
Controller placement with critical switch aware in software-
defined network (cpcsa)
Nura Muhammed Yusuf Corresp., 1, 2 , Kamalrulnizam Abu Bakar 1 , Babangida Isyaku Corresp., 1, 3 , Abdelzahir Abdelmaboud 4 ,
Wamda Nagmeldin 5

1 Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor, Johor Bahru, Malaysia
2 Department of Mathematical Science, Faculty of Sciences, Abubakar Tafawa Balewa University, Bauchi, Bauchi, Nigeria
3 Department of Computer Science, Faculty of Computing and Information Technology, Sule Lamido University, Kafin Hausa, Jigawa State, Nigeria
4 Department of Information Systems, King Khalid University, Abha, Al-Namas, Saudi Arabia
5 Department of information systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Al-Kharj, Saudi
Arabia

Corresponding Authors: Nura Muhammed Yusuf, Babangida Isyaku
Email address: ymnura@atbu.edu.ng, bangis4u@gmail.com

Software-Defined Networking (SDN) is a networking architecture with improved efficiency
achieved by moving networking decisions from the Data Plane to provide them critically at
the Control Plane. In a traditional SDN, typically, a single controller is used. However, the
complexity of modern networks due to their size and high traffic volume with varied quality
of service requirements have introduced high control message communications overhead
on the controller. Similarly, the solution found using multiple distributed controllers brings
forth the “Controller Placement Problem” (CPP). Incorporating switch roles in the CPP
modelling during network partitioning for controller placement has not been adequately
considered by any existing CPP techniques. This paper proposes Controller Placement
Algorithm with Network Partition Based on Critical Switch Awareness (CPCSA). CPCSA
identifies critical switch in the Software Defined Wide Area Network (SDWAN) and then
partition the network based on the criticality. Subsequently, a controller is assigned to
each partition to improve control messages communication Overhead, Loss, Throughput,
and Flow setup Delay. The CPSCSA experimented with real network topologies obtained
from the Internet Topology Zoo. Results show that CPCSA has achieved an aggregate
reduction in the controller’s overhead by 73%, Loss by 51%, and Latency by 16% while
improving throughput by 16% compared to the benchmark algorithms.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

1

2 CONTROLLER PLACEMENT WITH CRITICAL SWITCH

3 AWARE IN SOFTWARE-DEFINED NETWORK (CPCSA)
4

5 Muhammad Nura Yusuf 1&2, Kamalrulnizam bin Abu Bakar1, Babangida Isyaku1&3, Abdelzahir Abdelmaboud4 and 5Wamda Nagmeldin

6 1Faculty of Computing, Universiti Teknologi Malaysia, Johor 81310, Malaysia
7 2Department of Mathematical Science, Abubakar Tafawa Balewa University, PMB 0284,
8 Bauchi, Nigeria
9 3Department of Computer Science, Faculty of Computing and Information Technology Sule
10 Lamido University, P.M.B 047, Kafin Hausa, Jigawa State, Nigeria
11 4Department of Information Systems, King Khalid University, Muhayel Aseer 61913, Saudi
12 Arabia
13 5Department of information systems, College of Computer Engineering and Sciences
14 Prince Sattam bin Abdulaziz University Al-Kharj 11942, Saudi Arabia
15

16 Corresponding Author:
17 Muhammad Nura Yusuf 1&2and Babangida Isyaku3

18 Johor 81310, Malaysia and Bauchi, Nigeria.
19 Johor 81310, Malaysia and Kafin Hausa, Jigawa State, Nigeria
20 Email address: (ymnura@atbu.edu.ng), (bangis4u@gmail.com).

21 Abstract

22

23 Software-Defined Networking (SDN) is a networking architecture with improved efficiency
24 achieved by moving networking decisions from the Data Plane to provide them critically at the
25 Control Plane. In a traditional SDN, typically, a single controller is used. However, the complexity
26 of modern networks due to their size and high traffic volume with varied quality of service
27 requirements have introduced high control message communications overhead on the controller.
28 Similarly, the solution found using multiple distributed controllers brings forth the �Controller
29 Placement Problem� (CPP). Incorporating switch roles in the CPP modelling during network
30 partitioning for controller placement has not been adequately considered by any existing CPP
31 techniques. This paper proposes Controller Placement Algorithm with Network Partition Based on
32 Critical Switch Awareness (CPCSA). CPCSA identifies critical switch in the Software Defined
33 Wide Area Network (SDWAN) and then partition the network based on the criticality.
34 Subsequently, a controller is assigned to each partition to improve control messages
35 communication Overhead, Loss, Throughput, and Flow setup Delay. The CPSCSA experimented
36 with real network topologies obtained from the Internet Topology Zoo. Results show that CPCSA
37 has achieved an aggregate reduction in the controller�s overhead by 73%, Loss by 51%, and
38 Latency by 16% while improving throughput by 16% compared to the benchmark algorithms.
39

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

mailto:ymnura@atbu.edu.ng
mailto:bangis4u@gmail.com

40 Keywords: SDN; Controller Placement; Controller Overhead; Switch role; Network Partition
41

42 Introduction

43 Software-Defined Networking (SDN) is an emerging network paradigm offering simple
44 network management by separating network control logic and data forwarding elements. This
45 way, the Control Plane (CP) is responsible for providing and enforcing network policies on the
46 switches at the Data Plane (DP). To achieve this, the controller uses a link layer discovery
47 protocol (LLDP) to identify the OpenFlow switches connected at the DP[1]. It then continuously
48 monitors them for changes due to events like failures or the arrival of new flows. It collects
49 network statistics concerning traffic arrival patterns, traffic types, and other changes for various
50 applications like routing, congestion control, and security to run their algorithm instances[2]. For
51 any state change at DP, the controller must immediately recalculate updated instructions for the
52 DP switches, sending them as a packet-out message to all edge switches (for ARP) and a flow-
53 mod message to all switches along the same path for installation on their flow tables[3].
54 Recently, the controller has been experiencing a substantial increase in communication overhead
55 due to an exponential growth in new flow arrival rates caused by the proliferation of IoT devices
56 and the expansion of network size [4]. Consequently, the DP may frequently encounter state
57 change events like link failure [5], requiring the controller to reconfigure new rules [6].
58 This process has implications for the workload of the controller. For instance, if a flow
59 traverses an average path length of 6 switches and the network has 100 edge switches, the
60 controller is estimated to spend around 6ms to handle each flow [7]. A prior study reports that
61 processing these messages adds an overhead and delay of approximately 0.5ms and 0.2ms,
62 respectively. As a result, the cumulative burden on the controller amounts to (0.5 * 6 + 0.2 *
63 100) [7]. Moreover, another study highlights a direct correlation between the number of switches
64 in a network and the volume of flow setup requests. According to [8], configuring a flow route
65 for a network with N switches incurs an overall cost of approximately 94 + 144N, with an
66 additional 88N byte attributed to flow-removed messages. Thus, CP design is critical to the
67 performance of SDN.
68 A single controller (csCP) design is widely used for small network sizes. However, it
69 may fail to give the desired performance due to high control message processing overhead. It
70 also exhibits reliability concerns due to a single failure point (SPOF), as the failure tendencies
71 are higher when the Network is large. As such researchers leverage multiple controllers (dmCP),
72 which better performance compared to csCP. Figure 1 illustrates the differences between the
73 former and the latter. For example, an extensive network may have switches that can generate up
74 to 750 to 20,000 flow per second[6]; others say it might reach up to 10 million flow requests per
75 second[9], [10]. Unfortunately, this is beyond the capacity of a single controller, as some
76 controllers can only accommodate 6000 flow requests per second [11]. On the other hand,
77 designing the CP with multiple controllers opens up a Controller Placement Problem (CPP)
78 challenge. For any given network, the CPP deals with finding and optimising (i) the number of
79 controllers in the Network. (ii) The controllers should be placed strategically on the network to

