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ABSTRACT
During public health crises, the investigation into the modes of public emotional
contagion assumes paramount theoretical importance and has significant implica-
tions for refining epidemic strategies. Prior research predominantly emphasized the
antecedents and aftermath of emotions, especially those of a negative nature. The
interplay between positive andnegative emotions, aswell as their role in the propagation
of emotional contagion, remains largely unexplored. In response to this gap, an
emotional contagion model was developed, built upon the foundational model and
enriched from a complex network standpoint by integrating a degradation rate index.
Stability analyses of this model were subsequently conducted. Drawing inspiration
from topological structural features, an enhanced model was introduced, anchored
in complex network principles. This enhanced model was then experimentally assessed
using Watts-Strogatz’s small-world network, Barabási-Albert’s scale-free network,
and Sina Weibo network frameworks. Results revealed that the rate of infection
predominantly dictates the velocity of emotional contagion. The incitement rate and
purification rate determine the overarching direction of emotional contagion, whereas
the degradation rate modulates the waning pace of emotions during intermediate and
later stages. Furthermore, the immunity rate was observed to influence the proportion
of each state at equilibrium. It was discerned that a greater number of initial emotional
disseminators, combined with a larger initial contagion node degree, can amplify the
emotion contagion rate across the social network, thus augmenting both the peak and
overall influence of the contagion.

Subjects Algorithms and Analysis of Algorithms, Network Science and Online Social Networks,
Text Mining
Keywords Emotional contagion, Infectious disease model, Complex network, Social network

INTRODUCTION
The global perturbation elicited by the COVID-19 pandemic has undeniably captured
significant attention, influencing public emotional well-being and societal mental outlook
(Grima, Dalli Gonzi & Thalassinos, 2020; Okafor et al., 2022; Rahmadana, Loo & Aditia,
2022; Rudenstine et al., 2023). With the virus demonstrating evolutionary tendencies
through mutations, and a mounting uncertainty about the pandemic’s trajectory, an
accumulation of negative emotions, notably anxiety and anger, has been observed
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among the populace (Yousef et al., 2022; Zhao & Zhou, 2020). Concurrently, preventative
measures, encompassing mask-wearing, social distancing, enforced isolation, and remote
working, though critical for containment, have inadvertently exacerbated the proliferation
of negative emotions such as fear and resentment on social networks. Manifestations of
these intensified sentiments are evident in rumor mongering, panic-induced actions, and
regional stigmatization (Dong et al., 2020; Okafor et al., 2022; Zhu et al., 2023).

In the bid to refine public health emergency management, a profound understanding
of emotional contagion laws and strategies to mitigate these adverse sentiments is deemed
essential (Cai et al., 2022; Zhang, Wang & Zhu, 2020). Throughout the course of the
COVID-19 pandemic, a predominance of studies have elucidated an augmented risk
associated with negative emotional arousal, predisposing individuals to psychological
afflictions such as depression and anxiety (Giri & Maurya, 2021; Low et al., 2021; Waugh,
2020). Yet, the symbiotic interaction between positive and negative emotions during
pandemics and its consequent influence on emotional contagion has remained relatively
understudied (Basch, Corwin & Mohlman, 2021; Zhang, Wang & Zhu, 2020).

Diverging from conventional research paradigms, which predominantly relied upon
interviews, questionnaires, and psychological assessments, simulation modeling, anchored
notably in the susceptible-infectious-susceptible (SIS) and susceptible-infectious-
recovered/removed (SIR) epidemiological frameworks, offers an insightful lens to probe
emotional contagion (Hong et al., 2022; Wang et al., 2021). Embracing this methodology
not only facilitates the exploration of emotional contagion mechanisms, evolutionary
patterns, and contagion scales (Bakir, 2022; Iriany et al., 2023; Khare & Kaloni, 2022;
Mahalingam & Pandraju, 2021; Widowati et al., 2022; Yang et al., 2022; Zhu et al., 2023)
but also transcends the boundaries set by traditional research. Albeit scholars have
meticulously designed various simulation models employing theoretical constructs like
machine learning, control theory, and artificial intelligence to decode the emotional
infection-evolution mechanism, the majority ostensibly segment the population from a
disease-contagion viewpoint, sidelining the dynamic interplay of emotions. Such models
often posit that post-immunity individuals disengage from pertinent events, a supposition
misaligned with real-world dynamics.

