13 1

Ionosphere 11 2 8 11 8 7

Musk1 30 7 59 29 55 12

Parkinsons 4 1 4 4 4 5

Sonar 25 3 26 24 16 6

Spambase 51 58 38 51 51 47

Toxicity 6 3 1 6 3 1

Voting_records 0 1 10 12 14 12

Wine 3 1 3 3 3 3
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Algorithms that assess feature importance by considering the distribution of classes
within the sample neighborhood primarily focus on the local class distribution. When
there is local perturbation, it directly impacts the evaluation of feature importance,
resulting in lower stability. In contrast, HANCGI and HANSI pay more attention to the
class neighborhood’s class distribution. When local interference occurs, it first affects the
neighborhood of their respective classes, and in this process, interference is averaged out
by unaffected samples within that class. Subsequently, feature importance assessment is
influenced by the class neighborhood, and during this process, it is further averaged out by
other unaffected classes. Therefore, these algorithms exhibit higher stability. HANCGI
considers the distribution of all classes within the class neighborhood range, while HANSI
only considers whether the classes within the class neighborhood are the same as the
primary class. Therefore, HANSI exhibits stronger robustness to disturbances.

The experimental results above demonstrate that the algorithms proposed in this article
exhibit high stability and strong feature reduction capabilities, particularly in removing
redundant and irrelevant features, resulting in improved classification accuracy on most
datasets. HANSI demonstrates the highest stability and achieves the best classification
performance across the four classifiers, but it has the weakest feature reduction capability.
On the other hand, HANGI, proposed in this article, has stronger feature reduction
capabilities than HANSI, with slightly lower stability, and its selected features exhibit
classification performance just 0.06% worse than HANSI on average. HANCGI boasts
significantly stronger feature reduction capabilities than HANSI, with slightly less stability,

Table 12 Ratio of feature numbers before and after voting.

Datasets HANRS HANMI HANDI HANSI HANGI HANCGI

Anneal 0.64 0.75 0.82 0.89 0.62 0.80

Arrhythmia 0.25 0.13 0.20 0.66 0.23 0.17

Autos 0.61 0.33 0.35 0.56 0.63 0.53

Breast-cancer 1.00 1.00 0.63 1.00 0.89 1.00

DARWIN 0.25 0.15 0.12 0.15 0.13 0.11

Dermatology 0.56 1.00 0.72 0.52 0.50 0.83

HillValley 0.42 0.11 0.05 0.75 0.18 1.00

Horse_colic 0.83 0.50 0.65 0.82 0.54 1.00

Ionosphere 0.55 0.50 0.42 0.39 0.38 0.37

Musk1 0.31 0.21 0.42 0.28 0.39 0.20

Parkinsons 1.00 0.50 1.00 0.57 1.00 1.00

Sonar 0.51 0.38 0.51 0.44 0.33 0.15

Spambase 0.91 1.00 0.81 0.91 0.91 0.90

Toxicity 0.40 0.12 0.06 0.40 0.14 0.20

Voting_records 0.00 1.00 0.63 0.92 0.93 0.80

Wine 0.60 0.20 1.00 1.00 1.00 0.38

Mean 0.55 0.49 0.52 0.64 0.55 0.59

Note:
Underlined numbers indicate higher stability relative to other algorithms.
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and its selected features have an average classification performance of only 0.3% worse
than HANSI.

In conclusion, compared to four classical feature selection algorithms based on
neighborhood rough sets, the algorithms proposed in this article outperform three and
have advantages and disadvantages compared to HANSI.

CONCLUSIONS
The assessment of feature subset importance is crucial in classification learning and feature
selection. There is currently a plethora of metrics available for evaluating feature
importance. The Gini index has already been proven effective in classification learning and
feature selection. In this article, we introduce the Gini index into the realm of
neighborhood rough sets and propose two evaluation metrics for measuring the
importance of feature subsets. These two metrics combine the Gini index at the level of
sample neighborhoods and class neighborhoods, respectively, to gauge the importance of
feature subsets. They assess the importance of feature subsets based on the purity of class
distributions within the scope of sample neighborhoods and class neighborhoods.
Subsequently, we delve into the properties of these two evaluation metrics and their
relationships with attributes. Leveraging the assessment of candidate features’ importance
relative to existing feature subsets, we put forth two greedy heuristic algorithms to
eliminate redundant and irrelevant features.