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

80 minimise congestion, overhead, and Latency between controllers and switches. Heller et al. [12],
81 who initiated the concept of (CPP), built their solution while considering the impact of Latency.
82 The solution performs well for small-scale networks; however, it ignores the effects of
83 Scalability, Reliability, and Congestion in large networks such as WAN. Assigning controllers to
84 switches in an extensive network can exhibit an imbalance distribution of load among the
85 controllers. Therefore, for Wide Area Network (SDWAN), a partitioning algorithm is employed
86 to cluster the Network into smaller subnets for controller placement[13].
87 Several CPP solutions employ network partitioning techniques in their approaches. For
88 example, methods such as [14]�[22] are designed based on k-means. A K-median is used by
89 [23], [24], while [17], [19], [25]�[27] used Spectral Clustering. Density-based Clustering,
90 Affinity Propagation, and Partitioning Around Medoids (PAM) are also used in [28]�[31].
91 Others hybridised two techniques in their solution [20], [21] [4][32]. All these techniques share
92 the common idea of partitioning the SDWAN into smaller sub-domains, allowing for assigning
93 one or more exclusive controllers to cover each subdomain. The k-means algorithm is one of the
94 common methodologies used to partition a network topology. It uses Euclidean distance as its
95 similarity metric during the partition process. However, computing Euclidean distance in real
96 networks is not always possible due to the lack of physically connected pathways in some
97 instances. Similarly, the strategy has no generally agreed-upon way to determine the first k
98 partitions. The method varies in how it initialises the first set of cluster heads. Hence, the initial
99 cluster head selection significantly affects the solution quality; thus, it is a significant limitation.
100 On the other hand, PAM is quite similar to k-means, except that it minimises the impact
101 of outliers by selecting a node at the cluster's centre as the head. Although PAM does not require
102 prior knowledge of k, it has a considerably high complexity to the tune of about cubic time.
103 Additionally, while these approaches may be suitable for initial controller placement, repeatedly
104 segmenting the entire network to adapt to its dynamic nature is unrealistic. At the same time,
105 Spectral Clustering tends to produce small, isolated components and clusters of skewed sizes. In
106 addition, all the solutions did not quantify the controller�s overhead and Response Time(RT) in
107 their performance validation.
108 In the rapidly evolving landscape of SDN, the efficient placement of controllers plays a
109 pivotal role in network performance and reliability. The 'Controller Placement with Critical
110 Switch Aware (CPCSA)' paper addresses this critical challenge by introducing an innovative
111 approach that optimises controller placement and considers the impact on critical switches within
112 the network. The existing solution did not adequately consider the roles of switches in the
113 network. It is important to note that switches have different roles; some switchers are very
114 critical, and others are non-critical. The former can have a significant impact on the efficient
115 controller placement solution. Identifying critical switches is crucial for optimal controller
116 placement during network partitioning decisions. Critical switches possess a high degree and
117 betweenness criticality measures that tend to send higher flow rule requests to the controller. As
118 a result, they often augment the flow setup delay and cause high update operations. This problem
119 results in additional overhead on the controller if multiple critical switches reside in the same

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

120 partition. Therefore, this paper proposes Controller Placement Algorithm with Network Partition
121 Based On Critical Switch Awareness (CPCSA) to mitigate these issues. CPCSA identifies
122 critical switch in the SDWAN and then partition the network based on the criticality.
123 Subsequently, a controller is assigned to each partition to improve control messages
124 communication Overhead and other dependent QoS metrics like Loss, Throughput, and Flow
125 setup Delay.We itemized the contributions of this paper as follows.

126  We devised a network partitioning model based on the switch role in the network to
127 determine the number of controllers.

128  A switch to controller placement strategy was introduced based on switch criticality
129 factor to improve the control plane's performance.

130  The performance evaluation result of CPCSA using real networks from Internet
131 Topology Zoo in comparison to other relevant CPP algorithms.
132 The remainder of the paper is structured as follows: Section 2 discusses related works in SDN.
133 Section 3 Analyse the problem. Next, section 4 presents the proposed solution. Then, Section 5
134 describes the experimental setup and performance evaluation. Lastly, Section 6 concludes the
135 study and makes recommendations for future research.

136

137 Related Works

138 Selecting a suitable position in SDWAN for Controller Placement is crucial to its
139 performance[12]. Inappropriate Controller Placement can increase communication overhead and
140 Flow Setup Delay. Therefore, several CPP solutions have been proposed[33]. The CPP solutions
141 presented in [17], [19], [25]�[27] utilised spectral Clustering to partition the wide-area Network
142 into many subnetworks. Some authors infer the count of subnets by exploiting the concept of
143 eigenvectors, using the Haversine equation to calculate the similarity graph. Each resulting
144 subnetwork is assigned a dedicated controller at a location that minimises the control message
145 Latency. Researchers in [27] formulate the CPP as an Integer Linear Programming (ILP) with
146 the optimisation objective of reducing the network cost. They design a heuristic method to solve
147 the ILP. However, Spectral Clustering tends to produce small, isolated components and clusters
148 of similar sizes. In addition, all the solutions did not quantify the controller overhead and
149 Response Time(RT) in the performance validation.
150 In a different approach to formulating a clustering-based CPP [34], researchers utilise
151 Integer Programming (IP). They reduce the network's transmission time by employing a
152 modified version of k-means with the shortest path as the similarity metric. In [29], the authors
153 formulate a binary variable model of the CPP and cluster it using an Affinity Propagation
154 Technique (APT). APT maximised similarity across short distances and moderated preference
155 control to a mean value. In another approach, [28] propose Density-Based Controller Placement
156 (DBCP) to partition a network into various sub-networks. The DBCP grouped tightly connected
157 switches within the same subnet and less-connected switches in a different subnet. The value of k
158 and members of each subnet is determined based on the distance to a higher-density node. Each
159 sub-network is assigned a single controller. In other techniques, PAM-B Clustering and NSGA-II

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

160 were utilised by [30] to solve the Network partitioned-based CPP with the multi-objective
161 problem of optimising Latency, capacity, and availability. In another approach, using the shortest
162 path as the similarity metric [18], [35], partitioned a Network for CPP using k-means. Starting
163 with a random centroid, the Algorithm iterates continuously until it divides the network into k
164 clusters. In a similar effort, researchers utilised Simulated Annealing (SA) and the k-median
165 Algorithm [23] to determine the optimal location for a satellite gateway in a 5G network, aiming
166 to reduce Latency. The authors implemented a clustering strategy to improve connectivity
167 reliability between satellites and controller nodes. Also, [15] confronts the Network partitioning
168 problem by employing the k*-means for a CPP. Initialised the partitioning with more than k
169 clusters and later merged the nodes into the k clusters recursively based on the shortest path
170 distance and cluster load. While in a different approach proposed by [14], for Network partition-
171 based controller placement to reduce Latency, the authors utilise a k-means algorithm with
172 initialisation based on cooperative game theory. Cooperative game with a set of switches as
173 players are used to mimicking the division of the Network into subnetworks. The switches
174 attempt to build alliances with other switches to increase their value. They also suggest two
175 variations of the cooperative k-means technique to create size-balanced partitions. However,
176 these approaches did not consider load balance issues. The authors in [31] formulated the CPP
177 as an IP. The Network was divided into partitions using a k-medoid clustering technique.
178 However, the value of k is determined via a brute-force approach. In contrast, CPP was tackled
179 using a k-centre/k-median Clustering strategy by [24]. The authors suggested creating a local and
180 global controller hierarchy. When a controller fails, it is replaced using the re-election procedure.
181 To assess load balancing [20], [21] defines two distinct cost functions regarding the network
182 topology structure and flow traffic distribution. They then hybridise the network partition
183 scheme to tackle the problem of where to locate the load-balancing controller. Each of the
184 numerous sub-domains that comprise the overall Network has one dedicated controller. Finally, a
185 Simulated Annealing Partition-based K-Means (SAPKM) to address the placement is proposed.
186 SAPKM incorporates a centroid-based clustering to achieve load-balancing among the
187 controllers. The k-means Algorithm uses Euclidean distance as its similarity metric. However,
188 the problem is that it is not always possible to compute the Euclidean distance in real networks
189 due to the lack of physically connected pathways. Similarly, K-means has no agreed-upon way to
190 determine the first k partitions. The method varies in how it initialises the first set of clusters
191 head. Thus, the initial cluster head selection significantly affects the solution quality in k-means;
192 this is considered a significant limitation. On the other hand, PAM is quite like k-means, except
193 that it establishes a node in the cluster's centre as the head to minimise the effects of the outliers.
194 Although they do not require prior knowledge of k, they have a significantly higher level of
195 complexity to the tune of about cubic time. At the same time, Spectral Clustering tends to
196 produce small, isolated components and clusters of similar sizes.
197 Network Clustering for CPP using Data Field Theory (DFT) was proposed by [36]. The
198 DFT considers the strength of the wireless nodes' transmissions and reception signal power to
199 determine the controller placement inside each cluster to reduce Latency and energy. While [37],

