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ABSTRACT
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease with a high
prevalence in the elderly population over 65 years of age. Intervention in the early
stages of AD is of great significance to alleviate the symptoms. Recent advances in
deep learning have shown extreme advantages in computer-aided diagnosis of AD.
However, most studies only focus on extracting features from slices in specific
directions or whole brain images, ignoring the complementarity between features
from different angles. To overcome the above problem, attention-based multi-view
slice fusion (AMSF) is proposed for accurate early diagnosis of AD. It adopts the
fusion of three-dimensional (3D) global features with multi-view 2D slice features by
using an attention mechanism to guide the fusion of slice features for each view, to
generate a comprehensive representation of the MRI images for classification. The
experiments on the public dataset demonstrate that AMSF achieves 94.3% accuracy
with 1.6–7.1% higher than other previous promising methods. It indicates that the
better solution for AD early diagnosis depends not only on the large scale of the
dataset but also on the organic combination of feature construction strategy and deep
neural networks.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Computer Vision
Keywords Alzheimer’s disease, Magnetic resonance imaging, Attention mechanism, Multi-view
slice fusion

INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disease with a high prevalence in people
over 65 years of age (Reiman et al., 2012). Previous studies have shown that the structural
changes in the brain caused by AD can be traced back 20 years before the onset of
symptoms in patients (Barthelemy et al., 2020). In the early stage of AD, patients may not
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notice any significant changes in their brain structure or activity, but some difficulties with
memory recall or retention may appear. As AD progresses, it leads to the formation of
brain tissue lesions that impair and ultimately destroy neurons responsible for various
cognitive functions (Zarei et al., 2013), including deterioration of memory and thinking
skills, as well as a decline in physical abilities and independence. Patients with AD may
present symptoms such as memory loss, cognitive impairment, language difficulties, and
reduced mobility (Gaugler et al., 2022).

The global community is currently confronted with a significant demographic
predicament characterized by a rapid expansion in the population of older individuals. As
per the United Nations, the proportion of individuals aged 65 years and above in the
overall global population is projected to reach 9.7% by 2022, and further escalate to 16.4%
by 2050 (United Nations, 2023). This unprecedented surge in ageing demographics
presents formidable challenges for healthcare systems, given the heightened vulnerability
of older adults to chronic and degenerative ailments. Among these conditions, AD stands
out as a highly prevalent and debilitating disorder that profoundly impacts the cognitive
and functional capacities of countless individuals across the globe.

Mild cognitive impairment (MCI) represents a pivotal transitional phase between
normal ageing and dementia, characterized by a discernible cognitive decline that does not
significantly impede daily functioning. MCI assumes a critical role as an early intervention
window, presenting a valuable opportunity to mitigate or forestall subsequent cognitive
deterioration (Wee et al., 2012). Extensive research has established that individuals
diagnosed with MCI face a heightened susceptibility to developing AD, with an annual
conversion rate ranging from 10% to 15% (Roberts & Knopman, 2013). Consequently, the
implementation of timely and efficacious medical interventions during the MCI stage
holds the potential to safeguard neural cells against further impairment and delay the onset
of AD pathology, thereby contributing to a reduction in the mortality associated with this
incurable affliction (Odusami, Maskeliunas & Damasevicius, 2022).

Neuroimaging serves as a valuable and indispensable tool in the clinical diagnosis of
AD, enabling the quantification of structural and functional alterations within the brain
that accompany disease progression. Among the diverse array of neuroimaging modalities
available, magnetic resonance imaging (MRI) has garnered considerable attention owing
to its high spatial resolution and non-invasive characteristics. Through MRI, intricate
details regarding brain volume, cortical thickness, white matter integrity, and cerebral
blood flow in AD patients can be gleaned. Notably, the advent of deep learning techniques
has emerged as a formidable approach for medical image analysis across a wide range of
conditions, encompassing neurodegenerative disorders, orthopaedic ailments, and cancer.
Leveraging the intrinsic capacity to automatically learn and extract intricate features from
image data through the construction of multilayer neural networks, deep learning methods
transcend conventional machine learning approaches by iteratively optimizing models
with large-scale data. This obviates the need for manual feature engineering, engenders
enhanced diagnostic accuracy, and improves overall diagnostic efficiency.