Incorporating the inherent emotional contagion attributes observed in netizens during
the pandemic’s ambient, and drawing upon classic infectious disease models enriched
by complex network theory, an emotional contagion model delineating the dynamic
evolution of emotional states has been proposed. Leveraging real-world scenarios,
specifically the COVID-19 flare-up in Sanya, Hainan, in August 2022, the modulating role
of critical parameters in the model concerning emotional contagion has been examined
via simulation.

This research’s contributions are multifaceted: (1) The degradation rate, resonating
with the COVID-19 pandemic’s nuances, has been integrated, segmenting emotion
disseminators into positive and negative spectra, culminating in the construction of
the SIpInRS model for netizen emotion contagion. (2) Simulation experiments have
elucidated the intricate mechanisms by which infection, incitement, and purification rates
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steer emotional contagion. (3) Adopting a complex network topology perspective, inter-
nodal contagion probability functions have been defined, factoring in mutual interplay
between adjacent nodes, leading to enhancements in the SIpInRS model.

RELATED RESEARCH
Psychological aspects of emotion research
Central to both interpersonal and intrapersonal lives, emotions have been demonstrated to
exert powerful effects, both advantageous and detrimental, on human functioning (Nezlek
& Kuppens, 2008). With the onset of the COVID-19 pandemic, stress has been identified
as a profound threat to public health, predisposing individuals to an array of negative
emotional responses and thereby facilitating the development of mental health conditions
such as depression and anxiety (Liu et al., 2020). Empirical evidence highlighting the
intricate relationships between emotion and stress (Prikhidko, Long & Wheaton, 2020),
depression (Niu & Snyder, 2023; Whiston, Igou & Fortune, 2022), and anxiety (Muñoz
Navarro et al., 2021; Wheaton, Prikhidko & Messner, 2021) has been increasingly brought
to the forefront. It is suggested by considerable research that the contagion of particularly
negative emotions may culminate in outcomes such as the heightened prevalence of mental
health symptoms, the employment of emotion regulation strategies conducive to resilience
(Low et al., 2021; Waugh, 2020), the emotion diffusion effect (Yu et al., 2022), and the
enhancement of psychological resilience (Giri & Maurya, 2021).

However, it was observed that a significant portion of the extant research emphasizes
the Five-Factor Model of personality (Kotov et al., 2010) and predominantly employs
psychological experiments (Varma et al., 2023), questionnaires (Low et al., 2021), and semi-
structured interviews (Srifuengfung et al., 2021) to analyze emotional states. Consequently,
less attention has been devoted to the interaction between positive and negative emotions
and their respective contagion mechanisms (Basch, Corwin & Mohlman, 2021; Zhang,
Wang & Zhu, 2020).

Emotional infection models
The infectious disease model has traditionally served as an esteemed method for
investigating the laws governing emotional contagion. In their exploration, Hill et al.
(2010) categorized infection states into positive and negative, leading to the construction
of the SISa emotional contagion model. A notable modification to the classical susceptible-
infectious-susceptible (SIS) model, which included the spontaneous infection rate, was
introduced under the presumption that emotional contagion could stem from factors
unrelated to direct contacts. Significant findings were reported by Fu et al. (2014), who
combined the meta-cellular automata model with infectious disease theory, and by Zhao
et al. (2014), who advanced the SIRS model to study the dynamism of panic spread within
subways. By integrating the OCEAN Big Five personality with infectious disease models,
Cao et al. (2017) established a P-SIS model, which offered a more accurate representation
of individual personalities during emergency evacuations. For the scenarios of crowd
evacuation, other scholars have integrated traditional SIS and SIR models with diverse
theories to propose various emotional contagion models such as the stochastic event-based
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emotional contagion model (Shi et al., 2021; Shang et al., 2023) and personalized virtual
and physical cyberspace-based emotional contagion model (Hong et al., 2020), dynamic
multiple negative emotional susceptible-forwarding-immune model (Yin et al., 2022).

