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ABSTRACT
Investors are presented with a multitude of options and markets for pursuing higher
returns, a task that often proves complex and challenging. This study examines the
effectiveness of reinforcement learning (RL) algorithms in optimizing investment
portfolios, comparing their performance with traditional strategies and benchmarking
against American and Brazilian indices. Additionally, it was explore the impact of
incorporating commodity derivatives into portfolios and the associated transaction
costs. The results indicate that the inclusion of derivatives can significantly enhance
portfolio performance while reducing volatility, presenting an attractive opportunity
for investors. RL techniques also demonstrate superior effectiveness in portfolio opti-
mization, resulting in an average increase of 12% in returns without a commensurate
increase in risk. Consequently, this researchmakes a substantial contribution to the field
of finance. It not only sheds light on the application of RL but also provides valuable
insights for academia. Furthermore, it challenges conventional notions of market
efficiency and modern portfolio theory, offering practical implications. It suggests
that data-driven investment management holds the potential to enhance efficiency,
mitigate conflicts of interest, and reduce biased decision-making, thereby transforming
the landscape of financial investment.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Emerging
Technologies
Keywords Reinforcement learning, Finance, Portfolio optimization, Investment, Stock market,
Data-driven investing, Market risk management

INTRODUCTION
The financial markets display a high degree of dynamism and complexity, making the
selection of an optimal combination of assets for constructing an investment portfolio a
formidable challenge (Song et al., 2022;Xiao & Ihnaini, 2023 among others). In this context,
scholars have conducted thorough investigations into Modern Portfolio Theory (MPT)
of Markowitz (1952) since its inception. With the advent of technological advancements,
researchers have increasingly delved into advanced artificial intelligence (AI) models,
particularly within the subfield of machine learning, such as Reinforcement Learning, to
augment investment management and introduce innovative investment strategies.

The optimization of investment portfolios has been a subject of active discussion in
the field of Finance. This discussion arises from the necessity to diversify assets for risk
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mitigation and return maximization. Notable studies by Rubinstein (2002);Wilford (2012),
and Millea & Edalat (2022) underscore the relevance of Modern Portfolio Theory (MPT).
However, the examination of reinforcement learning has gained momentum in response
to the challenges associated with adhering to MPT’s premises. These challenges have raised
questions about the feasibility of achieving ideal diversification, particularly concerning
the rationality of market participants.

The theoretical framework proposed by Lo (2004) seeks to address this exigency by
questioning market efficiency and supporting the idea of markets adapting to novel
scenarios, termed the Adaptive Markets Hypothesis (AMH). This perspective ushers in the
potential employment of techniques such as RL. Millea & Edalat (2022) and Lin & Beling
(2020) evince the applicability of RL within the investment domain, further demonstrating
the superiority of RL over MPT in managing portfolios.

This research endeavor seeks to assess the effectiveness of reinforcement learning
algorithms in optimizing investment portfolios. Utilizing the FinRL library and five specific
algorithms outlined in subsequent sections, the study conducts a comparative analysis of
the results obtained through these algorithms in contrast to conventional strategies. These
traditional approaches include Minimum Variance (MINVAR), as proposed byMarkowitz
(1952), and the Buy-and-Hold (B&H) strategy.

In addition, this study includes the Dow Jones and Ibovespa indices as benchmark
references for calculating beta and alpha metrics, with the aim of assessing the performance
and risk of optimized portfolios. The primary objective is to evaluate the effectiveness of
reinforcement learning algorithms in comparison to conventional strategies and to gain
insights into the implications of incorporating commodity derivatives into an investment
portfolio.

Another significant aspect explored in this study involves the examination of the
influence of transaction costs on model performance. The research investigates how
models adapt to environments both with and without transaction costs, shedding light on
the adaptability of algorithms to the dynamic realities of financial markets.

This article aims to advance the field of finance by providing insights into the application
of machine learning techniques for optimizing investment portfolios. It emphasizes the
significance of diversification through the inclusion of derivatives and investigates the
impact of transaction costs, contributing to a deeper understanding of the opportunities
and challenges associated with these approaches.

It is imperative to highlight that the outcomes vary when considering transaction costs.
For instance, when accounting for these costs, returns can even be greater than when not
considered, which could be attributable to the algorithm abstaining from executing certain
transactions or selecting alternative assets. Such findings concur with Millea & Edalat
(2022) and evince satisfactory returns in accordance with Fama (1965).

This investigation contributes to scientific literature and practice in the domain of
Finance in several ways. Primarily, it proffers exemplars of the application of advanced
machine learning techniques, such as RL, in investment portfolio optimisation. By
juxtaposing the performance of these techniques with traditional strategies, such as
MINVAR and B&H, the study posits that AI techniques can be more efficacious in
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maximising investment returns without the necessity for presuppositions mandated by
traditional theory, whilst also demanding less investor engagement in analyses and portfolio
rebalancing.

Moreover, this study underscores the importance of diversifying assets, including the
incorporation of commodities as a viable alternative. It showcases that investments in
these derivatives have the potential to significantly enhance portfolio performance while
concurrently mitigating volatility. Such findings hold paramount importance for investors
aiming to enhance the profitability of their investments while effectivelymanaging portfolio
risk.

Another significant contribution of this study is the examination of the influence of
transaction costs on RL model training. Through an exploration of how models adapt
to environments both with and without transaction costs, this study illuminates the
adaptability of algorithms to diverse financial market conditions. This analysis holds
paramount importance in gaining insights into the possibilities, limitations, and challenges
associated with the utilization of AI techniques in investment portfolio management.

In conclusion, this research offers pertinent implications for the domain of Finance.
Firstly, the findings suggest that employing RL can contribute to enhancing risk
management and augmenting investment returns. Additionally, the study accentuates
the importance of asset diversification in portfolios, particularly through the inclusion of
commodities derivatives.

Secondly, alternative investments hold appeal for investors aiming to further enhance
their performance, utilizing diversification to achieve superior results while maintaining
lower portfolio risk levels. Another noteworthy implication is the substantial influence
of transaction costs. This underscores the importance of a thoughtful consideration of
transaction costs during model development and evaluation, enhancing the realism and
accuracy of results.

The structure of this article follows a systematic organization. The next section introduces
the theoretical framework, while the Methods section presents the data and the proposed
methodology. The Results section provides findings and a discussion in the context of
existing literature. Finally, the last section offers the study’s conclusion, including insights
into limitations and potential avenues for future research.

THEORETICAL ASPECTS
Portfolio management
The theoretical underpinning of portfolio management is extensive, with several key facets
deserving recognition. Modern Portfolio Theory (MPT), as introduced by Markowitz
(1952), represents a pivotal perspective that has received substantial attention in both
academic discourse and among practitioners in the investment arena.

In essence, MPT, as articulated by Markowitz (1952), underscores the opportunity for
investors to enhance returns while mitigating risk through strategic diversification. This
strategy is rooted in an analysis of historical asset performance and volatility. Subsequently,
a mathematical formulation, underpinned by an optimization model, calculates the
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allocation of each asset within the portfolio. This optimization aims to maximize expected
returns for a given level of risk or, conversely, minimize risk. This approach leads to the
identification of the most effective portfolio structure likely to yield optimal returns under
specific circumstances, often referred to as the minimum variance portfolio (Millea &
Edalat, 2022). It is important to note that a higher number of assets in a portfolio doesn’t
necessarily equate to prudent diversification. For instance, assets may be concentrated
within a single sector, potentially amplifying returns while exposing the portfolio to
equivalent risk levels.