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

200 [38] presents an SDN partition strategy for controller placement in IoT environments to reduce
201 Latency using the Analytical Network Process (ANP). The authors thoughtfully consider
202 multiple latency-inducing parameters to guide their ranking and selection process with ANP.
203 However, it's worth noting that one parameter that wasn't considered in their analysis is the
204 controller's overhead. This omission is significant as it can impact performance and should
205 ideally be factored into such an optimization strategy.
206 Another work [32] employed a graph theory to identify the number of controllers and
207 their initial location. A Depth-First-Search algorithm is applied to determine Articulation Points
208 (AP) based on two conditions. To obtain the required number of controllers and placement
209 positions, they utilize APs. Additionally, they discretize a supervised machine learning concept
210 using Manta-Ray Foraging Optimization (MRFO) and Salp Swarm Algorithm (SSA) to solve
211 CPP based on network partitioning. [4]. However, the lack of a standardized and rich dataset for
212 model training has been a serious concern in any AI-based solution for SDN problems [39], [40].
213 However, privacy and confidentiality issues associated with Networks have made sharing this
214 data difficult and scarce. Additionally, the approaches may be suitable for acquiring the first
215 controller placement. However, it is unrealistic to repeatedly segment the entire Network to meet
216 the evolution of dynamic network changes. Thus, they lack an adaptable CPP that responds to
217 the dynamics of each given Network. Therefore, based on the discussed literature, it can be
218 conclude that all the solutions have not adequetely consider the switch's role in the Network to
219 identify and separate a set of critical from non-critical switches. Recognizing the critical switches
220 is crucial during network partition decisions for optimum controller placement. Such sets of
221 switches possess high degree and betweenness criticality measures with many rules in their flow
222 table entries. As a result, they often augment the flow setup delay and cause more update
223 operations. The problem leads to additional overhead on the controller if multiple critical
224 switches are in the same partition. See Table 1 for the summary of these approaches.

225

226 Materials & Methods

227 Analysis Of Controller Overhead

228 SDN controller overhead refers to the computational and resource requirements imposed on the
229 SDN controller as it manages and controls the network. Although, the controller operates based
230 on either proactive or reactive mode. The former may have lower overhead but may not cope
231 with the real network []. The latter is widely used due to its flexibility in real-time network.
232 However, any newly arrived Flow at switch without corresponding forwarding rule

233 entries in its flow table will introduce an overhead of composing and sending a Packet_IN
234 message to its controller on the switch. Likewise, on its part, the controller also

235 suffers the overhead of computing the required forwarding rule and subsequent installation in the
236 switches flow Table via Packet_OUT message . Due to these overheads, the

237 new flow , will experience a path setup time delay , while waiting to be directed by

238 a controller . The flow/path setup delay emanates from five sources (i) a queue waiting time

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

239 at the switch before being served for duration , (ii) a switch to controller

240 Packet_IN message propagation time (iii) a queue waiting time at controller (

241 before being served for (iv) a duration and (v) controller to switch Packet_OUT message
242 propagation time . Therefore, cumulatively, the flow setup time delay is determined)

243 by.
244 = + + () + + + () (1)

245 The above fundamentally comprised the switch processing overhead, the controller

246 processing overhead, and the round-trip time between switch and the controller , given by ,

247 , and , respectively.
248 = +

249 = +

250 = () + () (4)

251 Considering a network topology with set of switches and as the communication an S E,

252 links between the switches, can be represented as graph . Any mapping of a set of =

253 switches with a controller impose an overhead on the controller that is CProverhead

254 directly proportional to the cost of the flow rule setup request and subsequent rule installation in
255 the flow table.
256 CProverhead overhead (5)

257 The at the switch is determined by the load of the switch due to the new flow

258 arrival rate from both the external source (and internal source (. As stated in Host))

259 , the overhead directly increases the . Therefore, if
0

, ,

260 denote the external new flows arrival rate at the switch from host . Let 0 {0,1}

261 variables indicate whether the switch is under the control of the controller or not, using

262 . Thus, the arrival rate at from host will induce rule computation = { 0

263 overhead on the controller equivalent to:

264
0

,) (6)

265 Hence if denote the internal new flows arrival rate at the OpenFlow switch from host
0

, ,

266 . The arrival rate will induce rule computation overhead at the SDN controller equals to

267 ,) (7)

268 Therefore, for all the OpenFlow switches controlled by the controller , The total overall

269 overhead on the controller for rules installation in the OpenFlow switch is equal to:

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

270 =
0

,) + ,) + ,) +
0

,) (9)

271 The objective is to minimize the to improve the overall and other QoS

272 metrics. High controller overhead directly increases flow setup time which consequently causes
273 performance retardation, especially for traffic with deadline violation constraints.
274

275 Design of the Proposed Solution

276 The proposed Controller Placement Algorithm with Critical Switch Awareness (CPCSA) for
277 Software-Defined Wide Area Network partitioned the Network based on the switch role and
278 assigned the required number of controllers to each partition. The operational procedure of
279 CPCSA consists of three phases, with the output of each phase serving as input to the next phase.
280 (i) The Critical Switch Identification Phase (CSIP) for reading the network topology to identify
281 critical switches. (ii) Network Partition Phase (NPP) for partitioning the discovered topology
282 based on the number of critical switches identified in (CSIP) and (iii) Controller Placement and
283 Assignment Phase (CPAP), which uses the mathematical concept of facility location method to
284 select a strategic position to place an SDN controller for each of the partitions formed in (NPP).
285 This way, CPCSA placed an SDN controller in each partition formed based on the distance
286 between the critical and non-critical switches within the partition to minimize the communication
287 overhead and delay. Subsections (3.2 - 3.6) provide a detailed description of each phase. At the
288 same time, the flowchart shown in Figure 2 presents the overall procedure of the proposed
289 Algorithm (CPCSA).
290

291 Network Model and Placement Metrics

292 Consider an SDWAN topology modelled as a graph , with representing a set of G = (V, E) V

293 nodes and the communication links between the nodes. The network node comprised a group E V

294 of OpenFlow switches and an SDN Controllers . The collection of the OpenFlow S C, i.e., S, C V

295 Switches includes critical switches and non-critical switches . For controller S (CS) (nCS)

296 placement, the technique partitions into multiple sub-nets to improve SDWAN_Partitionsi

297 latency performance and reduce a Controller�s overhead. In this study, we formulate the network
298 partition problem by considering the switch's role in the Network. This help in identifying the
299 critical and non-critical switches in the Network. We defined the set of critical switches (SCS)

300 as:

301 SCS =

k

i = 1

CSi (10)

302 Where represents the Network's total number of critical switches and gives us the number of k

303 subnets to partition the Network G. At the same time, we can obtain the set of non-critical
304 switches from
305 SnCS = S\SCS (11)

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

306 Therefore, by partitioning the OpenFlow switches into sub-nets, namely, S G k

307 according to the number of critical switches . The SDWAN_Partitionsi = 1,2,..,k CS V

308 resulting can be defined as:SDWAN_Partitionsi

309 SDWAN_Partitionsi = (Vi,Ei) (12)

310 Such that:
311 SDWAN_Partitionsi is a component (13)

312

k

i = 1

CSi = 1 (14)

313 j k ;SDWAN_Partitionsi SDWANPartitionsj = { } (15)

314

k

i = 1

Vi,

k

i = 1

Ei (16)

315 indicates that the sub-net of any of the is made up of connected Eqn(13)

316 OpenFlow switches with links. ensures only one critical switch is assigned to each Eqn(14) CSi

317 partition. implies that an OpenFlow switches can only be allocated to a single Eqn(15) si

318 domain. While ensures all the Network switches are in one of the subnets. See Table 2 Eqn(16)

319 for the summary and description of symbols and notation used in our model.
320

321 Network Topology Read Phase

322

323 Algorithm 1 reads a GraphML file containing a network topology of SDWAN located at
324 graphml_path. An empty graph object stores the network topology as created in line 1 G = (V, E)

325 of the algorithm. V represents a set of switches in the Network, and the physical
326 communication links between the nodes. The network switch comprised some OpenFlow V

327 switches and SDN controllers� . However, the OpenFlow switches consist of S C, i.e., S, C V

328 critical and non-critical switches . The study defines a set of critical switches in CS

329 . Algorithm 1 reads the file to generate a graph object representing the network Eqn(10)

330 topology in line 2. Then, the algorithm returns the graph object in line 3 to identify these critical
331 switches. The read_graphml function is a pre-existing function that reads and parses GraphML
332 files.