The integration of deep learning techniques into AD diagnostic research has been
instrumental in the development of algorithms aimed at supporting physicians in early
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diagnosis and prognosis prediction. By harnessing the power of deep learning for MRI
analysis, the detection of AD at its nascent stages becomes attainable, thereby augmenting
the diagnostic capabilities and precision of healthcare professionals. This, in turn,
facilitates the timely implementation of intervention strategies to mitigate further cognitive
decline. The exploration of deep learning-based early AD diagnosis holds significant
theoretical and practical implications, encompassing the identification of initial brain
alterations in AD patients, the enhancement of AD diagnostic efficiency, the amelioration
of the quality of life for individuals afflicted by AD, and the advancement of deep learning
theory as a whole.

Deep learning has become increasingly prominent in medical image analysis, surpassing
conventional machine learning algorithms in various domains (Lian et al., 2020). Notably,
its automated feature learning capability from raw data, without the need for human
intervention or domain expertise, distinguishes it as a highly advantageous approach.
Among the array of deep learning models, convolutional neural networks (CNNs) have
demonstrated remarkable success and widespread adoption for medical image analysis.
This can be attributed to their proficiency in capturing both spatial and semantic
information from images, thereby enabling robust and accurate analysis in the medical
field.

Korolev et al. (2017) explored the use of 3D CNNs for AD classification and developed
two 3D CNNmodels that achieved comparable results to traditional methods using ADNI
data. Cheng et al. (2017) employed 3D CNNs for AD classification, but they amalgamated
multiple 3D CNNs by training them on MRI data from distinct brain regions and
subsequently appending an FC layer to each one. Improved AD diagnosis performance of
3D CNNs was achieved by Zhang et al. (2021) through the incorporation of an attention
mechanism, which enabled the network to selectively focus on relevant features. Spasov
et al. (2019) proposed a method to reduce the computational complexity of 3D CNNs by
using separable convolution techniques.

Pan et al. (2022) invented an adaptive interpretable ensemble model (3DCNN+EL+GA)
that leverages the power of 3DCNN, ensemble learning and genetic algorithm (GA) for AD
classification and biomarker discovery. A total of 246 base classifiers (3DCNN) were
trained on a dataset of 246 brain regions and a majority voting scheme was employed to
select the optimal combination of base classifiers from the set of classifiers by using GA.
Liu et al. (2020) developed a multi-task deep CNN model that performed both
hippocampal segmentation and disease classification tasks simultaneously. They combined
a 3D densely connected convolutional network (3D DenseNet) with the hippocampal
segmentation results to learn richer features for AD diagnosis.

Khvostikov et al. (2018) built 3D CNNs for AD classification by extracting hippocampal
ROIs from sMRI and DTI data. They also balanced the classes of different sizes by using
data augmentation methods and investigated the effect of ROI size on classification results.
Liu et al. (2018) developed an end-to-end approach for AD classification by extracting
local fMRI image patches centred on predefined anatomical landmarks. These patches are
applied to capture both the local and global structural features from the images. However,
many of these 3D deep learning-based approaches still excessively rely on pre-determined
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ROIs before the training of the network, which may limit the performance due to the
presence of irrelevant features in sMRI for AD diagnosis. Moreover, most of these studies
only focus on binary classification, which is not very helpful for determining the stage of
the patient’s situation.

Each individual’s brain exhibits unique characteristics and may possess disease-related
features that cannot be fully captured by a single MRI slice. Consequently, the MRI slices of
patients may exhibit minimal deviation from those of healthy individuals, making
classification challenging. Previous studies have primarily focused on extracting features
from specific slices or the entire image, disregarding the features of slices from different
views and the complementary nature of features across these slices. Moreover, they have
not effectively utilized the comprehensive structural information available in whole-brain
MRI scans (Lian et al., 2022). In light of this, Qiao, Chen & Zhu (2021) proposed a novel
approach for early AD diagnosis based on MRI, which involves extracting fused global
features from multi-view slice features. They employed a simple splicing technique to
combine the features of multiple slices from the same view. However, it is restricted by an
assumption that all slices are of equal importance for the classification task. Different slices
may contribute differently to disease features. Therefore, using equal weights for feature
fusion may not effectively capture the relevant features, potentially resulting in lower
classification accuracy.