Evolutions enveloping the theory emanate across diverse fronts, principally attributable
to the challenges associated with complying with the underlying assumptions, which, if
unmet, could vitiate any analysis or critique of MPT. Notably, the assumptions of market
participant rationality and market efficiency represent characteristics that are incessantly
challenged within the literature (Wilford, 2012).

The Efficient Market Hypothesis (EMH) postulates that asset prices in financial markets
follow random and independent movements, making it impervious to prediction, even
when historical data is analyzed using technical analysis. This is due to the inherent
uncertainty of news, which is widely and instantaneously accessible (Fama, 1965).
Consequently, the current price is believed to accurately reflect the intrinsic value of
the asset, making fundamental analysis unnecessary. The hypothesis asserts that the most
reasonable expectation for the future price is the current price, and any return above the
market average is considered exceptional.

In contrast, the Adaptive Market Hypothesis (AMH) posits that financial markets
undergo cyclical fluctuations between states of efficiency and inefficiency, which are
influenced by external factors such as geopolitical conflicts and political interventions (Lo,
2004). This hypothesis further contends that investors display bounded rationality and
demonstrate discernible behavioral patterns.

An increase in research efforts directed at formulating investment portfolios has been
observed, driven by the proliferation of accessible data and the introduction of innovative
methodologies. In light of these advancements, a comprehensive survey by Loke et al. (2023)
delineates the developments in the Portfolio Optimization Problem (POP) from 2018 to
2022. The paper categorizes contemporary solution techniques, highlighting key areas,
including metaheuristics, mathematical optimization, hybrid approaches, matheuristics,
and machine learning.

Significantly, the survey highlights a growing interest in hybrid methodologies,
particularly noticeable since 2018. The findings presented by Loke et al. (2023) emphasize
the importance of acknowledging and addressing the emerging trends and gaps in this field.
This expansion has resulted in noteworthy improvements in the outcomes obtained (Jang
& Seong, 2023).

However, there is room for additional exploration within this field, particularly by
leveraging artificial intelligence (AI) techniques such as deep learning and reinforcement
learning (RL), which have garnered increasing attention in recent research. Furthermore,
there are opportunities to integrate non-traditional assets, including cryptocurrencies,
commodities, and indices, into such research endeavors (Santos et al., 2022).
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Reinforcement learning
Reinforcement learning (RL) represents a subfield within machine learning, with a primary
focus on sequential decision-making in uncertain and stochastic environments. The central
objective of RL is to determine optimal policies that maximize cumulative rewards over
time (Sutton & Barto, 2018). AnRL problem comprises fundamental elements, including an
agent, environment, states, actions, and rewards. The agent interacts with the environment
by executing actions based on its current state, thereby receiving rewards in return, all
while endeavoring to acquire a policy that maximizes the accumulated reward.

An essential element in the realm of reinforcement learning is the state-value function,
represented as V (s), which quantifies the anticipated value of future rewards accumulated
from state s under a specific policy π (Sutton & Barto, 2018). Furthermore, Bellman’s
equation, a recursive relationship, establishes a linkage between the current state’s value and
the values of subsequent states, thereby facilitating state-value updates and streamlining the
pursuit of the optimal policy (Sutton & Barto, 2018). Bellman’s equation for the state-value
function is expressed as follows:

V (s)=
∑
a

π(a|s)
∑
s′,r

p(s′,r |s,a)[r+γV (s′)], (1)

wherein p(s′,r |s,a) denotes the environment transition function, π(a|s) represents the
agent’s policy, and γ is the discount factor.

Deep reinforcement learning (DRL) integrates reinforcement learning with deep neural
networks, thereby enabling the acquisition of optimal policies in scenarios characterized by
high-dimensional state and action spaces (Mnih et al., 2015). DRL has garnered remarkable
achievements across a broad spectrum of complex tasks, including gaming, robotics,
and system optimization (Silver et al., 2017; Gu et al., 2017; Mnih et al., 2015). This
advancement distinguishes itself from conventional RL by its capacity to tackle challenges
of greater scale and complexity, which would otherwise encounter computational and
representational limitations within the classical RL domain.

The Q-table comprises a matrix that preserves the value associated with each state-action
pair, denoted as Q(s,a), where ‘value’ signifies the expected reward upon executing action
a in state s and subsequently adhering to policy π (Sutton & Barto, 2018). Conversely, Deep
Q-Network (DQN) represents an approach that amalgamates the Q-table concept with
deep neural networks, replacing the Q-table with a neural network that approximates the
state-action value function, known as the Q-function (Mnih et al., 2015). This modification
empowers the algorithm to effectively manage substantially larger and more intricate state
and action spaces, generalizing the Q-function while providing superior scalability and
efficiency compared to the traditional Q-table. Bellman’s equation for the Q-function is
articulated as:

Q(s,a)=
∑
s′,r

p(s′,r |s,a)[r+γmax
a′

Q(s′,a′)], (2)

wherein: Q(s,a) represents the Q-function that depicts the expected value of accumulated
future rewards when action a is taken in state s followed by the adherence to the optimal
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policy. s′ denotes the subsequent state in the environment after executing action a in state
s. r indicates the immediate reward procured after performing action a in state s. p(s′,r |s,a)
represents the environment’s probability transition function, describing the transition
probability to the subsequent state s′ and receiving reward r upon taking action a in state
s. γ is the discount factor, ranging between 0 and 1, dictating the relative significance of
future rewards compared to immediate rewards. Values close to 0 lead the agent to value
immediate rewards predominantly, whilst values approaching 1 make the agent consider
future rewards in a more balanced manner. maxa′Q(s′,a′) expresses the maximal value of
the Q-function for the subsequent state s′, considering all potential actions a′.

Bellman’s equation for the Q-function facilitates the iterative update of Q-function
values, refining the estimates of expected values pertaining to future rewards accumulation,
thus contributing to the pursuit of the optimal policy.

Unlike traditional machine learning, which predominantly focuses on supervised or
unsupervised learning paradigms, reinforcement learning (RL) techniques are dedicated
to sequential learning and decision-making (Goodfellow, Bengio & Courville, 2016). One
notable advantage of these methodologies lies in their ability to acquire knowledge directly
through interactions with the environment, eliminating the reliance on labeled data.
However, it’s important to note that RL techniques can demand substantial computational
resources and extended training periods when compared to classical machine learning
methods. Additionally, RL and deep reinforcement learning (DRL) problems can exhibit
sensitivity to problem formulation, including the specification of rewards and states,
necessitating careful adjustments and empirical exploration.

To comprehend the state-of-the-art concerning the application of RL and its variations
within portfolio management, Santos et al. (2022) conducted an exhaustive literature
review on the seminal works related to the application of artificial intelligence in portfolio
management. This systematic literature review renders a comprehensive perspective on the
advancements and challenges in the domain, underscoring studies that employ RL and its
variants, thereby enabling a more profound understanding of the potential and limitations
of these techniques in investment portfolio management.