To comprehensively assess the performance of the algorithms proposed in this article,
we conducted comparative experiments on 16 UCI datasets spanning various domains,
including industrial, food, medical, and pharmaceutical fields, with four classical feature
selection algorithms based on neighborhood rough sets. The experimental results
demonstrate that HANGI and HANCGI effectively remove a substantial portion of
redundant and irrelevant features, leading to enhanced classification accuracy while
exhibiting high stability. Across the 16 UCI datasets, the average classification accuracy
improved by more than 6%, with five datasets showing an average accuracy improvement
exceeding 10%.

Compared to the four classical feature selection algorithms based on neighborhood
rough sets, the two proposed algorithms showed no statistically significant difference in the
average classification accuracy of the selected features across the four classifiers. However,
HANCGI selected fewer features while maintaining the same level of classification
accuracy, indicating its superior capability to eliminate redundant and irrelevant features
compared to the other four algorithms. Additionally, the algorithms proposed in this
article demonstrated high stability, with performance slightly below that of HANSI.

In conclusion, the algorithms proposed in this article outperformed three classical
feature selection algorithms based on neighborhood rough sets. They had their strengths
and weaknesses in comparison to HANSI.

It is worth noting that in the section where we discussed properties, we explored the
relationships between NGI, NCGI, and feature subsets. Our examination reveals that while
the expansion of the feature subset generally corresponds to a decline in overall GI, this
trend is not entirely monotonic. Hence, the optimal feature subset found by the proposed
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forward greedy algorithm is a local optimum rather than a global one. Subsequent research
endeavors may explore more sophisticated feature selection mechanisms, such as
intelligent optimization algorithms, to ascertain globally optimal feature subsets for
attaining superior results.

ACKNOWLEDGEMENTS
During the process of completing this research, I have received encouragement, support,
and assistance from many individuals, and I would like to express my heartfelt gratitude to
them. First and foremost, I sincerely thank my advisor, Professor Bin Nie. Throughout the
entire research journey, Professor Nie’s wealth of knowledge and professional insights have
provided me with invaluable guidance. Second, I wish to extend my gratitude to my
colleagues in the laboratory. Your assistance and suggestions during the writing process
have contributed to making this article’s description more accurate and clear, adding
substantial value to my research work. Lastly, I want to offer a special thanks to my family
and friends. Your encouragement and support serve as the driving force behind my
progress. At this pivotal moment, I would like to express my sincerest gratitude to all those
who have lent their assistance to my research work. Without your support, I would not
have been able to complete this study. Once again, my heartfelt thanks to each and every
one of you!

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by the National Natural Science Foundation of China (No.
82260849); the National Natural Science Foundation of China (No. 82260988); the
National Natural Science Foundation of China (No. 61562045); and the Jiangxi University
of Chinese Medicine Science and Technology Innovation Team Development Program
(No. CXTD22015). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 82260849.
National Natural Science Foundation of China: 82260988.
National Natural Science Foundation of China: 61562045.
Jiangxi University of Chinese Medicine Science and Technology Innovation Team
Development Program: CXTD22015.

Competing Interests
The authors declare that they have no competing interests.

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 27/31

http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/


Author Contributions
	 Yuchao Zhang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

	 Bin Nie conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

	 Jianqiang Du conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

	 Jiandong Chen conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

	 Yuwen Du performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

	 Haike Jin performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.

	 Xuepeng Zheng performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

	 Xingxin Chen analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

	 Zhen Miao analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The data used in the experiment from The UCI Machine Learning Repository is
available at https://archive.ics.uci.edu.

The code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1711#supplemental-information.

REFERENCES
Breiman L. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/A:1010933404324.

Breiman L, Friedman J, Olshen R, Stone C, Olsen R, Briemann L, Fried JH, Briemain L. 1984.
Classification and regression trees. New York: Routledge DOI 10.1201/9781315139470.