Actually, the slices from the same view capture diverse brain regions and exhibit distinct
features, essentially representing channel-specific mappings that reflect varying degrees of
importance in the slice clusters. Additionally, it is essential to recognize that slices from
different locations are not isolated entities but interconnected, collectively forming a
comprehensive feature representation of the slice cluster in that specific direction. Hence,
when fusing the features of different slices from the same view, it becomes crucial to
consider both the significance of the information carried by each slice and the contextual
relationship that exists between them. By incorporating these factors into the fusion
process, a more robust and informative representation can be achieved, facilitating
improved accuracy in capturing essential features for classification tasks, such as early AD
diagnosis based on MRI data.

In this dissertation, a novel approach to the early diagnosis of AD called ASMF is
proposed. Firstly, the Multi-view Slice-level Feature Extraction (MSFE) method is
employed to acquire slice-level features from three distinct views (sagittal, coronal, and
cross-sectional) by repeatedly slicing the 3D MRI and leverage three separate 2D sub-
networks to extract features from each view. Then, an attention mechanism is
incorporated to guide the fusion of slice features for each view, assigning varying weights to
individual slices based on their respective importance. Secondly, global features are
extracted from the entire MRI images by using a 3D CNN to complement the slice-level
features. Finally, the slice-level and global features are fused to generate a more
comprehensive feature representation for the classifier. The key contributions of this study
can be concluded as follows:
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1) To address the limitations of relying on feature extraction in a specific direction, this
study proposes a novel MSFE-based approach for early diagnosis of AD.

2) This is the first study that incorporates a self-attention mechanism and the fusion of
multi-view and multimodal features to construct a comprehensive representation of the
MRI images for classification.

3) According to the experimental results, the proposed method outperforms other recently
published promising approaches.

The remainder of this article is arranged as follows. The materials and methods are
described in “Materials and Methods”. “Results and Discussion” provides experimental
results and corresponding discussion. Finally, the summary of this study is given in
“Conclusions”.

MATERIALS AND METHODS
In contrast to previous studies that typically rely on a single slice from a specific view for
AD diagnosis, we utilize multiple slices from three views of 3D MRI scans to extract
features. As shown in Fig. 1, the workflow of ASMF contains the following steps: (1) three
views of slices are separately processed by the proposed Slice Feature Extraction Network
(SFEN) and Slices Fusion Attention (SFA) module to generate slice-level features; (2) the
preprocessed 3DMRI volumes are sent to designed 3D neural network to produce volume-
level feature representations; (3) the slice-level and volume-level features are merged in FC
layer; (4) the classifier is trained to predict the correct category of AD, MCI and NC.

Multi-view slicing feature extraction
To facilitate the analysis of the 3D MRI data, we initially partitioned it into three distinct
planes: sagittal, coronal, and transverse planes. Each plane represents a different
orientation of the brain and provides unique information about its structural

Figure 1 The framework of AMSF. Figure source credit: ADNI.
Full-size DOI: 10.7717/peerj-cs.1706/fig-1
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characteristics. To ensure a comprehensive assessment, we extracted a total of 40 slices per
view, thereby constructing a robust slice cluster. Figures 2 and 3 visually illustrate the 3D
MRI images, showcasing the diversity and coverage achieved across the different planes. By
encompassing multiple slices from each view, our approach captures a broader range of
relevant features, enabling a more thorough examination of the brain’s structural
attributes.

To extract features from each slice of the 3D MRI data, we used a slice-level feature
extraction network that takes slice clusters as input. A slice cluster consists of 40 slices from
one of three possible views: sagittal (x), coronal (y) or transverse (z), which represent
different orientations of the brain structure and contain different types of features.
Therefore, we designed a separate SFEN for each view. As can be seen in Fig. 4, it consists
of four blocks (including a 3�3 convolutional layer, BN layer with ReLU activation function
and 2�2 max pooling layer) and 1�1 average pooling layer. For instance, the sagittal view

Figure 2 3D MRI data slicing in three directions. Figure source credit: ADNI.
Full-size DOI: 10.7717/peerj-cs.1706/fig-2

Figure 3 The examples of ADNI-I dataset. (A) AD, (B) MCI, (C) NC. Figure source credit: ADNI.
Full-size DOI: 10.7717/peerj-cs.1706/fig-3
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(x), Cx denotes the cluster of slices in this direction. Each slice in this cluster has an index i
that ranges from 1 to 40. Thus, Cx can be written as

Cx ¼ C1
x ; C

2
x ; …; Cn

x

� �
(1)

where n denotes the number of slices in the x-direction. The feature extraction of the i-th
slice in the x-direction can be expressed as