Yet, despite theoretical advancements, empirical evaluations of these models often lag,
primarily due to the challenges in accurately measuring emotions within large groups (Van
Haeringen, Gerritsen & Hindriks, 2023). Furthermore, scant attention has been paid to the
impact of positive and negative emotion interaction on emotion contagion (Zeng et al.,
2022). This gap was partially addressed by Geng et al. (2023), who explored the influence
of media interventions on online public opinion spread. However, their investigations
remained devoid of a comprehensive examination of the laws governing emotional
contagion amid positive and negative emotional interactions.

Emotion contagion models based on complex networks
Given the limitations in contagion models, which often fail to mirror the genuine state of
nodes within social networks, the adoption of complex network theory was initiated. For
instance, Yang et al. (2019) accounted for individual differences and network topologies
in their research, proposing a rumor contagion ILSR model. In another study, Xiong et al.
(2018) posited that both spatial distance and time span significantly influence contagion
within social networks, leading to the proposition of an emotion contagion model founded
on multi-layered social networks. Another noteworthy contribution was made by Wang
et al. (2022) who introduced multilayer networks to study investor sentiment and stock
return connectedness.

In conclusion, while extensive research has delved into the realms of emotional
contagion, gaps still remain, particularly concerning the interaction between positive and
negative emotions and their contagion mechanisms within complex networks. Addressing
these gaps could provide a more holistic understanding of the dynamics of emotion
contagion and its broader implications.

Modeling and simulation analysis of emotional contagion among
netizens amid the COVID-19 pandemic
The formulation of a model depicting emotional contagion among netizens
In an attempt to capture the dynamism of emotional contagion among internet users
during the pandemic, individuals exposed to varying information were categorized into
positive and negative emotional states. Given the propensity for recurring emotional waves,
a degradation rate was introduced. This rate implies that those previously immune bear a
certain likelihood of becoming susceptible to emotions again, ensuring the model aligns
closely with contagion dynamics observed during the pandemic.

Within this system, netizens are stratified into the ensuing states:
(1) Emotionally Susceptible (S): This category encompasses netizens yet to be exposed
to pertinent information within the broader online community. While they maintain a
specific initial emotional state, they display heightened vulnerability to emotional shifts
upon encountering infected individuals.
(2) Positive Emotional Disseminators (Ip): Netizens within this category, after interacting
with relevant content, demonstrate a capacity to process information rationally and
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Figure 1 Relationship of various state transitions of netizen in the epidemic environment. (A) Control
group SIpInRS model. (B) Experimental group SIRS traditional model.

Full-size DOI: 10.7717/peerjcs.1693/fig-1

objectively. They disseminate optimism and positive emotions (defined as sentiments
rooted in health, optimism, and constructive motivation) online. It was observed that such
individuals can influence the emotional state of the susceptible and inadvertently drive the
spread of negative sentiments.
(3) Negative Emotional Disseminators (In): This state embodies netizens with a
predominant negative emotional disposition, susceptible to infection. These individuals
perpetuate diverse negative emotions, such as panic, anxiety, and falsehoods, within the
digital realm.
(4) Emotionally Immune (R): Netizens classified as emotionally immune remain unaffected
by the prevalent emotional spectrum and refrain from transmitting associated sentiments.

Drawing from foundational assumptions and the infectious disease dynamics explored
by Geng et al. (2023), Li et al. (2020); Li, Liu & Li (2020), Mao et al. (2019), and Shen et al.
(2022), a model elucidating the transitional relationships between these emotional states
was formulated. Incorporating the interplay between positive and negative sentiments
into the traditional SIRS framework, the SIpInRS transformation model, encapsulating
the emotional shifts among netizens during the pandemic, was established, as depicted in
Fig. 1.