Literature pertaining to portfolio management via RL
Thanks to technological advancements, the field of finance is subjected to a more
comprehensive examination, considering themyriad of available investment strategies. The
introduction of RL algorithms has prompted academic literature to reevaluate the domain
of investment portfolio management, with a focus on their application and exploration
within the financial context. This section highlights some of the key foundational works.

Jang & Seong (2023) employed a deep reinforcement learning technique to enhance
the formation of equity portfolios of the S&P 500 index, employing a neural network
as the learning agent. The methodology takes into account technical analysis indicators
and market trend information to substantiate decisions regarding resource allocation in
equities. According to the authors, this approach excels in comparison to other techniques,
as it considers asset allocation in accordance with the market trend. The findings suggest
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that this technique holds promise as an alternative for portfolio optimisation in complex
and dynamic financial markets.

In the study steered by Millea & Edalat (2022), DRL found its utility in optimising
portfolios that included equities, currency pairs from the Forex market, and
cryptocurrencies—a vanguard in relation to prior studies. The authors amalgamated
DRL models and hierarchical clustering into a decision-making system to assign weights to
an asset portfolio. The DRL agent acquired the proficiency to alternate between low-level
models, culminating in superior performance compared to individual models or a random
policy. The outcomes indicated that portfolios inclusive of cryptocurrencies exhibited
a superior performance in terms of risk-adjusted returns. Nonetheless, it is imperative
to accentuate that the cryptocurrency market is highly volatile and harbours significant
risks. Thus, the inclusion of these assets in portfolios mandates circumspection and
meticulous analysis. Moreover, the authors bolster the notion that ample real-world
evidence indicates market efficiency’s shortcomings at various junctures, which implies an
ill-suited environment for the application of MPT, consequently substantiating the utility
of the adaptations proffered by DRL models.

Song et al. (2022) introduced an innovativemethod for optimizing investment portfolios
utilizing stochastic reinforcement learning. To validate their model, the authors conducted
an empirical analysis using data from 22 stocks with the highest trading volume in the
S&P 500 index from 2005 to 2020. The model’s performance was evaluated both before
and during the COVID-19 crisis. The findings demonstrated that the proposed approach
outperformed the benchmark, traditional stochastic models, and popular algorithms,
achieving higher returns while maintaining lower risk.

METHODS
The methodology employed in this study leverages reinforcement learning (RL) techniques
using the open-source FinRL library (Liu et al., 2020). The portfolio management involves
a diverse set of assets, including 40 equities equally distributed across Brazilian, American,
European, and Chinese markets, in addition to futures prices of 10 commodities (rice
(ZR), live cattle (LE), coffee (KC), ethanol (FL), corn (ZC), iron ore (TR), gold (GC),
crude oil (CB), soybeans (ZS), and wheat (ZW)). Historical equity data was sourced
from Yahoo Finance (2022), a common data provider in similar studies (Xiao & Ihnaini,
2023), while commodity data was obtained from Barchart (2022). The selection of equities
for each country’s portfolio was based on the ranking of the most traded stocks available
on Investing.com (2022).

The assemblage of assets, including commodities, aims to ensure appropriate portfolio
diversification and to reflect the significance of the agricultural sector in Brazil. As
articulated byMarkowitz (1952), diversification continues to be a fundamental strategy for
risk mitigation and portfolio enhancement. Moreover, commodities play an indispensable
role in the Brazilian economy, with the nation ranking amongst the world’s largest exporters
of agricultural products (Pereira et al., 2012).

The FinRL library proffers an extensive assortment of reinforcement learning algorithms,
along with tools for training evaluation and result analysis. This study endeavours to

Santos et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1695 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1695


probe the deployment of reinforcement learning techniques for asset selection and the
management of a diversified portfolio, with the aspiration of outperforming conventional
investment strategies. To this end, historical price data for stocks and commodities, as
well as technical indicators, were employed to train and evaluate reinforcement learning
models across various market scenarios, such as bullish and bearish periods, pandemics,
and economic crises. These scenarios contribute to understanding how models acclimate
to market fluctuations and the challenges posed by global events and adverse economic
conditions.

Four distinct combinations of investment portfolios underwent testing, with two of them
incorporating commodities and the other two excluding them. Similarly, two portfolios
were evaluated: one considering a standard 1% transaction fee, as commonly used in
the FinRL library (Liu et al., 2020), and the other without such a fee. This allowed for an
assessment of the impact of transaction costs on risk metrics, including the Sharpe ratio
and beta. Furthermore, the study compared the outcomes generated by the RL technique
with those of the MINVAR and B&H strategies, using the Dow Jones and Ibovespa indices
as benchmarks.

Comparisons with the MINVAR and B&H strategies were executed to evaluate the
efficacy of reinforcement learning techniques relative to more traditional investment
approaches (Yang, Liu & Wu, 2018). This comparison is instrumental in determining
whether reinforcement learning models can offer noteworthy advantages in terms of
performance and risk management. The significance of the Dow Jones and Ibovespa is
highlighted in the work of Vartanian (2012), where the author scrutinises the relationship
between stock and bond returns and common risk factors, employing the Dow Jones as a
representative benchmark of the US stock market. Moreover Vartanian (2012), examines
the literature on systemic financial risk and underscores the importance of Ibovespa in
analysing Brazil’s economic and financial performance, examining the impacts of the
Dow Jones index, commodities, and exchange rates on Ibovespa and the contagion effect
amongst these markets.

To assess model performance, the dataset was divided into training and test sets. The
training set comprised data collected from January 4, 2013, to January 1, 2018, while the
test set included data gathered from January 2, 2018, to October 27, 2022. During the
training phase, algorithms underwent training to optimize their decision-making and
maximize rewards within the given environment. Subsequently, model performance was
evaluated using the test set, where models were required to make decisions based on data
not previously encountered during training.

The allocation of approximately 53.64% of the data to the training set and 46.36% to the
test set aimed to achieve a balanced dataset and mitigate the risk of overfitting, considering
the temporal nature of the data. This approach aligns with common practices in artificial
intelligence and machine learning, as demonstrated in seminal works such as Cawley &
Talbot (2010) on overfitting and model selection, as well as Hyndman & Athanasopoulos
(2018) on time series forecasting, where the train-test split is a crucial component for
assessing model generalization.
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The choice of a specific cut-off date between data collection periods ensures that the
model undergoes training on historical data and subsequent testing on more recent data,
thereby providing a better representation of real-world scenarios. This method aligns with
established practices in time series and forecasting research, as demonstrated in prior
studies such asHochreiter & Schmidhuber (1997) and Xiao & Ihnaini (2023), which employ
Long Short-TermMemory (LSTM) models, as well as Santos et al. (2021), who used LSTM
for forecasting Brazilian ethanol spot prices. In these works, the partitioning of data into
training and testing sets is guided by the temporal nature of the data, facilitating themodel’s
ability to generalize to temporal changes in the dataset.

