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Alzheimer's disease (AD) is an irreversible neurodegenerative disease with a high
prevalence in the elderly population over 65 years of age. The intervention in the early
stages of AD is of great significance to alleviate the symptom. Recent advances in deep
learning have shown extremely advantages in computer-aided diagnosis of AD. However,
most studies only focus on extracting features from slices in specific direction or whole
brain images, ignoring the complementarity between features from different angles. To
overcome the above problem, attention-based multi-view slice fusion (AMSF) is proposed
for accurate early diagonosis of AD. It adopts the fusion of three dimensional global
features with multi-view 2D slices features by using an attention mechanism to guide the
fusion of slice features for each view, in order to generate a comprehensive representation
of the MRI images for classification. The experiments on public dataset demonstrate that
AMSF achieves the significant improvements over several previous promissing methods. It
indicates that the better solution for AD early diagnosis not only depends on the large
scale of dataset, but also the organically combination of feature construction strategy and
deep neural networks.
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30 Abstract

31 Alzheimer's disease (AD) is an irreversible neurodegenerative disease with a high prevalence in 

32 the elderly population over 65 years of age. Intervention in the early stages of AD is of great 

33 significance to alleviate the symptom. Recent advances in deep learning have shown extreme 

34 advantages in computer-aided diagnosis of AD. However, most studies only focus on extracting 

35 features from slices in specific direction or whole brain images, ignoring the complementarity 

36 between features from different angles. To overcome the above problem, attention-based multi-

37 view slice fusion (AMSF) is proposed for accurate early diagnosis of AD. It adopts the fusion of 

38 three-dimensional global features with multi-view 2D slice features by using an attention 

39 mechanism to guide the fusion of slice features for each view, to generate a comprehensive 
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40 representation of the MRI images for classification. The experiments on the public dataset 

41 demonstrate that AMSF achieves significant improvements over several previous promising 

42 methods. It indicates that the better solution for AD early diagnosis is not only depends on the 

43 large scale of dataset, but also the organic combination of feature construction strategy and deep 

44 neural networks.

45 Keywords: Alzheimer's disease; magnetic resonance imageing; attention mechanism; multi-view 

46 slice fusion

47

48 Introduction

49 AD is a neurodegenerative disease with a high prevalence in people over 65 years of age 

50 (Reiman et al. 2012). Previous studies have shown that the structural changes in the brain caused 

51 by AD can be traced back 20 years before the onset of symptoms in patients (Barthelemy et al. 

52 2020). In the early stages of AD, patients may not notice any significant changes in their brain 

53 structure or activity, but some difficulties with memory recall or retention may appear. As AD 

54 progresses, it leads to the formation of brain tissue lesions that impair and ultimately destroy 

55 neurons responsible for various cognitive functions (Zarei et al. 2013), including deterioration of 

56 memory and thinking skills, as well as a decline in physical abilities and independence. Patients 

57 with AD may present symptoms such as memory loss, cognitive impairment, language 

58 difficulties, and reduced mobility (Gaugler et al. 2022).

59 The global community is currently confronted with a significant demographic predicament 

60 characterized by a rapid expansion in the population of older individuals. As per the United 

61 Nations, the proportion of individuals aged 65 years and above in the overall global population is 

62 projected to reach 9.7% by 2022, and further escalate to 16.4% by 2050 (ECONOMIC & 

63 AFFAIRS. 2023). This unprecedented surge in ageing demographics presents formidable 

64 challenges for healthcare systems, given the heightened vulnerability of older adults to chronic 

65 and degenerative ailments. Among these conditions, AD stands out as a highly prevalent and 

66 debilitating disorder that profoundly impacts the cognitive and functional capacities of countless 

67 individuals across the globe.