Algorithm1: ReadNetworkGraphTopology GraphCm

Input: - graphml_path: the path to the GraphML file containing the network
topology
Output: - G: a graph object representing the network topology
STAT of Algorithm

1. G ← new Graph()
2. G ← read_graphml(graphml_path)
3. For each to si sj G

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

4. Compute shortest path, Nsp Nsp(sisj)

5. Return, G, and Nsp(sisj)

END of Algorithm

333

334 Switch Role and Critical Switch Identification Phase (CSIP)

335 CSIP distinguishes between switches based on their roles to identify critical switches within a
336 network. Because some switches within the network have a significantly higher frequency of
337 communication with the SDN controller for rule installation than others. These switches are
338 called critical switches because they impact the responsiveness of the SDN controller within the
339 network. Therefore, a switch with high communication frequency with SDN controller for si Vi

340 rule installation is considered more critical compared to an ordinary switch.C
I
s
i

341 To establish the criticality of a switch , we used the switch criticality metrics in a network, and

342 the switch flow rule requests overhead on the controller. We assume that information in the
343 network from different sources is propagated in parallel from the source to si = 1,2.., N si

344 the destination along the shortest path (geodesic), denoted as . Based on these assumptions, sj dij

345 a switch in a communication network is critical to the extent of its si = 1,2.., N = ()

346 criticality factor . Therefore, we use the switch's connectivity in the network and its flow Crf

347 rule request overhead on the controller to model the switch criticality factor .Crf

348 To determine the switch connectivity in the network, CSIP uses Algorithm 1 to return the
349 number of shortest paths passing through the switch starting at and ending at .

350 Thus, we calculate the metric using the formula . On the other hand, to compute the
351 switch traffic overhead on a controller, we consider the weighted new flow rule request sent from
352 the source switch to the controller due to a new flow arrival based on using
353 Following that, we compute the switch criticality factor using the formula presented in siCrf

354 using these parameters. Finally, we demonstrate the procedure for critical switch
355 identification in Algorithm 2.
356

357

358 =
()

()
 (17)

359 = ,) (18)

360 siCrf = + (19)

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

361

362 In (lines 1-2), Algorithm 2 initializes two empty dictionaries, .The dictionaries are SCS and SnCS

363 used to store critical-switch and non-critical-switch information, respectively. For each switch

364 in the SDWAN , Algorithm 2 determines whether the switch is critical or non-critical

365 using and by calculating its criticality factor using . The Equation (10) (siCrf) Equation (19)

366 total and average criticality factors for all switches in the network are (total_siCrf) (ave_siCrf)

367 also computed (lines 3-8). Algorithm 2 then checks the criticality factor of each switch (siCrf)

368 in the network topology G against the average criticality factor value (lines 10-11). If (ave_siCrf)

369 is greater than , the switch is classified as critical and added to the set of (siCrf) (ave_siCrf)

370 critical_switch containers along with its criticality factor. Otherwise, it is classified as non-SCS

371 critical and added to the collection of non_critical_switch containers (lines 12-13).nSCS

372 Next, for each critical switch (CS) in the container, Algorithm 2 retrieves the list of its SCS

373 neighbours and calculates its shortest path distance to all other switches in the network topology.
374 The resulting information is added to the CS_neighbors and distances containers (lines 14-20).
375 Finally, Algorithm 2 returns the sets of critical_switch, non_critical_switch,
376 critical_switch_neighbors, and distances in (line 21).

Algorithm2: Critical Switch Identification

Input: - : G, and Nsp(sisj)

Output- {SCS, SnCS,CS_neighbours, distance}

STAT of Algorithm
1. ← {}SCS

2. ← {}SnCS

3. FOR si V:

4. ← calculate switch connectivity in using siBC G Eqn (17)

5. ← calculate switch flow rule request using sinFi Eqn (18)

6. ← calculate the switch criticality factor using siCrf Eqn (19)

7. ← sum_of_values total_siCrf (siCrf)

8. ← / length_of_values ave_siCrf total_siBC (siCrf)

9. FOR each , in :(siCrf)

10. IF > :(siCrf) ave_siCrf

11. add and to .si siCrf SCS

12. ELSE:
13. add and to .si siCrf SnCS

14. ← {}CS_neighbors

15. FOR each , in :si siCrf

16. add a list of 's neighbours to _neighbours.
17. ← {} distance

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

18. FOR each in :
19. For , distance in shortest_path_length from in G:

20. add (,) and distance to .distance

21. return SCS, SnCS, CS_neighbours, distance

END of Algorithm
377

378 Network Partition Based on Switch Criticality

379 The study designed a CSANP to partition the SDWAN) into smaller networks based on the (G

380 number of critical switches (. The CSANP collects inputs from Algorithm 2, where the num_CS)

381 critical switches of are identified. The input parameters include the set of critical switches G

382 , non-critical switches . The procedure is as shown in (Algorithm 3). CSANP starts (SCS) (SnCS)

383 by initializing the number of Critical Switches (num_CS) and non-Critical Switches (num_nCS)
384 on lines 1 and 2. It then calculates the average number of non-Critical Switches to be associated
385 to each Critcal Switch and the remaining non-Critical Switches (num_CS_plus) on lines 3 and 4.
386 The SDWAN_Partitions list is initialized with empty lists, where each list represents a partition
387 associated with a Critical Switch (CS), on line 5. The algorithm then iterates through each non-
388 Critical Switch (sj) in SnCS (line 6) and determines its closest Critical Switch (CS) based on the
389 minimum distance (lines 7 to 14). The non-Critical Switch is then assigned to the corresponding
390 partition in SDWAN_Partitions (line 14). Next, the algorithm iterates through each non-Critical
391 Switch again (sj) (line 15) and assigns it to the appropriate partition in SDWAN_Partitions based
392 on balancing criteria (lines 17 to 29). If a partition has fewer than avr_num_nCS, the current
393 non-Critical Switch is added to it (line 24). If the partition has avr_num_nCS and there are
394 remaining non-Critical Switches (num_CS_plus), one of them is added to the partition (lines 26
395 to 28). If the partition has avr_num_nCS, and there are no remaining non-Critical Switches, a
396 new partition is created for the current non-Critical Switch (line 30). The process continues until
397 all non-Critical Switches are assigned to partitions, and the resulting SDWAN_Partitions list
398 contains the partitions, each associated with its respective Critical Switch. Finally, the algorithm
399 returns the list of SDN in line 31. [{SDWAN_Partitions},{SDWAN_Partitions}���|num_CS|]

400 Refer to the Network Partition Formation Phase of Figure (2) for the flowchart for the algorithm.
401

Algorithm 3: Critical Switch Aware Network Partition (CSANP)

Input: (G, SCS, SnCS)
Output: SDWAN_Partitions
STAT of Algorithm
1. num_CS = len(SCS)
2. num_nCS = len(SnCS)
3. avr_num_nCS = num_nCS // num_CS
4. num_CS_plus = num_nCS % num_CS

Add all Critical Switches to SD-WAN partitions

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

5. SDWAN_Partitions = [[] for _ in range(num_CS)]

Assign non-Critical Switch to Critical Switch based on minimum distance
6. For sj in SnCS:
7. closest_CS = None
8. min_distance = float('inf')
9. For i, si in enumerate(SCS):
10. dist = distance[si][sj]
11. If dist < min_distance:
12. min_distance = dist
13. closest_CS = i
14. SDWAN_Partitions[closest_CS] = SDWAN_Partitions[closest_CS] + [sj]
 # Balance partitions and assign non-Critical Switches to Critical Switch
15. For i, sj in enumerate(SnCS):
16. closest_CS = None
17. min_distance = float('inf')
18. For j, si in enumerate(SCS):
19. dist = distance[si][sj]
20. If dist < min_distance:
21. min_distance = dist
22. closest_CS = j
23. cluster_index = closest_CS
24. If len(SDWAN_Partitions[cluster_index]) < avr_num_nCS:
25. SDWAN_Partitions[cluster_index] = SDWAN_Partitions[cluster_index] + [sj]
26. Elif len(SDWAN_Partitions[cluster_index]) < avr_num_nCS + 1 and num_CS_plus >
0:
27. SDWAN_Partitions[cluster_index] = SDWAN_Partitions[cluster_index] + [sj]
28. num_CS_plus -= 1
29. Else:
 # If no condition is met, create a new partition for the non-Critical switches
30. SDWAN_Partitions = SDWAN_Partitions + [[sj]]

31. return SDWAN_Partitions
END of Algorithm

402

403 Critical Switch Aware Controller Placement (CSACP)

404 The proposed Critical Switch Aware Controller Placement (CSACP) algorithm is responsible for
405 placing an SDN controller in each of the resulting network partitions (subnets) produced by
406 CSANP. This placement problem is a variant of a facility location problem. Therefore, for each
407 of the resulting subnets obtained from [{SDWAN_Partitions1},�{SDWAN_Partitions|num_CS|}]