In this study, it was conducted an analysis and comparison of results obtained from
five distinct reinforcement learning algorithms: Advantage Actor-Critic (A2C), Deep
Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), Soft Actor-
Critic (SAC), and Twin Delayed Deep Deterministic Policy Gradient (TD3). The selection
of these algorithms was based on their representativeness within the field of reinforcement
learning, encompassing key approaches and advancements. Furthermore, the availability
of these algorithms within the FinRL library facilitated their direct comparison and
comprehensive analysis.

As highlighted in Liu et al. (2021), reinforcement learning algorithms can be categorized
into value-based, policy-based, and actor-critic types. Q-learningWatkins & Dayan (1992)
is a value-based method that employs a Q-table to address problems with small state
and action spaces. Advanced techniques like DQN and its variants Achiam (2018) utilize
deep neural networks to handle more complex spaces. On the other hand, policy-based
algorithms Sutton et al. (2000) directly adjust the policy parameters using a gradient
approach, bypassing the need for value estimation. Actor-critic algorithms combine
the advantages of both value-based and policy-based methods by updating two neural
networks: the actor network, which updates the policy, and the critic network, which
estimates the state-action value function. During training, the actor network takes actions
that are subsequently evaluated by the critic network. All algorithms utilized in this work
are of the actor-critic type Achiam (2018).

The Advantage Actor-Critic (A2C) algorithm (Mnih et al., 2016) utilizes a sample-based
approach, employing multiple agents to concurrently update both the policy and the value
function. This method extends the Actor-Critic framework (Rosenstein et al., 2004) by
integrating a policy model (the actor) with a value function (the critic) to facilitate optimal
policy learning. A2C offers several advantages, including its ability to handle continuous
action spaces and high-dimensional observations, as well as its capacity to learn scalable and
stable policies in multi-agent training settings (Wang et al., 2016). However, it does come
with limitations, such as the potential to converge to a local minimum instead of a global
optimum and the challenge of appropriately tuning hyperparameters (Sutton & Barto,
2018). Nevertheless, A2C remains one of the most popular and effective reinforcement
learning algorithms available, with numerous applications in gaming, robotics, and various
other domains (Vinyals et al., 2019; Dhariwal et al., 2017).

The Deep Deterministic Policy Gradient (DDPG) algorithm, as introduced by Lillicrap
et al. (2015), extends the Deterministic Policy Gradient (DPG) algorithm with the aim
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of learning deterministic policies for continuous problems. DDPG employs an off-policy
learning approach, enabling the utilization of past experiences to enhance efficiency.
Furthermore, DDPG relies on deep neural networks to approximate both the value
function and the policy. Its primary limitations include sensitivity to hyperparameters and
training instability (Henderson et al., 2018).

Proximal Policy Optimization (PPO), as elucidated by Schulman et al. (2017), offers
stable and efficient training in contrast to traditional Policy Gradient methodologies.
By employing a clipping surrogate objective function, PPO adeptly balances exploration
and exploitation, effectively mitigating the risk of suboptimal policy adjustments. Its
versatility is underscored by its successful applications across diverse domains, including
robotics Heess et al. (2017), gaming (notably achieving exceptional performance in Dota
2) Berner et al. (2019), finance Lin & Beling (2020), and wind farm management Pinciroli
et al. (2021).

Soft Actor-Critic (SAC), as introduced byHaarnoja et al. (2018), represents an off-policy
algorithm that combines actor-critic techniques withmaximum entropy optimization. This
amalgamation achieves a finely tuned equilibrium between exploration and exploitation.
SAC stands out in diverse continuous control tasks, particularly in the realm of robotics for
intricate undertakings like object manipulation, as demonstrated in Haarnoja et al. (2019),
and in control simulations for optimizing autonomous vehicles, as shown in Zhao et al.
(2020).

The Twin Delayed Deep Deterministic Policy Gradient (TD3), as addressed by Fujimoto,
Hoof & Meger (2018), represents an enhancement of the Deep Deterministic Policy
Gradient (DDPG) algorithm, achieved through the incorporation of delayed actor updates,
dual critic networks, and targeted action noise. These refinements contribute to heightened
stability when dealing with continuous control problems. TD3 has demonstrated its efficacy
in various applications, including robotics for object manipulation Veeriah, Venkatraman
& Goldberg (2020) and control simulations aimed at optimizing traffic for autonomous
vehicles, as shown in Aboudolas & Roussaki (2020).

In the context of hyperparameters, this study strictly adheres to the guidelines provided
by the FinRL library and replicates the same hyperparameters as specified in a tutorial
offered by the FinRL team (AI4Finance-Foundation, 2021). This choice is made to facilitate
the replication of the research. FinRL takes charge of initializing the agent class within
the provided environment, deploying the Deep Reinforcement Learning (DRL) algorithm
with the aforementioned hyperparameters (model_kwargs), and overseeing the training
regimen to yield a trained model. This procedural overview is captured in Table 1. It’s
worth noting that the impact of varying hyperparameters could be a fruitful avenue for
future research, particularly for studies focused on understanding how different algorithms
respond to changes in these settings.

The reward function plays a pivotal role in the design and implementation of
reinforcement learning algorithms, as it establishes the objective that the agent must
pursue throughout the learning process. In this study, the cumulative return has been
selected as the reward function, in line with a widely adopted approach in related literature.
The rationale for this choice stems from the fact that cumulative return enables effective
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Table 1 Functions for creating and training DRL agents (Liu et al., 2021).

Function Description

env = StockTradingEnv
(df, **env_kwargs)

Returns an instance of the Env class with data and default
parameters.

agent = DRLAgent(env) Instantiates a DRL agent with a given environment env.
model = agent.get_model(model_name,
**model_kwargs)

Returns a model with a specified name and default
hyperparameters.

trained_model = agent.train_model
(model)

Initiates the training process for the agent and returns a
trained model.

Notes.
Source: Adapted from Liu et al. (2021).

evaluation of the agent’s performance in terms of long-term outcomes, fostering the
development of more robust and efficient policies.

In terms of hyperparameters, this study adopts the default values provided by the FinRL
library for each algorithm. This choice is made to maintain a fair and consistent basis for
comparing the various methods under analysis. The utilization of default hyperparameters
facilitates the evaluation of each algorithm’s performance under uniform conditions,
allowing for a more precise analysis of their capabilities and limitations within the context
of the problem being investigated.

The state space of the models is formulated using a range of inputs that are relevant to
the analysis of financial assets. In a manner akin to the approach presented by Santos et al.
(2021), asset returns over 20, 40, and 60 days are incorporated. Additionally, the technical
indicators utilized include the Relative Strength Index (RSI), Stochastic Oscillator,Williams
%R (WILLR), Moving Average Convergence Divergence (MACD), Rate of Change (ROC),
andOnBalance Volume (OBV). The covariancematrix is also employed in the construction
of the state space, following the methodology outlined by Liu et al. (2020).

The technical indicators used are defined as follows, as presented byMurphy (1999):

• RSI (Relative Strength Index):

RSI = 100−
100

1+RS
(3)

Wherein: RS= Average gain over the last 14 days
Average loss over the last 14 days .