As delineated in Fig. 1, S(t), Ip(t), In(t), and R(t) represent the ratios of netizens in each
respective state to the overall netizen population at time t. It must be noted that within
this system, S(t)+In(t)+Ip(t)+R(t) =1. The transformations inherent to each state are
elucidated as follows:
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(1) Positive Infection Rate α1: This rate depicts the probability by which an emotionally
susceptible individual is influenced by positive emotions, transitioning into a positive
emotion disseminator.
(2) Negative Infection Rate α2: Analogously, this rate signifies the likelihood that an
emotionally susceptible individual, under the sway of negative emotions, becomes a
negative emotion disseminator.
(3) Purification Rate θ1: This rate is used to represent the probability of a transition from
a negative emotion disseminator to a positive emotion disseminator.
(4) Incitement Rate θ2: This value quantifies the likelihood that a positive emotion
disseminator, upon exposure to negative emotional stimuli, transitions to a negative
emotion disseminator.
(5) Direct Immunization Rate γ : Here, the probability is captured wherein an emotionally
susceptible individual, displaying disinterest in the prevailing information, directly
transitions to an emotionally immune state.
(6) Immunization Rates (β1, β2): These rates quantify the transition probabilities from
both positive and negative emotional disseminators to an emotionally immune state.
(7) Degeneration Rate ε: This rate is representative of the likelihood that an emotionally
immune individual reverts to an emotionally susceptible state after a certain period,
possibly due to external factors such as environmental changes or memory decay.

The state transfer function encapsulating the transitions among the various netizen
types, as proposed in this model, is grounded in the structure depicted in Fig. 1, hereby
referred to as Model I.

Within this framework, α1 and α2 are understood to signify the likelihood of an
emotionally susceptible individual’s infection post-exposure to either a positive or
negative emotional disseminator. γ articulates the probability wherein a susceptible
individual transitions directly to immunity post information exposure. θ1 and θ2,
respectively, represent the likelihoods of a negative emotion disseminator converting due to
positive influence (possibly governmental guidance) and a positive emotion disseminator
succumbing to negative emotional provocation. Finally, β1 and β2 expound upon the
transition probabilities for positive and negative disseminators to achieve emotional
immunity, while ε elaborates upon the propensity for immune individuals to re-enter
susceptibility due to various external influences.

Analysis of equilibrium points and stability within the model
Within the SIRS contagion framework, both zero andnonzero contagion equilibriumpoints
have been identified (Prodanov, 2021). The eventual attainment of a steady state, whether
it gravitates towards a zero or nonzero equilibrium, is predominantly contingent upon the
contagion threshold, denoted as R0. This threshold R0 can be interpreted as the number of
subsequent generations to which an infected individual can transmit within a singular time
unit. It has been noted that should R0 be less than or equal to 1, a zero-equilibrium state is
ultimately approached. Under such circumstances, infected individuals within the netizen
populace will be eradicated, resulting in a system exclusively comprising susceptible
and immune individuals. Conversely, when R0 exceeds 1, a nonzero equilibrium state
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becomes the system’s fate, encompassing susceptible, infected, and immune individuals
concurrently.

Building upon prior definitions, the relationship S(t)+In(t)+Ip(t)+R(t) =1 is
acknowledged. By setting the left sides of Eqs. (1)–(4) from Model I to zero, Model II
is derived.

In the specified contagionmodel, parameters such as α1, α2, θ1, θ2, β1 and β2 are treated
as constants. Consequently, with the relation In(t)+Ip(t)=1, both positive infection rate α1
and negative infection rate α2 are consolidated under a unified infection rate, α. Similarly,
both the positive immunity rate β1 and negative immunity rate β2 are uniformly denoted
as β, leading to the derivation of Model III.

From the extrapolations of Model III, equilibria related to I (t ), are discerned.
Depending on whether the equilibrium point is 0, the presence of an equilibrium point
P∗
(
β

α
,
εα−εβ−γ β

α(ε+β)

)
, denoted as P0

(
ε

γ+ε
,0
)
, where the number of infected individuals

exceeds zero is determined. Hence, the contagion threshold can be ascertained by
R0=

εα
εβ+γ β

. Should R0 remain at or below 1, the system gravitates towards the equilibrium
point P0. In cases where R0 surpasses 1, P* remains the sole equilibrium point. An in-depth
examination into the stability of these equilibrium points ensues.