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

408 the CSANP, we designed a CSACP algorithm to place the SDN controller on each
409 within the shortest distance of each demand point in the subnets. SDWAN_Partitionsi = (Vi,Ei)

410 We assigned to represent the set of controllers for the sub-nets. Next, for C cj = 1,2...,m k

411 each, , our placement model maps the controller to the SDWAN_Partitionsi cj = 1,2...,m

412 demand points which are the OpenFlow switches, in a way that the is the si V, dist(sicj)

413 shortest distance between the candidate controller locations and the j SDWAN_Partitionsi

414 mapped controller . Thus, the proposed CSACP algorithm finds a suitable position in each cj C

415 resulting partition to place the controller. Algorithm 4 provides a detailed description of the
416 proposed controller placement method.
417

418 Min
1

|SDWAN_Partitionsi|s
i
 SDWAN_Partitions

i

dist(sicj) (20)

419 Such that
420 si,cj SDWANPartitionsi (21)

421

422 The proposed CSACP algorithm takes inputs from CSANP (Algorithm 2), which includes the
423 SDWAN partitions, critical and non-critical switches, and their criticality factors. Each partition
424 is a set of switches within the SDWAN network. The algorithm initializes an empty dictionary
425 called controller_positions to store the controller positions for each SDWAN partition in line 1.
426 Then, for each partition in the input set of partitions, the algorithm identifies the critical switch
427 with the highest criticality factor . In (lines 2-11), Algorithm 4 calculates the distance max _siCrf

428 to the identified critical switch using a pre-computed distance metric stored in a distance
429 dictionary for each non-critical switch in the partition. Next, the algorithm finds the non-critical
430 switch within the partition that has the minimum distance to the identified critical switch and
431 assigns it as the controller position for that partition. The algorithm then stores the controller
432 position for that partition in the controller_positions dictionary in (lines 12-26). Finally, the
433 algorithm returns the controller_positions dictionary as the Algorithm output in line 27.
434

Algorithm 4: Critical Switch Aware Controller Placement (CSACP)

Input: {SCS, SnCS} [{SDWAN_Partitions1},�{SDWAN_Partitions|num_CS|}]

Output- controller_positions
STAT of Algorithm

1. controller_positions = {}
2. For SDWAN_Partitions_num, partition in enumerate(SDWAN_Partitions) Do

3. max_critical_switch = null
4. = -1 max _siCrf

5. For switch in partition, Do

6. If switch in critical_switch and critical_switch[switch] > Thenmax _siCrf

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

7. max_critical_switch = switch
8. = critical_switch[switch]max _siCrf

9. End If

10. End For

11. distances_within_partition = {}
12. For a node in partition, Do

13. If the node in non_critical_switch, Then

14. distances_within_partition[node] = distances[(node, max_critical_switch)]
15. End If

16. End For

17. min_distance_node = null
18. min_distance = infinity
19. For a node in distances_within_partition, Do

20. If distances_within_partition[node] < min_distance, Then

21. min_distance_node = node
22. min_distance = distances_within_partition[node]
23. End If

24. End For

25. controller_positions[SDWAN_Partitions_num] = (max_critical_switch,
min_distance_node)

26. End For

27. return controller_positions.
END of Algorithm

435

436 Experimentation Setup and Performance Evaluation of CPCSA

437

438 In this section, the performance of CPCSA is evaluated and compared with other representative
439 solutions in the literature. The study utilizes three (3) real network topologies obtained from the
440 Internet Topology Zoo (ITZ) [41] and randomly generates topologies for conducting the
441 experiments. The database provides researchers access to hundreds of real network topologies
442 from various service providers. Thus, the study selects AsnetAm, Arpanet19728, and ARNES
443 networks for the experiments. Table 3 gives additional information on other aspects of the
444 chosen network topologies, which vary in size and structure. The partitioning phase is performed
445 offline with a script written in Python 3.8.0 and NetworkX components. The experiment uses
446 Mininet version 2.3.0 to build the topologies of these partitions with an OpenvSwitch for
447 interaction with a Ryu SDN controller in each partition based on OpenFlow v1.5.1
448 specifications. The paper borrows traffic matrix scenarios in the GÉANT network [42] for
449 understanding traffic patterns. The traffic matrix of [42] describes the traffic between nodes and
450 its transfer speed, highlighting what constitutes a new flow. A D-ITG utility injects a TCP/UDP
451 flow on 1024 Mbps transmission lines of the Mininet architecture to generate the traffic. Hence,

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

452 the study model, one new flow for every 100 000 KB, exchanged, according to Poisson traffic
453 distribution in terms of Packet Inter Departure Time (PIDT). The reliance of the packet_IN
454 message on whether the switch piggybacked the first packet of a flow to a controller. Dixit et al.
455 [3]. The paper considers its size and Packet count as in [43] to account for it. Additionally, as
456 proved in [43], there must be a packet OUT message (flow_mod Packet) for every packetIN
457 message; thus, the study considers their sizes and packet count equal.
458 We start off the evaluation of CPCSA by providing a visual representation of its controller
459 placement result in Fig 1(a) through 1(i) in section 5.1. We then presented the overhead incurred
460 by the controller placed in a network using the proposed CPCSA compared to other related CPP
461 solutions in section 5.2. While in section 5.3, the study investigates the impact of CPCSA on
462 fault tolerance by evaluating the rate of control packet loss. Lastly, the evaluation of Throughput
463 and average switch-to-controller Latency is done in sections 5.3 and 5.4, respectively. We
464 conduct all the experiments on a machine with Intel(R) Core (TM) i7-10750H CPU @ 2.60 GHz,
465 2.59 GHz, and 16.0 GB memory.

466

467 Results

468

469 Network Partitions and Controller Placement Positions

470

471 The diagrams presented in Figure 3, from (3a through 3l) illustrate the network partitions and
472 selected positions for controller placement as determined by the proposed CPCSA algorithm.
473 These Figures depict the outcomes of the controller placement output when applied to the
474 Arpanet19728, ARNES, and AsnetAm topologies. As demonstrated in Figures (3a), (3e), and
475 (3i), before network partitioning, node 4, node 7, and node 22 are designated as the controller
476 positions. This selection occurs based on the switch criticality factors ranging from 0.25, siCrf

477 0.50-0.61, to 0.59-0.66 in the respective topologies. Conversely, as shown in Figures (3b), (3f)
478 and (3j), when the switch criticality factors are 0.25, 0.18-0.49, and 0.27-0.55 in the
479 corresponding networks, the networks are partitioned into two subnets. Consequently, in
480 Arpanet19728, nodes 4 and 13 are chosen as the controller positions, while in ARNES, nodes 7
481 and 30 are selected. In the AsnetAM topology, the controller positions are nodes 22 and 7.
482 Furthermore, by reducing the switch criticality factors to 0.22, 0.14-0.15, and 0.15-0.25, siCrf

483 the respective networks experienced partitioning into four subnets. This resulted in the inclusion
484 of nodes 23 and 28 as additional controller positions in the Arpanet19728 topology. Similarly, in
485 the case of ARNES, nodes 23 and 29 were selected as new placements. While for AsnetAM
486 topology, CPCSA chooses nodes 8 and 26 to place the new controllers. Please refer to Figures
487 (3d), (3h), and (3l) for visualization
488

489 Controller Overhead

490 Fig. 4 shows the accumulated controller's rule installation overhead in the Arpanet19728,
491 ARNES, and AsnetAm network topologies with SPDA[44], gravCPA[45], and the proposed

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

492 CPCSA, respectively. The experiment results show that CPCSA incurred lower rule installation
493 overhead than SPDA[44] and gravCPA[45] in all the topologies. As shown in Fig 4(a), the
494 proposed CPCSA had reduced the SDN controller�s overhead compared to SPDA and gravCPA
495 in the AsnetAM topology by 63% and 49%, respectively. Meanwhile, in Fig 4 (b), with the
496 Arnes topology, the proposed technique is shown to cut the overhead by 54% and 36%. Lastly,
497 CPCSA minimizes the overhead of SPDA[44] and gravCPA[45] by 63% and 51% in the
498 Arpanet19728 topology, as revealed in Fig 4(c). The achievement of the overhead reduction is
499 attributable to the control of the number of critical switches CPCSA assigns to a single SDN
500 controller. A switch is critical if it continually appears along the shortest path of many dissimilar
501 host-to-destination communicating pairs. This type of switch receives an augmented number of
502 rule installation instructions from the controller on what to do with the flow. Because, by default,
503 Flows are usually routed along the shortest path from the source to the destination host in most
504 networks. Thus, the controller with a higher number of critical switches in a partitioned SDWAN
505 incurs higher overhead. The additional controller overhead will amount to the number of
506 switches assigned to the controllers by a factor of their generated control traffic.
507