• Stochastic Oscillator:

%K = 100∗
C−L14

H14−L14
(4)

Wherein: C represents the current closing price; L14 denotes the lowest price in the last
14 days; H14 signifies the highest price in the last 14 days.
• MACD (Moving Average Convergence Divergence):

MACD= EMA12(C)−EMA26(C) (5)

Signal Line= EMA9(MACD) (6)
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Wherein: C denotes the time series of closing data; EMAn signifies the n-day exponential
moving average; H14 represents the highest price in the last 14 days.
• ROC (Rate of Change):

PROC(t )=
C(t )−C(t−n)

C(t−n)
(7)

Wherein: PROC(t ) denotes the rate of change of the price at time t ; C(t ) represents the
closing price at time t .
• OBV (On Balance Volume):

OBV (t )=


OBV (t−1)+Vol(t ), if C(t )>C(t−1)
OBV (t−1)−Vol(t ), if C(t )<C(t−1)
OBV (t−1), if C(t )=C(t−1)

(8)

Wherein: OBV (t ) denotes the on balance volume indicator at time t ; Vol(t ) signifies
the trading volume at time t ; C(t ) represents the closing price at time t .

Analysis procedure
For analyzing the results, two subsections were created: one for portfolios that included
transaction costs and another for portfolios that did not include these costs.

From this point, a comparison of the accumulated returns of the portfolios with
respect to the benchmarks and volatility was initiated. Subsequently, the Sharpe ratio
was analyzed, which is based on the returns of the portfolio, benchmark, and volatility as
described by Sharpe (1966), thereby capturing the main points for investors in accordance
with Markowitz (1952). The Sharpe ratio is calculated as shown in Eq. (9), and a higher
value is preferable.

S=
Rp−Rf

σp
(9)

Wherein:

• S denotes the Sharpe Ratio; Rp is the expected return of the investment portfolio; Rf is
the risk-free rate; and σp denotes the standard deviation of the investment portfolio.

To provide a more comprehensive perspective, the study conducted an analysis of the
portfolios’ beta concerning the benchmarks. The beta, as introduced byMarkowitz (1952),
serves the purpose of assessing whether a specific asset or portfolio exhibits higher or lower
volatility compared to the benchmark. The computation of beta, depicted by Eq. (10),
indicates that a value below 1 signifies that the portfolio carries less risk than the market,
while a value exceeding 1 suggests a higher risk profile.

β =
Cov(Ri,Rm)
Var(Rm)

(10)

Wherein:

• βi denotes the beta coefficient of asset i; Cov(ri,rm) represents the covariance between
the returns of asset i and themarket; andVar(rm) signifies the variance ofmarket returns.
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Table 2 Performance of equity portfolios without transaction costs and comparison with benchmark indices. Rp denotes the average annual
return (in percentage), Racum represents the accumulated return (in percentage), Vol indicates volatility, S provides the Sharpe ratio, β (IBOV) and
β (DJI) are the portfolio betas with respect to the Ibovespa and Dow Jones indices, respectively. The best performance measures for the models are
shown in bold.

Benchmarks Portfolios

Metric DJI IBOV SAC DDPG PPO A2C TD3 PTF MINVAR

Rp 5.81 6.40 7.57 9.23 8.97 9.51 7.91 8.97 1.68
Racum 28.70 31.33 29.53 36.75 35.60 37.97 30.96 35.59 6.08
Vol 22.05 27.85 21.49 22.19 20.83 21.40 19.81 20.84 13.89
S 0.367 0.364 0.448 0.510 0.518 0.532 0.484 0.518 0.190
β (IBOV) – 1.000 0.597 0.637 0.585 0.601 0.508 0.585 0.269
β (DJI) 1.000 – 0.703 0.712 0.710 0.705 0.631 0.710 0.377

Notes.
Source: research data.

In summary, portfolios with higher returns, lower volatility, a higher Sharpe ratio, and
a lower beta are preferable. It is important to note that a Sharpe ratio with a negative value
should be interpreted cautiously, as its interpretation is likely misleading due to portfolios
with higher volatility being considered superior when analyzing this index in isolation.

In this research, the methodology proposed by Ledoit & Wolf (2008) was employed to
compare portfolios with different characteristics. The method uses the bootstrap approach
to generate a distribution of the estimated difference in Sharpe ratios and construct a
confidence interval to assess its statistical significance. This allows for the detection of
significant differences between the compared portfolios.

The specific objective was to analyze the differences between the portfolios, considering
transaction costs and the inclusion of commodities in the composition. The analysis sought
to understand the impact of these factors on portfolio performance, providing valuable
insights for efficient investment management, while benefiting from the robustness of the
method used in detecting statistically significant differences between the Sharpe ratios of
the compared portfolios.

RESULTS
Portfolios without transaction costs
The performance of portfolios without transaction costs is detailed in Tables 2 and 3. The
former exclusively encompasses equities, while the latter includes the incorporation of
commodity derivatives. It is important to highlight that the PTF and MINVAR portfolios
were constructed using traditional investment methodologies, specifically, Buy-and-Hold
and Minimum Variance, respectively. In contrast, the other portfolios leveraged Artificial
Intelligence techniques based on reinforcement learning, specifically the five RL algorithms
previously mentioned. Notably, the best performance measures for the models are shown
in Tables 2–5 by the bold numbers.

When comparing the returns of equity portfolios with the IBOV index, it becomes
evident that the conventional MINVAR approach, as well as the SAC and TD3 portfolios,
underperformed relative to the benchmark. Conversely, the remaining three AI portfolios
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Table 3 Performance of equity and commodity portfolios without transaction costs, and comparison with benchmark indices. Rp is the aver-
age annual return (in percentage), Racum is the accumulated return (in percentage), Vol denotes volatility, S gives the Sharpe index, β (IBOV) and
β (DJI) are the portfolio betas with respect to the Ibovespa and Dow Jones indices, respectively. The best performance measures for the models are
shown in bold.

Benchmarks Portfolios

Metric DJI IBOV SAC DDPG PPO A2C TD3 PTF MINVAR

Rp 5.81 6.40 12.00 11.58 10.68 11.07 10.73 10.68 5.91
Racum 28.70 31.33 49.42 47.45 43.27 45.08 43.51 43.25 22.57
Vol 22.05 27.85 17.92 18.17 17.95 18.78 17.91 17.95 9.62
S 0.367 0.364 0.723 0.695 0.656 0.654 0.660 0.656 0.646
β (IBOV) – 1.000 0.495 0.510 0.501 0.531 0.485 0.501 0.139
β (DJI) 1.000 – 0.600 0.613 0.603 0.644 0.590 0.602 0.194

Notes.
Source: research data.

Table 4 Performance of stock portfolios including transaction costs and comparison with reference indices. Rp denotes the average annual re-
turn (in percentage), Racum stands for the accumulated return (in percentage), Vol represents volatility, S supplies the Sharpe ratio, β (IBOV) and β
(DJI) are the betas of the portfolios with respect to the Ibovespa and Dow Jones indices, respectively. The best performance measures for the models
are shown in bold.