Dai JH, Gao SC, Zheng GJ. 2018. Generalized rough set models determined by multiple
neighborhoods generated from a similarity relation. Soft Computing 22(7):2081–2094
DOI 10.1007/s00500-017-2672-x.

Demšar J. 2006. Statistical comparison of classifiers over multiple data sets. Journal of Machine
Learning Research 7:1–30.

Friedman M. 1940. A comparison of alternative tests of significance for the problem of m ranking.
The Annals of Mathematical Statistics 11(1):86–92 DOI 10.1214/aoms/1177731944.

Gao WF, Hu L, Zhang P. 2020. Feature redundancy term variation for mutual information-based
feature selection. Applied Intelligence 50(4):1272–1288 DOI 10.1007/s10489-019-01597-z.

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 28/31

https://archive.ics.uci.edu
http://dx.doi.org/10.7717/peerj-cs.1711#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1711#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1711#supplemental-information
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1007/s00500-017-2672-x
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1007/s10489-019-01597-z
http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/


Gao WF, Hu L, Zhang P, He JL. 2018. Feature selection considering the composition of feature
relevancy. Pattern Recognition Letters 112(4):70–74 DOI 10.1016/j.patrec.2018.06.005.

Got A, Moussaoui A, Zouache D. 2021. Hybrid filter-wrapper feature selection using whale
optimization algorithm: a multi-objective approach. Expert Systems with Applications
183:115312 DOI 10.1016/j.eswa.2021.115312.

Greco S, Matarazzo B, Slowinski R. 1999. Rough approximation of a preference relation by
dominance relations. European Journal of Operational Research 117(1):63–83
DOI 10.1016/S0377-2217(98)00127-1.

Hu QH, Yu DR, Liu JF, Wu CX. 2008. Neighborhood rough set based heterogeneous feature
subset selection. Information Sciences 178(18):3577–3594 DOI 10.1016/j.ins.2008.05.024.

Hu QH, Zhang L, Zhang D, Pan W, An S, Pedrycz W. 2011. Measuring relevance between
discrete and continuous features based on neighborhood mutual information. Expert Systems
with Applications 38(9):10737–10750 DOI 10.1016/j.eswa.2011.01.023.

Huang ZH, Li JJ, Qian YH. 2022. Noise-tolerant fuzzy-beta-covering-based multigranulation
rough sets and feature subset selection. IEEE Transactions on Fuzzy Systems 30(7):2721–2735
DOI 10.1109/TFUZZ.2021.3093202.

Kelly M, Longjohn R, Nottingham K. 1998. The UCI machine learning repository. Available at
https://archive.ics.uci.edu.

Lall S, Sinha D, Ghosh A, Sengupta D, Bandyopadhyay S. 2021. Stable feature selection using
copula based mutual information. Pattern Recognition 112(1):107697
DOI 10.1016/j.patcog.2020.107697.

Lee JH, Oh SY. 2016. Feature selection based on geometric distance for high-dimensional data.
Electronics Letters 52(6):473–475 DOI 10.1049/el.2015.4172.

Li MM, Liu Y, Zheng QB, Qin W, Ren XG. 2021. Stable feature selection based on brain storm
optimisation for high-dimensional data. Electronics Letters 58(1):10–12 DOI 10.1049/ell2.12350.

Li BY, Xiao JM, Wang XH. 2018. Feature reduction for power system transient stability
assessment based on neighborhood rough set and discernibility matrix. Energies 11(1):185
DOI 10.3390/en11010185.

Liu Y, Xie H, Chen YH, Tan KH,Wang LG, Xie W. 2016.Neighborhood mutual information and
its application on hyperspectral band selection for classification. Chemometrics and Intelligent
Laboratory Systems 157(2):140–151 DOI 10.1016/j.chemolab.2016.07.009.

Liu HY, Zhou MC, Liu Q. 2019. An embedded feature selection method for imbalanced data
classification. IEEE/CAA Journal of Automatica Sinica 6(3):703–715
DOI 10.1109/JAS.2019.1911447.

Malhotra R, Jain J. 2022. Predicting defects in imbalanced data using resampling methods: an
empirical investigation. PeerJ Computer Science 8(1):e573 DOI 10.7717/peerj-cs.573.