68 Mild cognitive impairment (MCI) represents a pivotal transitional phase between normal 

69 ageing and dementia, characterized by a discernible cognitive decline that does not significantly 

70 impede daily functioning. MCI assumes a critical role as an early intervention window, 

71 presenting a valuable opportunity to mitigate or forestall subsequent cognitive deterioration 

72 (Wee et al. 2012). Extensive research has established that individuals diagnosed with MCI face a 

73 heightened susceptibility to developing AD, with an annual conversion rate ranging from 10% to 

74 15% (Roberts & Knopman 2013). Consequently, the implementation of timely and efficacious 

75 medical interventions during the MCI stage holds the potential to safeguard neural cells against 

76 further impairment and delay the onset of AD pathology, thereby contributing to a reduction in 

77 the mortality associated with this incurable affliction (Odusami et al. 2022).

78 Neuroimageing serves as a valuable and indispensable tool in the clinical diagnosis of AD, 

79 enabling the quantification of structural and functional alterations within the brain that 

80 accompany disease progression. Among the diverse array of neuroimageing modalities available, 

81 magnetic resonance imageing (MRI) has garnered considerable attention owing to its high spatial 

82 resolution and non-invasive characteristics. Through MRI, intricate details regarding brain 

83 volume, cortical thickness, white matter integrity, and cerebral blood flow in AD patients can be 

84 gleaned. Notably, the advent of deep learning techniques has emerged as a formidable approach 
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85 for medical image analysis across a wide range of conditions, encompassing neurodegenerative 

86 disorders, orthopaedic ailments, and cancer. Leverageing the intrinsic capacity to automatically 

87 learn and extract intricate features from image data through the construction of multilayer neural 

88 networks, deep learning methods transcend conventional machine learning approaches by 

89 iteratively optimizing models with large-scale data. This obviates the need for manual feature 

90 engineering, engenders enhanced diagnostic accuracy, and improves overall diagnostic 

91 efficiency.

92 The integration of deep learning techniques into AD diagnostic research has been 

93 instrumental in the development of algorithms aimed at supporting physicians in early diagnosis 

94 and prognosis prediction. By harnessing the power of deep learning for MRI analysis, the 

95 detection of AD at its nascent stages becomes attainable, thereby augmenting the diagnostic 

96 capabilities and precision of healthcare professionals. This, in turn, facilitates the timely 

97 implementation of intervention strategies to mitigate further cognitive decline. The exploration 

98 of deep learning-based early AD diagnosis holds significant theoretical and practical 

99 implications, encompassing the identification of initial brain alterations in AD patients, the 

100 enhancement of AD diagnostic efficiency, the amelioration of the quality of life for individuals 

101 afflicted by AD, and the advancement of deep learning theory as a whole.

102 Deep learning has become increasingly prominent in medical image analysis, surpassing 

103 conventional machine learning algorithms in various domains (Lian et al. 2020). Notably, its 

104 automated feature learning capability from raw data, without the need for human intervention or 

105 domain expertise, distinguishes it as a highly advantageous approach. Among the array of deep 

106 learning models, Convolutional Neural Networks (CNNs) have demonstrated remarkable success 

107 and widespread adoption for medical image analysis. This can be attributed to their proficiency 

108 in capturing both spatial and semantic information from images, thereby enabling robust and 

109 accurate analysis in the medical field.

110 Korolev et al. (Korolev et al. 2017) explored the use of 3D CNNs for AD classification and 

111 developed two 3D CNN models that achieved comparable results to traditional methods using 

112 ADNI data. Cheng et al. (Cheng et al. 2017) employed 3D CNNs for AD classification, but they 

113 amalgamated multiple 3D CNNs by training them on MRI data from distinct brain regions and 

114 subsequently appending an FC layer to each one. Improved AD diagnosis performance of 3D 

115 CNNs was achieved by Zhang et al. (Zhang et al. 2021) through the incorporation of an attention 

116 mechanism, which enabled the network to selectively focus on relevant features. Spasov et al. 

117 (Spasov et al. 2019) proposed a method to reduce the computational complexity of 3D CNNs by 

118 using separable convolution techniques.