Benchmarks Portfolios

Measure DJI IBOV SAC DDPG PPO A2C TD3 PTF MINVAR

Rp 5.81 6.40 7.64 8.43 8.98 8.04 11.56 8.97 1.74
Racum 28.70 31.33 29.83 33.23 35.65 31.52 47.35 35.59 6.29
Vol 22.05 27.85 20.44 21.16 20.82 21.12 20.69 20.84 13.89
S 0.367 0.364 0.463 0.489 0.518 0.473 0.633 0.518 0.194
β (IBOV) – 1.000 0.554 0.598 0.585 0.600 0.578 0.585 0.269
β (DJI) 1.000 – 0.670 0.724 0.710 0.702 0.698 0.710 0.377

Notes.
Source: research data.

Table 5 Performance of stock and commodity portfolios, including transaction costs and comparison with reference indices. Rp is the average
annual return (in percentage), Racum is the accumulated return (in percentage), Vol represents volatility, S provides the Sharpe ratio, β (IBOV) and
β (DJI) are the betas of the portfolios with respect to the Ibovespa and Dow Jones indices, respectively. The best performance measures for the mod-
els are shown in bold.

Benchmarks Portfolios

Measure DJI IBOV SAC DDPG PPO A2C TD3 PTF MINVAR

Rp 5.81 6.40 9.14 12.45 10.67 10.77 11.25 10.68 5.91
Racum 28.70 31.33 36.32 51.55 43.22 43.66 45.93 43.25 22.58
Vol 22.05 27.85 18.23 18.12 17.93 17.44 17.49 17.95 9.62
S 0.367 0.364 0.572 0.739 0.656 0.674 0.698 0.656 0.646
β (IBOV) – 1.000 0.508 0.498 0.500 0.486 0.489 0.501 0.139
β (DJI) 1.000 – 0.601 0.588 0.602 0.580 0.590 0.602 0.194

Notes.
Source: research data.
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outperformed the PTF portfolio in terms of returns. Upon the inclusion of commodities,
only the MINVAR portfolio failed to surpass the reference index, whereas all five AI
portfolios achieved returns exceeding those of traditional strategies.

Upon aligning the equity portfolio with the DJI, only MINVAR achieved a cumulative
return lower than the index. However, the DDPG, PPO, and A2C portfolios once again
outperformed traditional techniques. It is worth highlighting that, as indicated by the
bold figures in Table 2, the A2C portfolio exhibited remarkable outperformance in
terms of cumulative returns. With the inclusion of commodity derivatives in the analysis,
only MINVAR yielded results below the benchmark, while the three superior portfolios
continued to leverage AI techniques.

Furthermore, one can observe an approximate 12% increase in the average return of
the portfolios when commodities are included, an outcome that surpasses both the IBOV
and DJI by at least a 10% margin. This emphasises the import of including such assets, in
addition to equities, in investment portfolios within volatile environments, corroborating
the findings of Millea & Edalat (2022) and indicating a strong return as per Fama (1965).
One may view these results in Figs. 1 and 2.

However, an investor should not focus solely on achieving a robust return but should
also aim for low volatility to mitigate risk (Markowitz, 1952). The results obtained from
the equity investment portfolios, except for the traditional MINVAR technique, exhibited
volatility ranging from 19.81% (TD3) to 22.19% (DDPG), a factor potentially associated
with the lower returns observed. However, upon the inclusion of commodities, the volatility
of all portfolios decreased, emphasizing the significance of incorporating these assets and
further supporting the findings of Millea & Edalat (2022). Interestingly, when compared
to the benchmarks, none of the equity portfolios displayed higher volatility than the
IBOV, and only one portfolio (DDPG) exhibited higher volatility than the DJI. When
commodities were taken into account, none of the portfolios exceeded the benchmark in
terms of volatility.

When evaluating the Sharpe Index, it becomes evident that the top-performing portfolios
consisting solely of equities were A2C, PTF, and PPO, with results differing by less than
0.02 among them. It is apparent that the Buy-and-Hold (B&H) strategy entailed fewer
risks than some AI-based portfolios. Conversely, with the addition of commodities to the
portfolios, the best-performing choices were SAC,DDPG, and TD3, with differences among
them being less than 0.07, showing an increase of approximately 0.2 compared to those
containing only equities. Moreover, only the MINVAR portfolio yielded results inferior to
the IBOV and DJI, and no portfolio with the addition of commodities underperformed
these benchmarks.

In the assessment of the Beta Index, it is evident that none of the portfolios exhibit a
higher level of risk compared to the benchmark indices. Notably, beta values decrease with
the inclusion of commodity derivatives, reinforcing the consistent pattern of improved
results when these assets are integrated. In all cases, the MINVAR portfolio consistently
demonstrated the lowest beta value, concurrently exhibiting the weakest performance in
terms of returns. This underscores the importance of a more comprehensive analysis,
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Figure 1 Accumulated return of share portfolios without transaction costs. Source: Authors.
Full-size DOI: 10.7717/peerjcs.1695/fig-1

Figure 2 Accumulated return of share portfolios and commodity derivatives, with no transaction
costs. Source: Authors.

Full-size DOI: 10.7717/peerjcs.1695/fig-2

as exemplified by the Sharpe Index. Consequently, it becomes evident that, overall, the
portfolios outperformed both the MINVAR and PTF portfolios.

This observation challenges the validity of the efficient market hypothesis, suggesting
that the model proposed by Lo (2004) may offer a more suitable framework. The superior
performance exhibited by portfolios that integrate technical indicators as influential
variables in their evolution lends substantial credence to this perspective.

Portfolios incurring transaction costs
This section addresses the concern regarding the potential costliness of portfolio
management when utilizing computational tools, particularly in terms of transaction
costs. As demonstrated by the performance indicators outlined in Tables 4 and 5, as well as
the visual analysis of portfolio progression depicted in Figs. 3 and 4, it becomes apparent
that the inclusion of transaction costs leads to variations in portfolio return outcomes.
Notably, these outcomes reveal that returns can even surpass those achieved without
transaction costs. This phenomenon arises from the algorithm’s ability to make fewer
transactions or opt for different asset acquisitions.

The results presented in Tables 4 and 5 unequivocally indicate that two equity portfolios
generated cumulative returns lower than the IBOV (SAC and MINVAR), with only
one falling short in comparison to the DJI (MINVAR). However, with the inclusion of
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Figure 3 Accumulated return of the share portfolios with fees. Source: Authors.
Full-size DOI: 10.7717/peerjcs.1695/fig-3

Figure 4 Accumulated return of share and commodities portfolios with fees. Source: Authors.
Full-size DOI: 10.7717/peerjcs.1695/fig-4

commodities in the portfolio, exclusively the MINVAR portfolio exhibited returns below
both benchmark indices. In terms of equity portfolios, the top three performers, in sequence,
were TD3, PPO, and PTF. With the incorporation of commodities, these rankings shifted
to DDPG, TD3, and A2C. Consequently, the returns from AI-driven portfolios once again
demonstrate a propensity to outperform those derived from conventional techniques.

Additionally, it is essential to highlight that the mean returns exhibit a notable increase
of 9% when commodities are incorporated. In the scenario where only equities are utilized,
both mean returns surpass those of the benchmarks. However, upon the inclusion of
commodities, the mean returns experience an increase of at least 9% compared to both
benchmarks. It is worth emphasizing that the average results remain relatively consistent
when comparing portfolios that consider transaction costs with those that do not. The
equity portfolio demonstrates a 1% superiority with transaction costs, and a marginally
lower performance of nearly 2% when commodities are included.