Ti
x ¼ AvgPool Fx Ci

x;W
i
x

� �� �
(2)

where Fx represents the feature extraction function consisting of multiple blocks
containing a 3�3 convolutional layer, BN layer, activation function ReLU and maximum
pooling layer, as shown in Fig. 4. Besides,Wi

x denotes the convolutional layer weight of the
i-th slice in the x-direction, Tx stands for the features of the cluster of slices in the x-
direction after Fx. Then the slice cluster feature in the x-direction can be expressed as

Tx ¼ T1
x ; T

2
x ; …; Tn

x

� �
(3)

Attention-based slice feature fusion
To integrate the distinct features within each view (x, y, or z), we leverage the notion of a
“slice cluster” comprising 40 slices that possess unique characteristics. These features serve
as mappings for specific brain structures observed from their respective perspectives.
Notably, these features are not isolated entities, but rather interconnected across various
locations within the slice cluster. Consequently, they collectively establish a comprehensive
feature representation for the given view. To effectively merge these features, it is
imperative to consider both their significance and their interdependencies. To address this,
we propose a novel mechanism termed SFA. It employs self-attention to capture
contextual information among the slices and assigns attention weights to each slice based

Figure 4 The architecture of SFE. Figure source credit: ADNI.
Full-size DOI: 10.7717/peerj-cs.1706/fig-4
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on its relative importance and contribution to the overall feature representation of the
view. By incorporating this attention-based weighting scheme, SFA effectively balances the
significance of different slices while enriching them with contextual information derived
from their interrelationships. Figure 5 provides an illustrative depiction of the structural
composition of SFA.

We feed the slice cluster feature Tx into SFA as input. Tx has a dimension of 40�1�128
and it is obtained by concatenating the features of 40 slices along the channel dimension
after applying SFEN. To reduce the number of channels from 128 to 1, we use a 1�1
convolution layer that compresses Tx into a single-channel feature map. This gives us an
aggregated feature that represents the fusion of 40 slices. Next, we apply a Softmax
function to Tx and multiply it with Sx. This way, we obtain Sx that contains contextual
information between slices weighted by their attention scores. We can write this process as

Sx ¼ T�
x � Softmax Conv Txð Þð Þ (4)

where Conv means 1�1 convolution operation, and T�
x is obtained by reducing one

dimension of Tx.

Figure 5 The architecture of SFA. Full-size DOI: 10.7717/peerj-cs.1706/fig-5
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Sx contains the contextual relationship between different slices, which needs to be
assigned to each slice by calculating the slice feature weights of different channels. Firstly,
Sx is expanded by one dimension and the number of channels is reduced by 1�1
convolution, then BatchNorm and ReLU activation function operations are performed,
and the number of channels is raised to the original number by 1�1 convolution, denoted
as

Ax ¼ Conv BR Conv S0x
� �� �� �

(5)

where S0x is obtained by adding one dimension to Sx, and BR denotes the BatchNorm and
ReLU activation functions.

Ax is applied to represent the reweighted channel features that reflect how much each
slice contributes to Sx. To obtain the slice fusion feature that incorporates both channel
weights and contextual relationships between slices, we multiply Ax with Tx along the
channel axis and sum them up. We denote this final output as

Fx ¼
X40

i¼1
Ti
x � Ai

x (6)

where 40 denotes the number of slices and Ai
x denotes the i-th channel of weight Ax.

Global feature extraction
The global feature extraction (GFE) component contains four blocks, each encompassing a
sequence of operations: a 3D convolutional layer, a 3D batch normalization layer (BN), a
rectified linear unit (ReLU) activation function, and a 3D maximum pooling layer.
Subsequently, a 3D average pooling layer is employed to convert the multichannel features
into a vector that encapsulates the global information. Figure 6 provides the structure of
GFE. Following the acquisition of the global features, adaptive averaging pooling is applied
to generate a one-dimensional vector. The multi-view slice-level features are then

Figure 6 The structure of GFE network. Full-size DOI: 10.7717/peerj-cs.1706/fig-6
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concatenated with the global vector. Finally, a fully connected layer is employed to obtain
the ultimate classification outcomes.