119 Pan et al. (Pan et al. 2022) invented an adaptive interpretable ensemble model 

120 (3DCNN+EL+GA) that leverages the power of 3DCNN, ensemble learning and genetic 

121 algorithm (GA) for AD classification and biomarker discovery. 246 base classifiers (3DCNN) 

122 were trained on a dataset of 246 brain regions and a majority voting scheme  was employed to 

123 select the optimal combination of base classifiers from the set of classifiers by using GA. Liu et 

124 al. (Liu et al. 2020) developed a multi-task deep CNN model that performed both hippocampal 

125 segmentation and disease classification tasks simultaneously. They combined a 3D densely 

126 connected convolutional network (3D DenseNet) with the hippocampal segmentation results to 

127 learn richer features for AD diagnosis.

128 Khvostikov et al. (Khvostikov et al. 2018) built 3D CNNs for AD classification by extracting 

129 hippocampal ROIs from sMRI and DTI data. They also balanced the classes of different sizes by 

130 using data augmentation methods and investigated the effect of ROI size on classification results. 
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131 Liu et al. (Liu et al. 2018) developed an end-to-end approach for AD classification by extracting 

132 local fMRI image patches centred on predefined anatomical landmarks. These patches are 

133 applied to capture both the local and global structural features from the images. However, many 

134 of these 3D deep learning-based approaches still excessively rely on pre-determined ROIs before 

135 the training of the network, which may limit the performance due to the presence of irrelevant 

136 features in sMRI for AD diagnosis. Moreover, most of these studies only focus on binary 

137 classification, which is not very helpful for determining the stage of the patient�s situation.

138 Each individual's brain exhibits unique characteristics and may possess disease-related 

139 features that cannot be fully captured by a single MRI slice. Consequently, the MRI slices of 

140 patients may exhibit minimal deviation from those of healthy individuals, making classification 

141 challenging. Previous studies have primarily focused on extracting features from specific slices 

142 or the entire image, disregarding the features of slices from different views and the 

143 complementary nature of features across these slices. Moreover, they have not effectively 

144 utilized the comprehensive structural information available in whole-brain MRI scans (Lian et al. 

145 2022). In light of this, Qiao et al. (Qiao et al. 2021) proposed a novel approach for early AD 

146 diagnosis based on MRI, which involves extracting fused global features from multi-view slice 

147 features. They employed a simple splicing technique to combine the features of multiple slices 

148 from the same view. However, it is restricted by an assumption that all slices are of equal 

149 importance for the classification task. Different slices may contribute differently to disease 

150 features. Therefore, using equal weights for feature fusion may not effectively capture the 

151 relevant features, potentially resulting in lower classification accuracy.

152 Actually, the slices from the same view capture diverse brain regions and exhibit distinct 

153 features, essentially representing channel-specific mappings that reflect varying degrees of 

154 importance in the slice clusters. Additionally, it is essential to recognize that slices from different 

155 locations are not isolated entities but interconnected, collectively forming a comprehensive 

156 feature representation of the slice cluster in that specific direction. Hence, when fusing the 

157 features of different slices from the same view, it becomes crucial to consider both the 

158 significance of the information carried by each slice and the contextual relationship that exists 

159 between them. By incorporating these factors into the fusion process, a more robust and 

160 informative representation can be achieved, facilitating improved accuracy in capturing essential 

161 features for classification tasks, such as early AD diagnosis based on MRI data.

162 In this dissertation, a novel approach to the early diagnosis of AD called ASMF is proposed. 

163 Firstly, the Multi-view Slice-level Feature Extraction (MSFE) method is employed to acquire 

164 slice-level features from three distinct views (sagittal, coronal, and cross-sectional) by repeatedly 

165 slicing the 3D MRI and leverage three separate 2D sub-networks to extract features from each 

166 view. Then, an attention mechanism is incorporated to guide the fusion of slice features for each 

167 view, assigning varying weights to individual slices based on their respective importance. 