When examining the volatility of the share portfolios, it is seen that the outcomes
are rather similar, with yields approximately 20% per annum, with the exception of
the MINVAR portfolio, which falls notably below this average. When commodities are
included, the outcomes of all the portfolios also drop. In a manner similar to the portfolios
that do not consider transaction costs, none of them achieved a volatility superior to
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that of the IBOV, nor in relation to the DJI, considering the portfolios with or without
commodities.

When analyzing the Sharpe ratio results, it becomes clear that the three top-performing
equity portfolios are TD3, PPO, and PTF, in that respective order. However, the differences
between them are more pronounced compared to scenarios without transaction costs,
with an increase exceeding 0.1. With the inclusion of commodities, we observe that the
best-performing portfolios are DDPG, TD3, and A2C, with differences among them
amounting to 0.06. While these variations differ in magnitude when compared to scenarios
without commodities, there is a consistent overall increase in Sharpe indices, albeit of
a lesser scale than in scenarios without transaction costs. Notably, among the equity
portfolios, only the MINVAR portfolio yielded returns below those of the IBOV and DJI,
and none performed worse when commodities were included.

In the portfolios considering transaction costs, as occurred in those that did not
consider them, it is observed that the β index is less than 1 for all cases, and the inclusion
of commodities results in a reduction of all their outcomes.

Lastly, it is worth emphasizing that, as with the portfolios that did not take into account
transaction costs, the portfolios, in general, presented superior results to MINVAR, which
is based on the minimum-variance technique, and some outcomes were superior to PTF,
which is based on the B&H strategy. It is vital to consider the relevance of these outcomes
for the development of more effective investment strategies.

Statistical tests
To ascertain the statistical superiority of portfolio performances, we employed the Ledoit-
Wolf Test (LW Test) developed by Ledoit & Wolf (2008) to analyze variations in Sharpe
Ratios. Our analysis consisted of several comparisons to shed light on the performance of
various strategies under different portfolio scenarios. The outcomes are summarized in
Tables 6 and 7.

Regardless of the particular case, our investigation showed that the MINVAR method
consistently underperformed the other techniques. In the portfolio that included
commodities but excluded transaction expenses, TD3 showed a statistically significant
lower Sharpe ratio than A2C, DDPG, and SAC. However, despite the fact that A2C
appeared to perform better than the others, there was no discernible difference between
DDPG, SAC, or A2C.

To further scrutinize the disparities in Sharpe ratios among all models in different
investment scenarios, we conducted the LW Test across three key comparisons:
‘‘Commodities’’ evaluates the impact of including this asset class in portfolios; ‘‘Transaction
Costs’’ which examines the effects of taking into account transaction costs; and ‘‘Both’’,
that combines both factors. These results are detailed in Table 8.

According to our investigation, allmodels and the combined scenario showed statistically
considerably better results for portfolios that included commodities. The impact of
transaction costs on portfolio performance, however, did not show any statistically
significant changes.
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Table 6 Z -score statistics from LWTest comparing Sharpe ratios in portfolios with commodities
(above diagonal) and portfolios without commodities (below diagonal).

A2C DDPG MINVAR PPO PTF SAC TD3

A2C – 0,75 14,866F 1,13 1,132 1,051 1,171
DDPG −0,762 – 14,536F 0,399 0,401 0,316 0,442
MINVAR 9,292F 9,707F – −31,218F −31,219F −31,169F −31,244F
PPO 0,626 1,323 −27,388F – 0,002 −0,085 0,044
PTF 0,624 1,32 −27,405F −0,002 – −0,088 0,042
SAC 0,065 0,787 −32,111F −0,586 −0,584 – 0,129
TD3 1,764• 2,411� −20,547F 1,184 1,186 1,706• –

Notes.
Significance levels of 1%, 5%, and 10% are represented byF,�, and•, respectively.

Table 7 Z -score statistics from LWTest (Ledoit &Wolf, 2008) comparing Sharpe ratios in portfolios
with transaction costs (above diagonal) and portfolios without costs (below diagonal).

A2C DDPG MINVAR PPO PTF SAC TD3

A2C – −0,081 9,054F 0,228 0,225 0,737 0,163
DDPG −1,186 – 9,100F 0,308 0,305 0,814 0,242
MINVAR 14,048F 14,546F – −27,321F −27,343F −24,015F −27,796F
PPO −0,73 0,422 −31,217F – −0,003 0,517 −0,067
PTF −0,744 0,409 −31,21F −0,013 – 0,52 −0,064
SAC −1,016 0,157 −31,066F −0,273 −0,259 – −0,604
TD3 −0,124 0,983 −31,598F 0,577 0,59 0,835 –

Notes.
Significance levels of 1%, 5%, and 10% are represented byF,�, and•, respectively.

Table 8 Z -score statistics of the Ledoit &Wolf (2008) test (LW Test) assessing the variance in Sharpe ratios across different model applications
in three scenarios: portfolios with and without commodities, with and without transaction costs, and combining both factors.

LW Test for each model

Comparison A2C DDPG MINVAR PPO PTF SAC TD3

Commodities −2,680F −3,741F −71,231F −3,863F −3,870F −3,086F −4,008F
Transaction Costs 0,405 1,036 −0,009 0,001 – 1,063 −1,358
Both 3,825F 2,977F 10,212F 3,073F 3,065F 2,409�, 3,600F

Notes.
Significance levels of 1%, and 5% are represented byF, and�, respectively.

The robustness of these results suggests that certain models excel in specific contexts,
offering useful evidences for both investors and academics. Understanding which models
perform optimally when considering factors as the inclusion of commodities and
transaction costs can guide more effective portfolio management. Thus, these findings
can be deemed not only interesting but also relevant to the fields of investment and
finance.
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Portfolio composition analysis
The examination into asset weight distribution, classified by countries or commodities,
uncovers intriguing variations across the models and portfolio types under scrutiny.
Detailed outputs can be found in Table 9.

Specifically, when examining portfolios that exclude both transaction costs and
commodities (Table 9), significant disparities in investment allocations to China and
Europe emerge among different models. Notably, the TD3 model stands out with a
preference for China, reflecting a weight of 0.32. In portfolios that incorporate commodities
but do not account for transaction costs, all models–except SAC–display a nearly uniform
distribution among asset classes. However, when transaction costs are included, TD3
assumes a more substantial position in Brazil and the USA.

In portfolios that comprise both stocks and commodities without considering
transaction costs, the TD3 model exhibits a notable inclination towards commodities.
This preference is evident in its highest maximum, minimum, and average weights (25%,
20%, and 23.4%, respectively) and low standard deviation. In contrast, the other models
maintain a more balanced allocation among asset classes.

Regarding portfolios exclusively composed of stocks, most models maintain nearly equal
distribution among various countries. However, SAC and TD3 display a slight preference
for the European and Chinese markets, respectively. These variations in weight allocations
signify the unique strategies and learning patterns employed by each model, often shaped
by diverse hyperparameter configurations. This highlights the significance of considering
multiple approaches when constructing diversified investment portfolios.