Manek AS, Shenoy PD, Mohan MC, Venugopal KR. 2017. Aspect term extraction for sentiment
analysis in large movie reviews using Gini Index feature selection method and SVM classifier.
World Wide Web-internet and Web Information Systems 20(2):135–154
DOI 10.1007/s11280-015-0381-x.

Moslehi F, Haeri A. 2020. A novel hybrid wrapper-filter approach based on genetic algorithm,
particle swarm optimization for feature subset selection. Journal of Ambient Intelligence and
Humanized Computing 11(3):1105–1127 DOI 10.1007/s12652-019-01364-5.

Park H, Kwon HC. 2011. Improved Gini-Index algorithm to correct feature-selection bias in text
classification. IEICE Transactions on Information and Systems E94-D(4):855–865
DOI 10.1587/transinf.E94.D.855.

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 29/31

http://dx.doi.org/10.1016/j.patrec.2018.06.005
http://dx.doi.org/10.1016/j.eswa.2021.115312
http://dx.doi.org/10.1016/S0377-2217(98)00127-1
http://dx.doi.org/10.1016/j.ins.2008.05.024
http://dx.doi.org/10.1016/j.eswa.2011.01.023
http://dx.doi.org/10.1109/TFUZZ.2021.3093202
https://archive.ics.uci.edu
http://dx.doi.org/10.1016/j.patcog.2020.107697
http://dx.doi.org/10.1049/el.2015.4172
http://dx.doi.org/10.1049/ell2.12350
http://dx.doi.org/10.3390/en11010185
http://dx.doi.org/10.1016/j.chemolab.2016.07.009
http://dx.doi.org/10.1109/JAS.2019.1911447
http://dx.doi.org/10.7717/peerj-cs.573
http://dx.doi.org/10.1007/s11280-015-0381-x
http://dx.doi.org/10.1007/s12652-019-01364-5
http://dx.doi.org/10.1587/transinf.E94.D.855
http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/


Pawlak Z. 1982. Rough set. International Journal of Information and Computer Science 11(5):341–
356 DOI 10.1007/BF01001956.

Pawlak Z. 1985. Rough sets and fuzzy sets. Fuzzy Sets and Systems 17(1):99–102
DOI 10.1016/S0165-0114(85)80029-4.

Prasetiyowati MI, Maulidevi NU, Surendro K. 2022. The accuracy of Random Forest
performance can be improved by conducting a feature selection with a balancing strategy. PeerJ
Computer Science 8(7):e1041 DOI 10.7717/peerj-cs.1041.

Sang BB, Chen HM, Yang L, Wan JH, Li TR, Xu WH. 2022. Feature selection considering
multiple correlations based on soft fuzzy dominance rough sets for monotonic classification.
IEEE Transactions on Fuzzy Systems 30(12):5181–5195 DOI 10.1109/TFUZZ.2022.3169625.

Sang BB, Guo YT, Shi DR, Xu WH. 2018. Decision-theoretic rough set model of multi-source
decision systems. International Journal of Machine Learning and Cybernetics 9(11):1941–1954
DOI 10.1007/s13042-017-0729-x.

Shao MW, Zhang WX. 2004. Dominance relation and rules in an incomplete ordered information
system. International Journal of Intelligent Systems 20(1):13–27 DOI 10.1002/int.20051.

Shin K, Miyazaki S. 2016. A fast and accurate feature selection algorithm based on binary
consistency measure. Computational Intelligence 32(4):646–667 DOI 10.1111/coin.12072.

Shu WH, Yan ZC, Yu JH, Qian WB. 2023. Information gain-based semi-supervised feature
selection for hybrid data. Applied Intelligence 53(6):7310–7325
DOI 10.1007/s10489-022-03770-3.

Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF. 2016. A new hybrid filter-
wrapper feature selection method for clustering based on ranking. Neurocomputing 214(2):866–
880 DOI 10.1016/j.neucom.2016.07.026.

Sun L, Wang LY, Qian YH, Xu JC, Zhang SG. 2019a. Feature selection using Lebesgue and
entropy measures for incomplete neighborhood decision systems. Knowledge-Based Systems
186(12):104942 DOI 10.1016/j.knosys.2019.104942.