508 Control Packet Loss

509 In this section, this study measures the impact of control packet loss during switch-to-controller
510 communication to verify CPCSA's fault-tolerance benefits. High control plane overhead can
511 induce a network problem, which can cause some switches to lose connections with their
512 controllers, resulting in dropped packets. The study expects CPCSA to reduce the possibility of
513 Network failures owing to excessive controller overhead, which can lead to substantial packet
514 loss. Because, by design, the CPCSA differentiates among network switches and restricts the
515 number of critical switches for each partition. We use Python 3.8.0 with NetworkX and
516 Matplotlib library components for simulation. However, unlike the previous experiments with
517 real network topologies, fully connected networks are randomly generated using Barabási�Albert
518 (BA) model. After 50 repeated experiments, the average results findings in comparison to
519 alternative approaches are shown in Figure 5. The y and x-axis in the Figure display the average
520 control packet loss as a function of the x-axis representation of the total network nodes, n. As
521 expected, CPCSA has the lowest average packet loss rate of the four routing algorithms due to
522 minimising the controller�s overhead. On DBCB, the proposed CPCSA reduced packet loss by
523 31%, while on SPDA and gravCPA, it reduced it by 61%. The Minimum Controller�s overhead
524 correlates better with preventing network failure and lower control packet loss. Therefore, a low
525 average control packet loss indicates the technique's ability to avoid network faults due to high
526 overhead.
527

528 Throughput

529 Figure 6 displays the network throughput evaluation result between the proposed CPCSA and the
530 benchmark algorithms. The Throughput metric gives information about the performance of the
531 techniques regarding the number of control data packets sent from a source host and successfully

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

532 delivered at the destination host during a transmission period[44]. The throughput metric is
533 relevant in assessing Controller Placement Algorithm performance about how it reacts to
534 network-changing events that can trigger flow setup requests or failure. Figure 6(a) shows the
535 result of CPCSA�s Throughput with different numbers of controllers. Figure 6(b) shows the
536 CPCSA�s Throughput versus that of gravCPA[38] and SPDA[43]. As can be seen from Figure
537 6(b), CPCSA outperformed the benchmarked reference algorithms. Comparatively, the algorithm
538 improved the throughput achieved by gravCPA and SPDA by 16% and 18%, respectively. This
539 improvement indicates that the methodology adopted by CPCSA to minimise the Controller�s
540 overhead significantly influenced the control packet delivery rate. Thus, this analysis affirms the
541 research question, �Can controlling the number of critical switches under the control of an SDN
542 controller improve the Quality of Service in a network.�
543
544 Switch to Controller Average Latency

545 In this subsection, the study demonstrates how the average switch-controller latencies respond
546 when a controller is appropriately placed in the subnets of the network partitioned while
547 considering critical switches. For validation and revelation of results, the study compares the
548 performance of CPCSA with that of other Controller Placement solutions that incorporate a
549 network partitioning strategy and allocation of a controller to each subnetwork. In the
550 experiments, we ensure that all the benchmarked algorithms deploy the same number of
551 controllers as CPCSA in the network for a fair evaluation. Therefore, given a controller cj C

552 and the switches in the sub-network, the CPCSA uses the relation in si SDWAN_Partitionsi

553 Equation (18) to measure the latency metrics. Based on the result obtained, Figure 7 displays the
554 relationships between the average switch-controller latencies with the number of controllers and
555 partitions varying from 1 to 4 on three (3) topologies. As shown in Figure 7, the result exhibits a
556 monotonic decreasing trend in the switch-controller Latency with an increasing number of
557 partitions and controllers. We observed this pattern throughout all four (4) algorithms under
558 study. i.e., Increasing the number of controllers and partitions causes all the compared algorithms
559 to behave identically regarding average switch-controller control packet processing delay.
560 However, CPCSA performs significantly better when compared to SPDA, DBCP, and gravCPA
561 algorithms. As shown in Figure 7(a), the proposed CPCSA reduces the average switch-to-
562 controller Latency by 27%,12%, and 3%, respectively, compared to SPDA[44], DBCP[28], and
563 gravCPA[45] algorithms when the Algorithms partitioned the network into 4.
564

565 Conclusions

566 Controller Placement Algorithm with Network Partition Based on Critical Switch Awareness
567 (CPCSA) is a novel approach to address the challenge of transient congestion due to controllers�
568 overhead in the existing Controller Placement Problems (CPP) solutions in SDN. CPCSA
569 identifies the set of critical switches in a network to guide the network partition procedure for
570 finding the optimal number of controllers and placement in the network. The algorithm has been
571 implemented and evaluated in a laboratory testbed in a series of comparative experiments with

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

572 similar solutions using multiple Real life network topologies from ITZ. The comparative
573 experiments demonstrate CPCSA's effectiveness in reducing control message Overhead, control
574 packet loss, switch-to-controller latency, and improved throughput. The results show that the
575 proposed solution has achieved an aggregate reduction in the controller�s overhead by 73%, Loss
576 by 51%, and Latency by 16% while improving throughput by 16% compared to the benchmark
577 algorithms. However, the proposed scheme does not support heterogeneous controllers and has
578 no defense mechanism against vulnerabilities such as DDOS, common-mode fault, etc.
579 For future research, we plan to update the CPCSA controller placement model with traffic flow
580 behavioural quality of service requirements for consideration. It would be intriguing to employ
581 machine learning techniques such as deep learning to study flow behaviour based on flow history
582 for the classification. Considering this would support designing a controller placement with
583 traffic dynamics awareness. The aim is to partition the Network and place a controller while
584 considering the traffic pattern in the Network. Another exploration avenue could be integrating
585 the algorithm with heterogeneous controllers� support. We can see the motivation for these from
586 many perspectives. First, a homogeneous CP provides a potential security risk due to the
587 controllers' common-mode fault, often known as a common vulnerability point. Assume enemies
588 are aware of the vulnerability of one Controller; in this instance, they can easily knock down the
589 entire Network by exploiting the controller�s shared vulnerability. Second, interoperability
590 between various controller platforms and traditional IP networks can encourage and facilitate the
591 commercial adoption of SDN globally. Very little research has examined this direction thus far.
592 Therefore, undertaking further research in this direction will be a valuable contribution.
593

594 Acknowledgements

595 We thank the Deanship of Scientific Research at King Khalid University, Universiti Teknologi
596 Malaysia, and Tertiary Educational Trust Fund.

597 References

598 [1] M. N. Yusuf, K. bin A. Bakar, B. Isyaku, A. H. Osman, M. Nasser, and F. A. Elhaj,
599 �Adaptive Path Selection Algorithm with Flow Classification for Software-Defined
600 Networks,� Mathematics, vol. 11, no. 6, p. 1404, Mar. 2023, doi: 10.3390/math11061404.
601 [2] B. Isyaku and K. B. A. Bakar, �Managing Smart Technologies with Software-Defined
602 Networks for Routing and Security Challenges: A Survey,� Comput. Syst. Sci. Eng., vol.
603 47, no. 2, pp. 1839�1879, 2023, doi: 10.32604/csse.2023.040456.
604 [3] M. N. Yusuf, �Review of Path Selection Algorithms with Link Quality and Critical Switch
605 Aware for Heterogeneous Traffic in SDN Review Paper,� pp. 345�370.
606 [4] N. Firouz, M. Masdari, A. B. Sangar, and K. Majidzadeh, �A novel controller placement
607 algorithm based on network portioning concept and a hybrid discrete optimization
608 algorithm for multi-controller software-defined networks,� Cluster Comput., vol.
609 0123456789, 2021, doi: 10.1007/s10586-021-03264-w.
610 [5] B. Isyaku, K. Bin Abu Bakar, W. Nagmeldin, A. Abdelmaboud, F. Saeed, and F. A.
611 Ghaleb, �Reliable Failure Restoration with Bayesian Congestion Aware for Software
612 Defined Networks,� Comput. Syst. Sci. Eng., vol. 46, no. 3, pp. 3729�3748, 2023, doi:
613 10.32604/csse.2023.034509.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

614 [6] B. Isyaku, K. Bin Abu Bakar, M. N. Yusuf, and M. S. Mohd Zahid, �Software Defined
615 Networking Failure Recovery with Flow Table Aware and flows classification,� in 2021

616 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics

617 (ISCAIE), Apr. 2021, pp. 337�342, doi: 10.1109/ISCAIE51753.2021.9431786.
618 [7] G. Zhao, L. Huang, Z. Yu, H. Xu, and P. Wang, �On the Effect of Flow Table Size and
619 Controller Capacity on SDN Network Throughput,� pp. 1�6, 2017.
620 [8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,
621 �DevoFlow: Scaling flow management for high-performance networks,� Comput.