First, with X =−αS(t )I (t )−γ S(t )+ε(1−S(t )− I (t )) and Y = αS(t )I (t )−βI (t ), the
matrix is obtained as follows.∂X∂S =−αI (t )−γ −ε ∂X

∂I
=−αS(t )−ε

∂Y
∂S
=αI (t )

∂Y
∂I
=αS(t )−β

 (1)

Therefore, for the zero-equilibrium point under P0, its Jacobian matrix J is given by−γ −ε
−εα

γ +ε
−ε

0
εα

γ +ε
−β

 (2)

Finding the eigenvalues of this matrix gives the matrix characteristic equation as
(λ+γ +ε)

(
λ− αε

γ+ε
+β

)
because under the zero-equilibrium point R0 ≤1, Therefore,

both eigenvalues are less than 0. According to the Routh-Huriwitz stability criterion, it is
locally stable at zero equilibrium (Mao et al., 2019).

For the nonzero equilibrium point P ∗, its Jacobian matrix J is given by−
εα−εβ−γ β

(ε+β)
−γ −ε −β−ε

εα−εβ−γ β

ε+β
0

 (3)

The characteristic equation for this matrix is given by λ2+ bλ+ c = 0, where
c = (β+ ε)

(
εα−εβ−γ β

ε+β

)
, b= εα−εβ−γ β

(ε+β) +γ + ε, because at this equilibrium point, R0

≥1.
Consequently, under these conditions, infected individuals persist over extended periods,

culminating in a system where susceptible, infected, and immune individuals coexist in
harmony within the network.
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Table 1 Parametric dispositions (SIpInRS vis-à-vis canonical model).

S, Ip, In α1 α2 β1 β2 γ θ1 θ2 ε

1. Reference group 0.96, 0.02,0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05
S, I α β ε

2. Experimental group SIRS 0.96, 0.04 0.45 0.06 0.05

In the realm of emotional contagion dynamics, the contagion threshold, denoted as R0,
emerges as a pivotal determinant of an affliction’s potential to reach epidemic proportions.
Empirical analyses consistently suggest that a diminished contagion threshold is indicative
of superior overall control of the emotional contagion (Al-Azzawi, 2012; Zhao et al., 2022).

Upon examination of the deduced R0 equation, it becomes evident that the contagion
threshold within this epidemic emotional contagion framework is molded by the interplay
of several parameters. These include the reduction of the negative emotional infection
rate, symbolized as α, augmentation of the direct immunity rate of susceptible individuals,
represented by γ , and the modulation of the infected individuals’ immunization rate, β.
These modifications serve to effectively rein in the corresponding contagion threshold.
Additionally, a decrement in the degradation rate, ε, alongside an extension in the effective
duration of immunization for immunized entities, can further taper the contagion
threshold. Hence, in the face of emergent situations, governmental interventions can
aim to both curtail the primary sources of infection and rectify prevailing misinformation,
thus attenuating the negative infection propensity amongst the general netizen populace.
Such measures can invariably foster the metamorphosis of negatively influenced netizens
into their positively charged counterparts. In parallel, harnessing the power of social
media platforms to steer public sentiment in affirmative directions could expedite the
transformation of infected individuals into immune ones, ultimately ensuring a balanced
emotional landscape across digital spaces.

Simulation analysis of digital emotional propagation models
Drawing upon methodologies delineated by Li et al. (2020) and Zeng & Zhu (2019),
parameters were set as follows: emotionally susceptible individual, S= 0.96; positive
emotion disseminator, Ip =0.02; negative emotion disseminator, In =0.02; positive
infection rate, α1 =0.45; negative infection rate, α2 =0.4; purification rate, θ1 =0.05;
incitement rate, θ2 =0.02; immunization rate for positive disseminators, β1 =0.06;
immunization rate for negative disseminators, β22 =0.04; direct immunization rate,
γ = 0.1; and degeneration rate, ε= 0.05 (as tabulated in Table 1). In this segment, the
SIpInRSmodel incorporating the aforementioned parameters serves as the reference model
for ensuing simulation juxtapositions.

(1) Juxtaposition of the SIpInRS model and the canonical model
In relation to the canonical SIRS model, the SIpInRS paradigm, as illustrated in Fig. 2,

not only segments disseminators based on emotional polarity but also accommodates
the interplay between affirmative and negative emotions. The conventional approach
amalgamates infected individuals into a singular cluster, obfuscating distinctions between
the trajectories of positive and negative emotional transmissions. This homogenization
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Figure 2 Dissection of the SIpInRSmodel in parallel with the canonical model. (A) Control group SIp-
InRS model. (B) Experimental group SIRS conventional model.