168 Secondly, global features are extracted from the entire MRI images by using a 3D CNN to 

169 complement the slice-level features. Finally, the slice-level and global features are fused to 

170 generate a more comprehensive feature representation for the classifier. The key contributions of 

171 this study can be concluded as follows:

172 1. To address the limitations of relying on feature extraction in a specific direction, this study 

173 proposes a novel MSFE-based approach for early diagnosis of AD. 

174 2. This is the first study that incorporates the self-attention mechanism and the fusion of multi-

175 view features to construct a comprehensive representation of the MRI images for classification.
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176 3. According to the experimental results, the proposed method outperforms other recently 

177 published promising approaches.

178 The remainder of this paper is arranged as follows. The materials and methods are described 

179 in Section 2. Section 3 provides experimental results and corresponding discussion. At last, the 

180 summary of this study is given in Section 4.
181

182

183 Materials & Methods

184 In contrast to previous studies that typically rely on a single slice from a specific view for AD 

185 diagnosis, we utilize multiple slices from three views of 3D MRI scans to extract features. As 

186 shown in Fig. 1, by incorporating information from various slices, we aim to capture the full 

187 extent of brain damage caused by AD, accounting for patient heterogeneity. To guide the fusion 

188 of slice features, an attention mechanism is employed that assigns different weights to slices 

189 based on their relevance for classification. It ensures that the most informative slices contribute 

190 more significantly to the diagnostic process. Furthermore, we integrate the slice features from the 

191 three views with global features extracted from the entire MRI images, resulting in a feature 

192 representation that comprehensively reflects the overall brain state of the patient.

193 Multi-view slicing feature extraction

194 To facilitate the analysis of the 3D MRI data, we initially partitioned it into three distinct planes: 
195 sagittal, coronal, and transverse planes. Each plane represents a different orientation of the brain 
196 and provides unique information about its structural characteristics. To ensure a comprehensive 
197 assessment, we extracted a total of 40 slices per view, thereby constructing a robust slice cluster. 
198 Figure 2 visually illustrates the resulting set of images, showcasing the diversity and coverage 
199 achieved across the different planes. By encompassing multiple slices from each view, our 
200 approach captures a broader range of relevant features, enabling a more thorough examination of 
201 the brain's structural attributes.

202 To extract features from each slice of the 3D MRI data, we used a slice-level feature 
203 extraction network that takes slice clusters as input. A slice cluster consists of 40 slices from one 
204 of three possible views: sagittal (x), coronal (y) or transverse (z), which represent different 
205 orientations of the brain structure and contain different types of features. Therefore, we designed 
206 a separate Slice Feature Extraction Network (SFEN) for each view. For instance, the sagittal 
207 view (x),  denotes the cluster of slices in this direction. Each slice in this cluster has an index i ��
208 that ranges from 1 to 40. Thus,   can be written as��
209 (1)�

x
= [�1�, �2�, ..., ���]

210 where n denotes the number of slices in the x-direction. The feature extraction of the i-th slice in 
211 the x-direction can be expressed as

212   (2)� �� = �������(��(� ��,� ��))

213 where  represents the feature extraction function consisting of multiple blocks containing a ��
214 3*3 convolutional layer, BN layer, activation function ReLU and maximum pooling layer, as 

215 shown in Fig. 3. Besides,  denotes the convolutional layer weight of the i-th slice in the x-� ��
216 direction,  stands for the features of the cluster of slices in the x-direction after . Then the �� ��
217 slice cluster feature in the x-direction can be expressed as
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218 (3)�
x

= [�1�, �2�, ..., ���]
219

220 Attention-based slice feature fusion

221 To integrate the distinct features within each view (x, y, or z), we leverage the notion of a "slice 

222 cluster" comprising 40 slices that possess unique characteristics. These features serve as 