Moreover, Table 9 provides extra and intriguing data that offers implicit deductions
about these findings. As supplementary information, the complete historical data, including
weight distribution, is accessible in the data repository, providing a comprehensive resource
for further analysis.

CONCLUSIONS
This research probed the efficacy of reinforcement learning (RL) algorithms in the
optimization of investment portfolios, drawing comparisons with conventional strategies
and examining the repercussions of incorporating commodities as well as the effect of
transaction costs.

The results suggest that, in general, artificial intelligence (AI) techniques surpassed
traditional methods in performance. Furthermore, the incorporation of commodities
significantly contributed to improving portfolio performance while mitigating volatility.
Although favorable returns observed when accounting for transaction costs, they did
not exert significant impact on the results. Yet, the distribution of asset weights varies
significantly among reinforcement learning models, reflecting distinct strategies, potential
regional preferences, and sensitivity to transaction costs, underscoring the importance of
diversified approaches to portfolio construction.

This study makes a significant contribution to the academic literature by introducing
an innovative methodology for optimizing investment portfolios and providing interesting
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Table 9 Descriptive statistics of asset class weights in portfolios excluding commodities.

No transaction costs Transaction Costs Included

Asset Class A2C DDPG PPO SAC TD3 A2C DDPG PPO SAC TD3

Portfolio without Commodities
Minimum weights

Brazil 0.25 0.25 0.25 0.228 0.194 0.25 0.25 0.25 0.227 0.25
USA 0.202 0.138 0.25 0.188 0.194 0.191 0.25 0.25 0.204 0.25
Europe 0.25 0.25 0.25 0.25 0.25 0.25 0.244 0.249 0.25 0.199
China 0.25 0.25 0.25 0.25 0.25 0.237 0.204 0.25 0.25 0.25

Maximum weights
Brazil 0.28 0.335 0.25 0.278 0.25 0.295 0.28 0.25 0.25 0.273
USA 0.25 0.25 0.25 0.25 0.25 0.25 0.28 0.251 0.25 0.267
Europe 0.255 0.286 0.25 0.295 0.293 0.28 0.256 0.25 0.286 0.25
China 0.265 0.269 0.25 0.286 0.318 0.25 0.25 0.25 0.303 0.273

Average Weights
Brazil 0.278 0.321 0.25 0.256 0.194 0.293 0.259 0.25 0.229 0.269
USA 0.206 0.154 0.25 0.198 0.194 0.192 0.27 0.251 0.206 0,26
Europe 0.253 0.267 0.25 0.285 0.293 0.278 0.249 0.249 0.275 0.201
China 0.263 0.258 0.25 0.261 0.318 0.237 0.222 0.25 0.29 0.269

Standard Deviation of Weights
Brazil 0.002 0.008 0 0.013 0.002 0.002 0.01 0 0.003 0.003
USA 0.002 0.01 0 0.004 0.002 0.002 0.007 0 0.003 0.008
Europe 0.001 0.014 0 0.005 0.001 0.001 0.003 0 0.004 0.003
China 0.001 0.004 0 0.01 0.002 0 0.008 0 0.008 0.003

Portfolio with Commodities
Minimum weights

Brazil 0.2 0.2 0.2 0.185 0.166 0.2 0.2 0.2 0.2 0.185
USA 0.2 0.2 0.2 0.188 0.196 0.192 0.186 0.2 0.183 0.169
Europe 0.194 0.164 0.2 0.2 0.172 0.18 0.152 0.2 0.153 0.2
China 0.17 0.194 0.2 0.15 0.182 0.192 0.2 0.2 0.192 0.182
Commodities 0.2 0.187 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Maximum weights
Brazil 0.211 0.219 0.2 0.2 0.2 0.21 0.211 0.2 0.236 0.208
USA 0.222 0.228 0.2 0.212 0.223 0.2 0.2 0.2 0.2 0.208
Europe 0.2 0.2 0.2 0.231 0.2 0.2 0.2 0.2 0.2 0.223
China 0.2 0.203 0.2 0.2 0.204 0.2 0.238 0.2 0.204 0.2
Commodities 0.203 0.212 0.2 0.227 0.251 0.234 0.229 0.2 0.246 0.227

Average Weights
Brazil 0.21 0.212 0.2 0.192 0.182 0.204 0.208 0.2 0.211 0.192
USA 0.222 0.222 0.2 0.2 0.21 0.193 0.19 0.2 0.192 0.188
Europe 0.194 0.166 0.2 0.218 0.178 0.181 0.159 0.2 0.158 0.214
China 0.171 0.197 0.2 0.179 0.196 0.192 0.217 0.2 0.199 0.185
Commodities 0.203 0.203 0.2 0.212 0.234 0.229 0.226 0.2 0.239 0.221

(continued on next page)
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Table 9 (continued)

No transaction costs Transaction Costs Included

Asset Class A2C DDPG PPO SAC TD3 A2C DDPG PPO SAC TD3

Standard Deviation of Weights
Brazil 0.001 0.004 0 0.003 0.008 0.005 0.002 0 0.014 0.008
USA 0.001 0.004 0 0.009 0.008 0.001 0.002 0 0.007 0.009
Europe 0 0.003 0 0.007 0.002 0.001 0.007 0 0.004 0.009
China 0.001 0.003 0 0.009 0.004 0 0.008 0 0.005 0.002
Commodities 0 0.007 0 0.003 0.014 0.005 0.002 0 0.006 0.006

findings into the application of AI techniques in this domain. Additionally, this research
highlights the importance of asset diversification, including commodities, and analyzes the
impact of transaction costs on model learning, thereby expanding our understanding of
the possibilities and challenges associated with this state-of-the-art approach.

Nonetheless, this study is not without limitations. For instance, it relies solely upon two
benchmark indices (Dow Jones and Ibovespa), which may circumscribe the generalization
of results to other financialmarkets. Additionally, the deployment of a constraineddataset of
historical data for RLmodel training might impinge upon the algorithm’s ability to forecast
future events and make real-time strategy adjustments. Another constraining factor is the
omission of other pertinent factors in asset selection, such as fundamental and technical
analyses. Moreover, the study did not contemplate the ramifications of exogenous events
such as governmental policy alterations, economic shifts, extreme weather phenomena,
wars, and others, which can substantially affect the performance of financial assets. Lastly,
the investigation encompassed only a limited repertoire of RL algorithms and conventional
investment strategies, which might further limit the generalization of the findings.

Future research avenues could encompass performance analyses of RL algorithms across
various financial market epochs, to glean insights into thesemodels’ adaptability to scenario
shifts. Furthermore, extending the scope of analysis regarding the inclusion of commodities
in investment portfolios to different asset classes and contrasting their effects on other
performance metrics beyond the Sharpe Index and beta would be valuable. A captivating
area to explore entails the integration of ethical and social criteria in portfolio optimization
through AI algorithms, taking into consideration factors such as sustainability and social
responsibility. Lastly, examining avenues to mitigate the effects of transaction costs on
portfolio optimization through AI algorithms could enhance these models’ adaptability
across diverse market conditions.
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