Full-size DOI: 10.7717/peerjcs.1693/fig-2

Table 2 Parametric alignments (pertaining to the influence of initial contagion ratios on digital sentiment progressions).

S, Ip, In α1 α2 β1 β2 γ θ1 θ2 ε

1. Reference group 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05
2. Experimental group 1 0.90, 0.08, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05
3. Experimental group 2 0.90, 0.02, 0.08 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05

complicates evaluations concerning the sway of these emotional polarities over variables
like the incitement rate and purification rate. Furthermore, real-world scenarios often
present netizens who, upon encountering pertinent information, transition directly from
susceptibility to immunity, devoid of an interim infectious phase. Contrastingly, the
canonical model postulates an inevitable progression from susceptibility through infection
to immunity. This simplification results in an amplified peak of infectious individuals,
concurrently stymieing the surge of immune proportions. Ergo, the augmented SIpInRS
paradigm more accurately mirrors genuine contagion dynamics.

(2) Impacts of preliminary contagion proportions on digital sentiment evolution
Parameters were set as follows: positive infection rate α1 =0.45, negative infection

rate α2 =0.4, purification rate θ1 =0.05, incitement rate θ2 =0.02, immunization rate β1

=0.06, immunization rate β2 =0.04, direct immunization rate γ = 0.1. degeneration rate
ε= 0.05.For reference group, emotionally susceptible person S= 0.96, positive emotional
disseminator Ip =0.02, negative emotion disseminator In =0.02; for experimental group1
and group2, S= 0.90, Ip =0.08, In =0.02; S= 0.90, Ip =0.02, In =0.08 respectively (in
Table 2).

In juxtaposition with the reference model in Figs. 2A, 3A delineates the outcomes
of augmenting the proportion of initial negative emotion propagators. An accelerated
rise of negative emotional individuals within the entire digital ecosystem becomes
discernible. The apex of negative emotion propagation is not only more pronounced
but also noticeably shifted leftward. Moreover, during both the outbreak’s inception
and subsequent phases, the proportion of negative emotional individuals consistently
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Figure 3 Analysis of preliminary contagion ratios’ influence on digital emotion evolution. (A) Increase
in the proportion of initial negative netizens. (B) Increase the proportion of initial positive netizens.

Full-size DOI: 10.7717/peerjcs.1693/fig-3

Table 3 Parametric depictions (examining the emotional transmission rate’s impact on digital sentiment evolution).

S, Ip, In α1 α2 β1 β2 γ θ1 θ2 ε

1. Reference group 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05
2. Experimental group 1 0.96, 0.02, 0.02 0.45 0.80 0.06 0.04 0.1 0.05 0.02 0.05
3. Experimental group 2 0.96, 0.02, 0.02 0.80 0.40 0.06 0.04 0.1 0.05 0.02 0.05

eclipses their positive counterparts. Alternatively, in Fig. 3B, elevating the proportion of
initial positive emotion propagators results in a more pronounced dominance of positive
emotions at the network’s onset. This dominance effectively steers susceptible individuals
towards positivity, corroborating literature findings (Li, Liu & Li, 2020).

The simulations underscore that, during the early phases of emotional escalation in
emergent scenarios, a limited cluster, encompassing primary stakeholders and a select group
of affiliates, serve as the inaugural emotion propagators. However, when this nucleus of
initial propagators expands, the incident’s trajectory alters precipitously, culminating in an
amplified emotional zenith. This intensification, in turn, resonates within public forums,
culminating in an ‘‘echo chamber’’ phenomenon and fostering emotional symbiosis.
Consequently, authoritative bodies ought to diligently monitor the proportion of primary
emotional disseminators during crises, proactively implementing strategies to mitigate
adverse emotional proliferations, thereby curtailing potential collateral damages.

(3) Influence of emotional transmission rates on digital emotion proliferation
Parameters were set as follows: emotionally susceptible person S= 0.96, positive

emotional disseminator Ip =0.02, negative emotion disseminator In =0.02, purification
rate θ1 =0.05, incitement rate θ2 =0.02, immunization rate β1 =0.06, immunization rate
β2 =0.04, direct immunization rate γ = 0.1, degeneration rate ε= 0.05.For reference
group, positive infection rate α1 =0.45, negative infection rate α2 =0.4,; for experimental
group1 α1 =0.45, α2 =0.8, and group2, α1 =0.8, α2 =0.4 respectively (in Table 3).