223 mappings for specific brain structures observed from their respective perspectives. Notably, 

224 these features are not isolated entities, but rather interconnected across various locations within 

225 the slice cluster. Consequently, they collectively establish a comprehensive feature 

226 representation for the given view. To effectively merge these features, it is imperative to consider 

227 both their significance and their interdependencies. To address this, we propose a novel 

228 mechanism termed Slices Fusion Attention (SFA). SFA employs self-attention to capture 

229 contextual information among the slices and assigns attention weights to each slice based on its 

230 relative importance and contribution to the overall feature representation of the view. By 

231 incorporating this attention-based weighting scheme, SFA effectively balances the significance 

232 of different slices while enriching them with contextual information derived from their 

233 interrelationships. Figure 4 provides an illustrative depiction of the structural composition of 

234 SFA.

235 We feed the slice cluster feature  into SFA as input.  has a dimension of 40*1*128 and it �� ��
236 is obtained by concatenating the features of 40 slices along the channel dimension after applying 
237 SFEN. To reduce the number of channels from 128 to 1, we use a 1*1 convolution layer that 
238 compresses  into a single-channel feature map. This gives us an aggregated feature that ��
239 represents the fusion of 40 slices. Next, we apply a Softmax function to  and multiply it with ��
240 . This way, we obtain  that contains contextual information between slices weighted by their �� ��
241 attention scores. We can write this process as

242 (4)�� = � ∗� ∗ �������(����(��))

243 where Conv means 1*1 convolution operation, and  is obtained by reducing one dimension of � ∗�
244  .��
245  contains the contextual relationship between different slices, which needs to be assigned to ��
246 each slice by calculating the slice feature weights of different channels. Firstly,  is expanded ��
247 by one dimension and the number of channels is reduced by 1*1 convolution, then BatchNorm 
248 and ReLU activation function operations are performed, and the number of channels is raised to 
249 the original number by 1*1 convolution, denoted as

250

251 (5)�� = ����(��(����(� '�)))

252 where  is obtained by adding one dimension to , and BR denotes the BatchNorm and ReLU � '� ��
253 activation functions.
254  is applied to represent the reweighted channel features that reflect how much each slice ��
255 contributes to . To obtain the slice fusion feature that incorporates both channel weights and ��
256 contextual relationships between slices, we multiply  with  along the channel axis and sum �� ��
257 them up. We denote this final output as

258 (6)�� = ∑40� = 1
� �� ∗ � ��
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259 where 40 denotes the number of slices and  denotes the i-th channel of weight .� �� ��
260

261 Global feature extraction

262 The global feature extraction (GFE) component contains four blocks, each encompassing a 

263 sequence of operations: a 3D convolutional layer, a 3D batch normalization layer (BN), a 

264 rectified linear unit (ReLU) activation function, and a 3D maximum pooling layer. Subsequently, 

265 a 3D average pooling layer is employed to convert the multichannel features into a vector that 

266 encapsulates the global information. Figure 5 provides the structure of GFE. Following the 

267 acquisition of the global features, adaptive averageing pooling is applied to generate a one-

268 dimensional vector. The multi-view slice-level features are then concatenated with the global 

269 vector. Finally, a fully connected layer is employed to obtain the ultimate classification 

270 outcomes.

271

272 Dataset and processing

273 The Alzheimer�s Disease 
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1.

2.

1. 

2. 

2.1

2.2

2.3

274 Neuroimageing Initiative (ADNI) dataset (http://adni.loni.usc.edu/) is employed in this study. 
275 ADNI provides data processed by standard volumetric analysis methods, including gradient non-
276 linearity correction, B1 correction, N3 correction, CAT12 for extraneous tissue removal, 
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277 alignment and smoothing operations. Then, a total of 351 3D-MRI scans for NC subjects are 
278 acquired (301 3D-MRI scans for AD subjects and 331 3D-MRI scans for MCI subjects).
279 In the experiments, the ADNI data were utilized and underwent several preprocessing steps 
280 before being fed into the feature extraction network, as depicted in Fig. 4. Initially, the 
281 background information that is unrelated to the classification task was eliminated. Subsequently, 
282 the image size was adjusted to 90*90*90, and the image density was normalized based on the 
283 mean and standard values of the non-zero region. The 3D MRI data were then sliced according 
284 to three directions, and for each view, the middle 40 slices were selected. Finally, feature 
285 extraction operations were conducted on the obtained slices.