622 Commun. Rev., vol. 41, no. 4, pp. 254�265, 2011, doi: 10.1145/2043164.2018466.
623 [9] S. Ahmad and A. H. Mir, �Scalability, Consistency, Reliability and Security in SDN
624 Controllers: A Survey of Diverse SDN Controllers,� J. Netw. Syst. Manag., vol. 29, no. 1,
625 pp. 1�59, 2021, doi: 10.1007/s10922-020-09575-4.
626 [10] B. Yan, Q. Liu, J. Shen, D. Liang, B. Zhao, and L. Ouyang, �A survey of low-latency
627 transmission strategies in software defined,� Comput. Sci. Rev., vol. 40, p. 100386, 2021,
628 doi: 10.1016/j.cosrev.2021.100386.
629 [11] T. Hu, Z. Guo, T. Baker, and J. Lan, �Multi-controller Based Software-Defined
630 Networking : A Survey,� IEEE Access, 2017.
631 [12] B. Heller, R. Sherwood, and N. Mckeown, �The controller placement problem,� Comput.

632 Commun. Rev., vol. 42, no. 4, pp. 473�478, 2012, doi: 10.1145/2377677.2377767.
633 [13] B. P. R. Killi and S. V. Rao, �Controller placement in software defined networks: A
634 Comprehensive survey,� Comput. Networks, vol. 163, 2019, doi:
635 10.1016/j.comnet.2019.106883.
636 [14] B. R. Killi, E. A. Reddy, and S. V. Rao, �Game theory based network partitioning
637 approaches for controller placement in SDN,� Lect. Notes Comput. Sci. (including Subser.

638 Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11227 LNCS, pp. 245�267,
639 2019, doi: 10.1007/978-3-030-10659-1_11.
640 [15] H. Kuang, Y. Qiu, R. Li, and X. Liu, �A hierarchical K-means algorithm for controller
641 placement in SDN-Based WAN architecture,� Proc. - 10th Int. Conf. Meas. Technol.

642 Mechatronics Autom. ICMTMA 2018, vol. 2018-Janua, pp. 263�267, 2018, doi:
643 10.1109/ICMTMA.2018.00070.
644 [16] J. Liu, J. Liu, and R. Xie, �Reliability-based controller placement algorithm in software
645 defined networking,� Comput. Sci. Inf. Syst., vol. 13, no. 2, pp. 547�560, 2016, doi:
646 10.2298/CSIS160225014L.
647 [17] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, �The SDN controller placement problem for
648 WAN,� 2014 IEEE/CIC Int. Conf. Commun. China, ICCC 2014, pp. 220�224, 2015, doi:
649 10.1109/ICCChina.2014.7008275.
650 [18] G. Wang, Y. Zhao, J. Huang, and Y. Wu, �An Effective Approach to Controller
651 Placement in Software Defined Wide Area Networks,� IEEE Trans. Netw. Serv. Manag.,
652 vol. 15, no. 1, pp. 344�355, 2018, doi: 10.1109/TNSM.2017.2785660.
653 [19] P. Xiao, Z. Li, S. Guo, H. Qi, W. Qu, and H. Yu, �A K self-adaptive SDN controller
654 placement for wide area networks,� Front. Inf. Technol. Electron. Eng., vol. 17, no. 7, pp.
655 620�633, Jul. 2016, doi: 10.1631/FITEE.1500350.
656 [20] K. Yang, D. Guo, B. Zhang, and B. Zhao, �Multi-Controller Placement for Load
657 Balancing in SDWAN,� IEEE Access, vol. 7, pp. 167278�167289, 2019, doi:
658 10.1109/ACCESS.2019.2953723.
659 [21] K. Yang, B. Zhang, D. Guo, M. Lin, and T. De Cola, �Partitioned controller placement in

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

660 SDWANs for reliability maximization with latency constraints,� 2019 IEEE Globecom

661 Work. GC Wkshps 2019 - Proc., 2019, doi: 10.1109/GCWkshps45667.2019.9024372.
662 [22] Zhu T, Feng D, Wang F, Hua Y, Shi Q, Xie Y, Wan Y. "A congestion-aware and robust
663 multicast protocol in SDN-based data center networks". Journal of Network and

664 Computer Applications. 2017 Oct 1;95:105-17.
665 [23] J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, �Joint Placement of Controllers and
666 Gateways in SDN-Enabled 5G-Satellite Integrated Network,� IEEE J. Sel. Areas

667 Commun., vol. 36, no. 2, pp. 221�232, 2018, doi: 10.1109/JSAC.2018.2804019.
668 [24] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, �Efficient controller placement and
669 reelection mechanism in distributed control system for software defined wireless sensor
670 networks,� Trans. Emerg. Telecommun. Technol., vol. 30, no. 6, pp. 1�19, 2019, doi:
671 10.1002/ett.3588.
672 [25] H. Aoki and N. Shinomiya, �Network Partitioning Problem for Effective Management of
673 Multi-domain SDN Networks,� Int. J. Adv. Networks Serv., vol. 8, no. 3�4, pp. 62�77,
674 2015, [Online]. Available:
675 https://thinkmind.org/index.php?view=article&articleid=netser_v8_n34_2015_5.
676 [26] H. Aoki and N. Shinomiya, �Controller Placement Problem to Enhance Performance in
677 Multi-domain SDN Networks,� CICN 2016 Fifteenth Int. Conf. Networks (includes

678 SOFTNETWORKING 2016), no. c, pp. 95�101, 2016.
679 [27] Z. Zhao and B. Wu, �Scalable SDN architecture with distributed placement of controllers
680 for WAN,� Concurr. Comput. , vol. 29, no. 16, pp. 1�9, 2017, doi: 10.1002/cpe.4030.
681 [28] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, �Density cluster based approach for
682 controller placement problem in large-scale software defined networkings,� Comput.

683 Networks, vol. 112, pp. 24�35, Jan. 2017, doi: 10.1016/j.comnet.2016.10.014.
684 [29] J. Zhao, H. Qu, J. Zhao, Z. Luan, and Y. Guo, �Towards controller placement problem for
685 software-defined network using affinity propagation,� Electron. Lett., vol. 53, no. 14, pp.
686 928�929, 2017, doi: 10.1049/el.2017.0093.
687 [30] F. Bannour, S. Souihi, and A. Mellouk, �Scalability and reliability aware SDN controller
688 placement strategies,� in 2017 13th International Conference on Network and Service

689 Management, CNSM 2017, 2017, vol. 2018-Janua, pp. 1�4, doi:
690 10.23919/CNSM.2017.8255989.
691 [31] A. Dvir, Y. Haddad, and A. Zilberman, �Wireless controller placement problem,� CCNC

692 2018 - 2018 15th IEEE Annu. Consum. Commun. Netw. Conf., vol. 2018-Janua, pp. 1�4,
693 2018, doi: 10.1109/CCNC.2018.8319228.
694 [32] G. R. R. Manoharan, �Enhanced optimal placements of multi controllers in SDN,� J.

695 Ambient Intell. Humaniz. Comput., vol. 12, no. 7, pp. 8187�8204, 2021, doi:
696 10.1007/s12652-020-02554-2.
697 [33] M. N. Yusuf, K. Bin Abu Bakar, B. Isyaku, and F. Mukhlif, �Distributed Controller
698 Placement in Software-Defined Networks with Consistency and Interoperability
699 Problems,� J. Electr. Comput. Eng., vol. 2023, pp. 1�33, Jan. 2023, doi:
700 10.1155/2023/6466996.
701 [34] L. Zhu, R. Chai, and Q. Chen, �Control plane delay minimization based SDN controller
702 placement scheme,� in 2017 9th International Conference on Wireless Communications

703 and Signal Processing, WCSP 2017 - Proceedings, 2017, vol. 2017-Janua, pp. 1�6, doi:
704 10.1109/WCSP.2017.8171153.
705 [35] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, �A K-means-based network partition

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

706 algorithm for controller placement in software defined network,� 2016 IEEE Int. Conf.