Figures 4A and 4B elucidate variances ensuing from amplifications in positive
transmission rates α1 and negative transmission rates α2, respectively. Observations
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Figure 4 Analyzing the impacts of emotional transmission rates on emotion propagation. (A) Increas-
ing the rate of negative infection. (B) Increasing the rate of active infection.

Full-size DOI: 10.7717/peerjcs.1693/fig-4

from Fig. 4A indicate that a surging negative transmission rate precipitates an elevated
peak in the In (t ) curve, manifesting earlier. Such a trend implies a heightened proclivity
for netizens to succumb to negative emotions, thereby transitioning into negative emotion
propagators during an event’s nascent stage, subsequently inhibiting positive emotion
diffusion. Drawing parallels with insights from Tian, Sun & Zhang (2019), it’s inferred that
an elevated likelihood of negative transmission expedites the metamorphosis of susceptible
individuals into negative emotional propagators, thereby precipitating a swift decline in
the residual susceptible cohort. Analogous consequences, akin to those observed post-
enhancement of primary negative propagators, manifest under this paradigm. However,
a discernible deviation emerges in that transmission probabilities impinge upon the
demographic distribution across varied states upon attaining a stable equilibrium.

The data underscores that the transmission rate α2plays a pivotal role. It not only
hastens the emotion dissemination speed within the digital realm and magnifies the
upheaval experienced during an event’s outbreak, but also precipitates swift shifts in
the demographics of those afflicted with a particular emotion. This, in turn, mutes the
counterbalancing influence of the opposing emotion. In tangible scenarios, a swift spread
of negative emotions during the initial dissemination phase can inadvertently tip the
balance on digital platforms towards negative sentiments, amplifying their proliferation.
As the contagion phase matures, and in a setting where such emotional outbreaks are
perceived as routine, neglecting to curtail the negative emotion transmission rate may
culminate in a higher likelihood of immune individuals reverting to susceptibility and
subsequently evolving into negative emotion propagators. This trend intensifies the
overarching negativity within the digital ecosystem. From a sentiment management
perspective, authoritative entities and social media platforms ought to offer nuanced
guidance to netizens, facilitating a more balanced evaluation of emergent situations.
By bolstering discernment capabilities and championing positivity, they can stymie the
rampant spread of digital negativity.

(4) Dissecting the impacts of purification and incitement rates on digital emotion
dissemination
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Table 4 Parametric configurations (exploring the emotional transmission rate’s impact on digital sentiment evolution).

S, Ip, In α1 α2 β1 β2 γ θ1 θ2 ε

1. Reference group 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05
2. Experimental group 1 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.1 0.02 0.05
3. Experimental group 2 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.05 0.05

Parameters were set as follows: emotionally susceptible person S= 0.96, positive
emotional disseminator Ip =0.02, negative emotion disseminator In =0.02, positive
infection rate α1 =0.45, negative infection rate α2 =0.4, immunization rate β1 =0.06,
immunization rate β2 =0.04, direct immunization rate γ = 0.1, degeneration rate ε= 0.05.
For reference group, purification rate θ1 =0.05, incitement rate θ2 =0.02,; for experimental
group1 θ1 =0.1, α2 =0.02, and group2, θ1 =0.05, θ2 =0.05 (in Table 4).

Figures 5A and 5B respectively modify the purification and incitement rates within the
communication model. An augmented purification rate signals a higher propensity for
a transition from negative to positive emotion propagators, engendering a more sizable
positive sentiment cohort within the digital network. Utilizing Fig. 5B as a reference
point—where the incitement rate is raised to θ2 =0.05-a juxtaposition with the baseline
model reveals that although the trajectories of susceptible S(t) and immune R(t) remain
largely unchanged with an increased incitement rate, the In(t) trajectory, indicative of
negative sentiment propagators, is noticeably loftier, with its apex surpassing that of the
control group. Conversely, the Ip(t) trajectory is substantially muted. Collating this with the
scholarly insights from (Shen et al., 2022), it becomes evident that a heightened incitement
rate predominantly steers digital sentiment towards negativity, concurrently curtailing
the ascendance of positive sentiment propagators. In contrast, enhancing the network’s
positive sentiment purification rate can markedly uplift the overarching digital sentiment.
Both the incitement and purification rates impart distinct influences upon the eventual
stabilized state. For instance, in the control configuration, the count of terminal positive
sentiment propagators is roughly double that of their negative counterparts. However,
post-amplification of the incitement rate, as observed in Fig. 5B, the terminal counts of
both positive and negative sentiment propagators converge, nearly equalizing by the end.