RESULTS AND DISCUSSION
Dataset and processing
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (http://adni.loni.usc.
edu/) is employed in this study. ADNI provides data processed by standard volumetric
analysis methods, including gradient non-linearity correction, B1 correction, N3
correction, CAT12 for extraneous tissue removal, alignment and smoothing operations. In
this study, the ADNI-I with a total of 351 3D-MRI scans for NC subjects, 301 3D-MRI
scans for AD subjects and 331 3D-MRI scans for MCI subjects are employed.

In the experiments, the ADNI-I data were utilized and underwent several preprocessing
steps before being fed into the feature extraction network, as depicted in Fig. 5. Initially, the
background information that is unrelated to the classification task was eliminated.
Subsequently, the image size was adjusted to 90�90�90, and the image density was
normalized based on the mean and standard values of the non-zero region. The 3D MRI
data were then sliced according to three directions, and for each view, the middle 40 slices
were selected on the basis of a preliminary experiment. Finally, feature extraction
operations were conducted on the obtained slices according to the cross-validation
protocol with 70% samples for training and the left 30% for testing.

Ablation experiments
To investigate the performance of the proposed framework, the indicators of Acc
(Accuracy), Sen (Sensitivity), Spe (Specificity), Pre (Precision) and F1 (F1 score) are
employed for evaluation. The batch-size for model training is 12, the number of epochs is
set to 100, and the learning rate is 0.01. The ablation experiments are conducted with the
detailed definition as follows:

1) 3D: 3D features are only obtained by 3D GFE.

2) 2D: only employ 2D features learned by MSFE.

3) 2D+3D: 2D and 3D features are extracted by MSFE and GFE.

4) SE+2D+3D: the combination of 2D+3D with SE.

5) AMSF (SFA+2D+3D): SFA-guided 2D+3D.

The results of the ablation experiments are shown in Table 1. It can be seen that the
classification accuracy of 3D is the lowest (76.9%) as well as Sen, Spe, Pre and F1. The 2D
method provides better performance with an improvement of 89.4%, which is 12.5%
higher than 3D.With the help of fused global features, 2D+3D achieves 91.6% Acc with the
second-ranking Spe (95.9%) and Sen (91.6%), which surpasses only using 2D or 3D
strategy. However, with the combination of SE, SE+2D+3D cannot improve the
performance further lagging behind in all indicators, especially for Sen with a 2% descent.
It can be suggested that SE fails to effectively address the imbalanced importance among
different slices within the same view for this particular task. At last, it is demonstrated that
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AMSF reaches the highest accuracy of 94.3%, surpassing that of the 2D+3D and SE+2D
+3D by 2.7% and 4.5% respectively. It also exceeds in F1, Sen, Spe and Pre. This indicates
that SFA effectively integrates contextual relationships between different slices, enabling it
to balance their importance within a given view.

The curve of validation loss for each epoch is shown in Fig. 7. It can be seen that during
the training process, the training loss decreases continuously in the first 20 epochs and
remains stable. The validation loss declines in the first 10 epochs, then fall in fluctuation
before 25 epochs and finally stabilises after 35 epochs. Figure 8 gives the curve of the
accuracy for each epoch. With a zigzag rise before 35 epochs, the validation accuracy
reaches saturation. The confusion matrix can be seen in Fig. 9. The classification of AD
achieves the highest accuracy (97.0%), indicating that ASMF is more sensitive to the
features of AD. The classification accuracy for NC is 95.4% with 4.6% misclassifying NC to
MCI. For MCI, it obtains the worst performance (90.4%), as well as an 8.2% misclassifying
MCI to AD. It can be observed that the subtle differences in features between MCI and AD
are formidable to extract, which is still a significant problem in AD diagnosis.

Comparison with other methods
An experimental comparison with previous promising approaches is also arranged,
including two traditional machine learning-based approaches (JMMP-LRR, Liner SVM)

Table 1 Results of ablation experiments.

Methods Acc (%) Sen (%) Spe (%) Pre (%) F1 (%)

3D 76.9 76.6 88.7 77.2 76.7

2D 89.4 90.2 94.8 90.8 89.8

2D+3D 91.6 91.6 95.9 92.2 91.3

SE+2D+3D 89.8 89.6 95.1 89.6 89.5

AMSF 94.3 94.2 97.1 94.2 94.1

Figure 7 The curve of validation loss of AMSF. Full-size DOI: 10.7717/peerj-cs.1706/fig-7
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and three deep learning-based methods (DemNet, Automatic CL and AdaBoost). The
abstracts of these works are listed as follows:

1) Automatic CL (Gracias & Silveira, 2022): curriculum learning is employed in the early
diagnosis of AD based on a 3D CNN network, by incorporating task complexity,
cognitive test scores, and ROI features, thereby enhancing the accurate classification of
MCI.