707 Commun. ICC 2016, 2016, doi: 10.1109/ICC.2016.7511441.
708 [36] F. Li, X. Xu, X. Han, S. Gao, and Y. Wang, �Adaptive controller placement in software
709 defined wireless networks,� China Commun., vol. 16, no. 11, pp. 81�92, 2019, doi:
710 10.23919/JCC.2019.11.007.
711 [37] J. Ali and B. H. Roh, �An Effective Approach for Controller Placement in
712 Software Defined Internet of Things (SD IoT),� Sensors, vol. 22, no. 8, 2022, doi:
713 10.3390/s22082992.
714 [38] J. Ali, S. Lee, and B. H. Roh, �Poster: Using the analytical network process for controller
715 placement in software defined networks,� MobiSys 2019 - Proc. 17th Annu. Int. Conf.

716 Mob. Syst. Appl. Serv., pp. 545�546, 2019, doi: 10.1145/3307334.3328617.
717 [39] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and F. A. Ghaleb, �Software
718 Defined Networking Flow Table Management of OpenFlow Switches Performance and
719 Security Challenges: A Survey,� Futur. Internet, vol. 12, no. 9, p. 147, 2020, doi:
720 10.3390/fi12090147.
721 [40] M. S. Elsayed, N. A. Le-Khac, S. Dev, and A. D. Jurcut, �Machine-Learning Techniques
722 for Detecting Attacks in SDN,� Proc. IEEE 7th Int. Conf. Comput. Sci. Netw. Technol.

723 ICCSNT 2019, pp. 277�281, 2019, doi: 10.1109/ICCSNT47585.2019.8962519.
724 [41] A. G. University of Adelaide, �The Internet Topology Zoo - Dataset,� 2023.
725 https://ieeexplore.ieee.org/abstract/document/6027859/%0Ahttp://topology-
726 zoo.org/dataset.html.
727 [42] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, �Providing public intradomain traffic
728 matrices to the research community,� in Computer Communication Review, 2006, vol. 36,
729 no. 1, pp. 83�86, doi: 10.1145/1111322.1111341.
730 [43] M. Obadia, M. Bouet, J. L. Rougier, and L. Iannone, �A greedy approach for minimizing
731 SDN control overhead,� 1st IEEE Conf. Netw. Softwarization Software-Defined

732 Infrastructures Networks, Clouds, IoT Serv. NETSOFT 2015, 2015, doi:
733 10.1109/NETSOFT.2015.7116135.
734 [44] J. Guo, L. Yang, D. Rincon, S. Sallent, Q. Chen, and X. Liu, �Static Placement and
735 Dynamic Assignment of SDN Controllers in LEO Satellite Networks,� IEEE Trans. Netw.

736 Serv. Manag., vol. 19, no. 4, pp. 4975�4988, 2022, doi: 10.1109/TNSM.2022.3184989.
737 [45] C. Wang, H. Ni, and L. Liu, �GravCPA: Controller Placement Algorithm Based on Traffic
738 Gravitation in SDN,� J. Control Sci. Eng., vol. 2022, pp. 1�12, Mar. 2022, doi:
739 10.1155/2022/1047898.
740

741

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Table 1(on next page)

Table 1

Network Partitioned-Based CPP Pareto Integrated Tabu Search: (PITS), SA: Simulated

Annealing

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

1 Table 1: Network Partitioned-Based CPP: Pareto Integrated Tabu Search: (PITS), SA: Simulated Annealing

Network Topology

Properties

Performance Metrics

Considered
Weakness

Paper
Problem

Formulation

Partition/solution

Approach
Path

Switch

Role
Metrics Latency Overhead Loss Partition Approach Performance Metrics

[35] MILP Heuristics  X X   X Not Partitioned
Throughput and Loss

unaccounted

[13], [15]  X  X X

[21], [22]

Spectral

Clustering  X

Eigen

Vectors
 X X

[36]

Network

Partitioning

Node Burden  
Traversal

Set
 X X

[23]
Spectral

Clustering
 X

Eigen

Vectors
 X X

Tend to produce small, isolated components

and clusters with similar sizes

[30]

ILP

K-Means  X
Euclidean

Distance
 X X

Random centre Initialisation stage, the number

of cluster determinations

Modified-AP

[25] BIP
Affinity

propagation
 X

Shortest

Distance
 X X Not Partitioned

[24]
Network

Partitioning

Density-Based

Clustering
  Density  X X NA

[26] MOCO PAM-B  X Dijkstra  X X Quadratic running time complexity

SACA[19] Mathematical K-Median, SA  X  X X

[11]
Network

Partitioning
K-Means  X  X X

[27] IP K-Mediod X  X X

[14], [31] K-Means  X

Euclidean

Distance

 X X

Random centre Initialisation, number of

cluster determinations, the use of "means"

limit its expression level, Euclidean distance"

might not get a path physically connected path,

one size fits it-all effect, outliers, and noise

High CP Overhead,

Poor Load Balancing &

CP Overhead and

Throughput

[37] Clique-Based  X
Shortest

distance
 X X

Too rigid to use in practice. It tends to produce

maximally cohesive subgraph

The clique property cant

guarantee optimum RT

SACKM

[16], [17]
Hybridised SA

with K-Means
 X

Euclidean

Distance
 X X

K-means limitation, SA limited memory to

track tested solutions, low improvement rate,

[32]

Mathematical

Model

Data Field

Theory
X X

Signal

Strength
 X X Interference

[20] IP K-Median  X Haversine  X X

[10]
Mathematical

Model

K-means with

Game Theory
 X

Euclidean

Distance
 X X

Random centre Initialisation stage, the number

of cluster determinations,

Ignore the

CP Overhead, LB, and

Throughput

PHCPA [1] AI
MRFO with Salp

Swarm
 X

Cosine

Haversine
 X X

PITS [28] Graph Theory, DFS -- --- ----  X X

Lack of Sufficient Training Dataset
Increased PPT, control

message Overhead

GravCPA[38] LP
Louvain

algorithms
X

Node

Traffic
Euclidean  X X LPA and gravitation are vulnerable to oscillations and non-unique results

ECP [39] MILP
Linearization &

Supermodular
X X ----   X

The CP overhead will likely resurface due to not partitioning the network

into smaller clusters.

[40] Greedy None X X X   X Network properties not considered
No controller placement

module

2

3

4

5

6

7

8

9

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 1
Control Plane Architecture

Single Control Plane Architecture(a) and Multiple Controllers (b)

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 2
CPCSA Flow Chart

CPCSA Flow Chart

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 3
Overhead

Effect of flows installation cost on the Overhead on the number of controllers

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 4
Figure 3 a-d

Arpanet topology

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 5
Packet loss result

Comparison of Packet loss

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 6
Figure 3, e-h,

ARNES topology

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 7
Throughput

Comparison of throughput

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 8
Figure I-L

AsnetAM topology

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Figure 9
Latency

Relationship between switch to controller latency

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Table 2(on next page)

Table 2

Notations and Symbols

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

1

2 Table 1: Notations and Symbols

Notation Description

G SDWAN

E Set of communication links in the Network

V Set of network nodes (comparison of both controllers and switches)

C Set of SDN controllers�������ℎ��� Controller overhead

S Set of OpenFlow switches�������ℎ��� Switch overhead on the controller

CS critical switches

nCS non-critical switches

SCS Set of critical switches

SnCS Set of non-critical switches
SDWAN_Partitionsi Sub-net of OpenFlow Switches

dist(sicj) Shortest distance between the controller and switch in cj si �������
k An integer representing the number of , and CS SDWAN_Partitions, C��� New flow(����,��) Number of flow between source and destination��� binary variables indicating whether the switch is under the control of the controller {0,1} �� ��

3

4

5

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

Table 3(on next page)

Table 3

Topologies Information and Traffic Information

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

1

2 Table 1: T��������� I���	
����� and T	����
 I���	
�����

���������� ����������� ������� �����������

��������
Number

Switches

Number

of L����
Density

Ave

SS
New Flow

P�����!�"

msg sis�

P�����!#$�

msg sis�

Arpanet19728 22 32 0.0788 0.136

ARNES 34 47 0.0837 0.076

For every

100 000Kb

AsnetAm 65 79 0.0380 0.044

80 bytes 80 bytes

3

4

5

PeerJ Comput. Sci. reviewing PDF | (CS-2023:08:89383:1:1:NEW 16 Oct 2023)

Manuscript to be reviewedComputer Science