286

287 Results and Discussion

288 Ablation experiments

289 To investigate the performance of the proposed framework, the indicators of Acc (Accuracy), 
290 Sen (Sensitivity), Spe (Specificity), Pre (Precision) and F1 (F1-score) are employed for 

291 evaluation. The ablation experiments are conducted with the detailed definition as follows：

292 1. 3D: 3D features are only obtained by 3D GFE.

293 2. 2D: only employ 2D features learned by MSFE.
294 3. 2D+3D: 2D and 3D features are extracted by MSFE and GFE.

295 4. SE+2D+3D: the combination of 2D+3D with SE.

296 5. AMSF (SFA+2D+3D): SFA-guided 2D+3D.

297 The results of the ablation experiments are shown in Table 1. It can be seen that the 
298 classification accuracy of 3D is the lowest (76.9%). The 2D method provides better performance 
299 with the classification accuracy improvement to 89.4%, which is 12.5% higher than 3D. With the 
300 help of fused global features, 2D+3D achieves 91.6% Acc better than only using 2D or 3D 
301 strategy. However, the inclusion of SE results in a decrease in classification accuracy by 1.8%, 
302 suggesting that SE fails to effectively address the imbalanced importance among different slices 
303 within the same view for this particular task. At last, it is demonstrated that AMSF reaches the 
304 highest accuracy of 94.3%, surpassing that of the 2D+ 3D and SE+2D+3D by 2.7% and 4.5% 
305 respectively. It also exceeds in F1 scores, Sen, Spe and Pre. This indicates that SFA effectively 
306 integrates contextual relationships between different slices, enabling it to balance their 
307 importance within a given view.

308 The curve of validation loss for each epoch is shown in Fig. 6. It can be seen that during the 
309 training process, the training loss decreases continuously in the first 20 epochs and keeps stable. 
310 The validation loss declines in the first 10 epochs, then falls in fluctuation before 25 epochs, and 
311 finally stabilises after 35 epochs. Figure 7 gives the curve of the accuracy for each epoch. With a 
312 zigzag rise before 35 epochs, the validation accuracy reaches saturation. As can be seen in Fig. 8, 
313 the classification of AD achieves the highest accuracy (97.0%), indicating that ASMF is more 
314 sensitive to the features of AD. The classification accuracy for NC is 95.4% with 4.6% 
315 misclassifying NC to MCI. For MCI, it obtains the worst performance (90.4%), as well as an 
316 8.2% misclassifying MCI to AD. It can be observed that the subtle difference in features between 
317 MCI and AD are formidable to extract, which is still a significant problem in AD diagnosis.

318 Comparison with other methods
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319 An experimental comparison with previous promising approaches is also arranged, including two 
320 traditional machine learning-based approaches (JMMP-LRR, Liner SVM) and three deep 
321 learning-based methods (DemNet, Automatic CL and AdaBoost). The abstracts of these works 
322 are listed as follows:

323 1. Automatic CL (Gracias & Silveira 2022): curriculum learning is employed in the early 
324 diagnosis of AD based on a 3D CNN network, by incorporating task complexity, cognitive 
325 test scores, and ROI features, thereby enhancing the accurate classification of MCI.

326 2. Liner SVM (Yuan et al. 2022): Mr cortical and ApoE4 gene features are explored for AD 
327 classification and the optimal performance is achieved by an SVM classifier with higher 
328 sensitivity and specificity.