2) Linear SVM (Yuan, Yao & Bu, 2022): Mr cortical and ApoE4 gene features are explored
for AD classification and the optimal performance is achieved by an SVM classifier with
higher sensitivity and specificity.

Figure 8 The curve of accuracy of AMSF. Full-size DOI: 10.7717/peerj-cs.1706/fig-8

Figure 9 Confusion matrix of of AMSF in ablation experiment.
Full-size DOI: 10.7717/peerj-cs.1706/fig-9
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3) JMMP-LRR (Sheng et al., 2020): it aims to better alleviate the problem of small-sample,
ul-tra-high-dimensional features, accompanied by stable AD classification accuracy.

4) DemNet (Billones et al., 2016): an improved 16-layer VGGNet architecture is proposed
with SOTA (state-of-the-art) classification results of AD vs MCI vs NC.

5) AdaBoost (Buyrukoğlu, 2021): an ensemble learning method is designed for AD
diagnosis with SOTA performance compared with different ensemble learning
methods.

Table 2 shows the classification results on the ADNI dataset compared with other
previous promising methods. It can be seen that ASMF achieves the best performance with
94.3% classification accuracy, which is 1.6–7.1% higher than other related works. However,
the Spe of ASMF (91.7%) is not the best like Sen among these approaches. Surprisingly,
only by using a small-scale dataset, traditional machine learning-based methods (Linear
SVM and AdaBoost) surpass the other three deep learning-based approaches. These
findings are also verified in the ROC curve shown in Fig. 10, indicating that ASMF owns
the better prediction ability for AD. Especially for Linear SVM, except for Sen, it
outperforms Automatic CL and DemNet on Acc and Spe without the help of DNNs, which

Figure 10 The ROC curve of the compared models. Full-size DOI: 10.7717/peerj-cs.1706/fig-10

Table 2 The comparison results with other previous methods for AD vs MCI vs NC classification.

Methods Category with the number of samples Acc (%) Sen (%) Spe (%)

Automatic CL AD: 95, MCI: 207, NC: 104 87.2 86.5 87.8

JMMP-LRR AD: 24, MCI: 24, NC: 24 89.0 88.5 88.2

DemNet AD: 300, MCI: 300, NC: 300 91.9 92.4 91.3

Linear SVM AD: 34, MCI: 45, NC: 21 92.0 90.8 92.5

AdaBoost AD: 85, MCI: 193, NC: 111 92.7 92.5 93.1

AMSF (ours) AD: 301, MCI: 331, NC: 351 94.3 92.6 91.7
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demonstrates the superior performance of traditional machine learning methods on a
small dataset (only 100 subjects’ data). These methods are suitable for clinical applications
and other scenarios of small datasets, but could not obtain the same scores as the larger and
deeper models on actual open scenarios despite the higher complexity and the limited
interpretability. These results provide important insights into the better solution for AD
early diagnosis not only depending on the large scale of the dataset but also the organic
combination of feature construction strategy and deep neural networks.

CONCLUSIONS
This study set out to address the limitation of specific direction feature extraction on a
single modal of fMRI data, thereby a novel AD diagnosis approach called AMSF is
proposed. Specifically, it incorporates (1) the features extracted from different views of 2D
slices, (2) the attention mechanism and (3) volume-based 3D features, which aims to
investigate the effectiveness of attention-based global and local feature representation for
accurate diagnosis of AD. The experiments are conducted on the public ADNI-I dataset,
which demonstrates our proposed method outperforms several previous approaches with
1.6–7.1% improvements. The study contributes to our understanding of the differences
between traditional machine learning and deep learning methods on AD classification
tasks. The insights may be of assistance to design appropriate models coping with various
scales of the fMRI dataset for clinical applications. Although promising experimental
results are achieved, the drawback still exists to be addressed. For example, a dataset with a
limited size may restrict the generalization of the proposed model for practical
applications. In future, we would try to explore (1) transfer learning, domain adaptation or
domain generalization approaches, (2) multi-scale feature extractor on 2D slices and 3D
volumes, and (3) other modalities of the dataset (such as PET, EEG or MEG) to further
improve the ability for AD diagnosis.
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