Sun L, Wang LY, Xu JC, Zhang SG. 2019b. A neighborhood rough sets-based attribute reduction
method using Lebesgue and entropy measures. Entropy 21(2):138 DOI 10.3390/e21020138.

Wan JH, Chen HM, Li TR, Sang BB, Yuan Z. 2023. Feature grouping and selection with graph
theory in robust fuzzy rough approximation space. IEEE Transactions on Fuzzy Systems
31(1):213–225 DOI 10.1109/TFUZZ.2022.3185285.

Wang ZZ, Deng GM, Xu HY. 2023. Group feature screening based on Gini impurity for ultrahigh-
dimensional multi-classification. AIMS Mathematics 8(2):4342–4362
DOI 10.3934/math.2023216.

Wang CZ, Hu QH, Wang XZ, Chen DG, Qian YH, Dong Z. 2018. Feature selection based on
neighborhood discrimination index. IEEE Transactions on Neural Networks and Learning
Systems 29(7):2986–2999 DOI 10.1109/TNNLS.2017.2710422.

Wang CZ, Huang Y, Shao MW, Hu QH, Chen DG. 2019a. Feature selection based on
neighborhood self-information. IEEE Transactions on Cybernetics 50(9):4031–4042
DOI 10.1109/TCYB.2019.2923430.

Wang CZ, Shi YP, Fan XD, Shao MW. 2019b. Attribute reduction based on k-nearest
neighborhood rough sets. International Journal of Approximate Reasoning 106(2):18–31
DOI 10.1016/j.ijar.2018.12.013.

Yang XL, Chen HM, Wang H, Li TR, Yu Z, Wang ZH, Luo C. 2023. Feature selection with local
density-based fuzzy rough set model for noisy data. IEEE Transactions on Fuzzy Systems
31(5):1614–1627 DOI 10.1109/TFUZZ.2022.3206508.

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 30/31

http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/S0165-0114(85)80029-4
http://dx.doi.org/10.7717/peerj-cs.1041
http://dx.doi.org/10.1109/TFUZZ.2022.3169625
http://dx.doi.org/10.1007/s13042-017-0729-x
http://dx.doi.org/10.1002/int.20051
http://dx.doi.org/10.1111/coin.12072
http://dx.doi.org/10.1007/s10489-022-03770-3
http://dx.doi.org/10.1016/j.neucom.2016.07.026
http://dx.doi.org/10.1016/j.knosys.2019.104942
http://dx.doi.org/10.3390/e21020138
http://dx.doi.org/10.1109/TFUZZ.2022.3185285
http://dx.doi.org/10.3934/math.2023216
http://dx.doi.org/10.1109/TNNLS.2017.2710422
http://dx.doi.org/10.1109/TCYB.2019.2923430
http://dx.doi.org/10.1016/j.ijar.2018.12.013
http://dx.doi.org/10.1109/TFUZZ.2022.3206508
http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/


Zeng K, She K, Niu XZ. 2014. Feature selection with neighborhood entropy-based cooperative
game theory. Computational Intelligence and Neuroscience 2014(12):479289
DOI 10.1155/2014/479289.

Zhang G, Hou JC, Wang JL, Yan CK, Luo JW. 2020. Feature selection for microarray data
classification using hybrid information gain and a modified binary Krill Herd algorithm.
Interdisciplinary Sciences: Computational Life Sciences 12(3):288–301
DOI 10.1007/s12539-020-00372-w.

Zhang X, Mei CL, Li JH, Yang YY, Qian T. 2023. Instance and feature selection using fuzzy rough
sets: a bi-selection approach for data reduction. IEEE Transactions on Fuzzy Systems
31(6):1981–1994 DOI 10.1109/TFUZZ.2022.3216990.

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1711 31/31

http://dx.doi.org/10.1155/2014/479289
http://dx.doi.org/10.1007/s12539-020-00372-w
http://dx.doi.org/10.1109/TFUZZ.2022.3216990
http://dx.doi.org/10.7717/peerj-cs.1711
https://peerj.com/computer-science/

	Feature selection based on neighborhood rough sets and Gini index
	Introduction
	Materials and Methods
	Experimental analysis and discussion
	Conclusions
	flink5
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