329 3. JMMP-LRR (Sheng et al. 2020): it aims to better alleviate the problem of small-sample, ul-
330 tra-high-dimensional features, accompany by stable AD classification accuracy.

331 4. DemNet (Billones et al. 2016): an improved 16-layer VGGNet architecture is proposed with 
332 SOTA (state-of-the-art) classification results of AD vs. MCI vs. NC.

333 5. AdaBoost (Buyrukoğlu 2021): an ensemble learning method is designed for AD diagnosis 
334 with SOTA performance compared with different ensemble learning methods.

335 Table 2 shows the classification results on the ADNI dataset compared with other previous 
336 promising methods. It can be seen that ASMF achieves the best performance with 94.3% 
337 classification accuracy, which is 1.6% -7.1% higher than other related works. Surprisingly, only 
338 by using a small scale of dataset, traditional machine learning-based methods (Linner SVM and 
339 AdaBoost) surpass the other three deep learning-based approaches. Especially for Linner SVM, 
340 it outperforms Automatic CL and DemNet without the help of DNNs. Together these results 
341 provide important insights into the better solution for AD early diagnosis not only depends on 
342 the large scale of dataset, but also the organic combination of feature construction strategy and 
343 deep neural networks.

344

345 Conclusions
346 This study proposes a novel AD diagnosis approach called AMSF to address the limitation of 
347 relying on the feature extraction in a specific direction. It incorporates multiple slices with 
348 feature extraction from different views of 3D MRI images and the fusion of slice cluster features 
349 from each view achieved through an attention mechanism. Furthermore, the GFE by the 3D 
350 network fusion is combined to obtain a comprehensive MRI feature representation. Based on the 
351 AD vs. MCI vs. NC classification tasks on the public ADNI dataset, the experimental results 
352 demonstrate significant advantages over several SOTA methods. Although the promising 
353 experimental results achieves, the drawback still exists to be addressed. For example, a dataset 
354 with a limited size may restrict the generalization of the proposed model for practical 
355 applications. In future, diverse datasets with large scales are required to enhance the robustness 
356 and reliability of the method.

357

358
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Figure 1
Figure 1. The framework of AMSF.
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Figure 2
Figure 2. 3D MRI data slicing in three directions.
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Figure 3
Figure 3. The architecture of SFE.
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Figure 4
Figure 4. The architecture of SFA.
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Figure 5
Figure 5. The structure of GFE network.
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Figure 6
Figure 6. The curve of validation loss of AMSF.
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Figure 7
Figure 7. The curve of accruracy of AMSF.
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Figure 8
Figure 8. Confusion matrix of of AMSF in ablation experiment.
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Table 1(on next page)

Table 1. Results of ablation experiments.
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1 Table 1. Results of ablation experiments.

Methods Acc (%) Sen (%) Spe (%) Pre (%) F1 (%)

3D 76.9 76.6 88.7 77.2 76.7

2D 89.4 90.2 94.8 90.8 89.8

2D+3D 91.6 91.6 95.9 92.2 91.3

SE+2D+3D 89.8 89.6 95.1 89.6 89.5

AMSF 94.3 94.2 97.1 94.2 94.1

2
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Table 2(on next page)

Table 2. The comparison results with other previous methods for AD vs. MCI vs. NC
classification.
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1 Table 2. The comparison results with other previous methods for AD vs. MCI vs. NC classification.

2

3

4

5

6

7

Methods Category with the number of samples Acc(%)

Automatic CL AD: 95,MCI: 207,NC: 104 87.2

JMMP-LRR AD: 24,MCI: 24,NC: 24 89.0

DemNet AD: 300,MCI: 300,NC: 300 91.9

Linner SVM AD: 34,MCI: 45,NC: 21 92.0

AdaBoost AD: 85,MCI: 193,NC: 111 92.7

AMSF (ours) AD: 301,MCI: 331,NC: 351 94.3
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