(5) The dynamics of degradation rate on online emotional propagation
Parameters were set as follows: emotionally susceptible person S= 0.96, positive

emotional disseminator Ip =0.02, negative emotion disseminator In =0.02, positive
infection rate α1 =0.45, negative infection rate α2 =0.4, immunization rate β1 =0.06,
immunization rate β2 =0.04, direct immunization rate γ = 0.1.For reference group,
degeneration rate ε= 0.05; for experimental group1 ε= 0.08, and group2, ε= 0.03 (in
Table 5).

In Fig. 6A, the degradation rate, representing the tendency of immune individuals
to revert back to susceptibility-whether due to evolving external factors or inherent
forgetfulness-is augmented. Meanwhile, Fig. 6B delineates the effects of a diminished
degradation rate. When we observe the heightened degradation rate of Fig. 6A and
juxtapose it with our baseline, a conspicuous pattern emerges: post-apex, the trajectories
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Figure 5 Investigating the impacts of purification and agitation rates on digital emotion propagation.
(A) Increased purification rate. (B) Increased incitement rate.

Full-size DOI: 10.7717/peerjcs.1693/fig-5

Table 5 Configurational parameters (exploring the degradation rate’s impact).

S, Ip, In α1 α2 β1 β2 γ θ1 θ2 ε

1. Reference group 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.05
2. Experimental group 1 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.08
3. Experimental group 2 0.96, 0.02, 0.02 0.45 0.40 0.06 0.04 0.1 0.05 0.02 0.03

representing both negative (In (t )) and positive (Ip (t )) emotional disseminators decelerate
in their descent. This implies that, in a state of equilibrium, there is a marked surge in both
negative and positive emotional propagators. Furthermore, the R (t ) trajectory, indicative
of the immune population within this digital domain, manifests a decline of nearly ten
percentage points relative to the control scenario. This showcases that a sizable proportion
of what should ideally be the immune populace in the equilibrium phase is, due to an
elevated degradation rate, actively participating and propelling the event further. Inversely,
a diminishing degradation rate fosters an upswing in the equilibrium-phase immune
individuals and a commensurate downswing in emotional disseminators.

Interpreting this in the milieu of an epidemic, we discern that during periods of
heightened epidemic-related crises or amidst escalating epidemic preventive pressures,
individuals, once exposed to pertinent events, are predisposed to delve deeper into
related news narratives, gravitating back towards susceptibility. This short-circuits the
typical immune duration of the populace. A truncated average immunity span results in
sustained high levels of emotion propagation within the network. To counteract this, under
epidemic containment frameworks, governmental bodies ought to consistently enforce
and communicate robust preventive measures. This would mitigate the overarching
epidemic fervor, ensuring that societal emotional propagation remains subdued and stable.
Consequently, this would attenuate the degradation rate for the digitally immune populace,
extending the collective immunity duration across the online community.
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Figure 6 Delving into the dynamics of degradation rate on digital emotional evolution. (A) Increased
degradation rate ε =0.08. (B) Reduced degradation rate ε =0.03.

Full-size DOI: 10.7717/peerjcs.1693/fig-6

SIpInRS enhancement model grounded in complex networks
Decoding the state transition probability function dynamics
In the given model, let’s envision gi as a distinct node i within the complex network, with
its degree being symbolized by k (gi). The cohort of nodes adjacent to gi can be described
as 0(gi). Within this proximity, subsets of individuals, segmented by their emotional
state—be it susceptible 0S (gi), positive emotion propagators 0Ip(gi), negative emotion
propagators 0In(gi), or emotionally immune 0R (gi)—are clearly delineated.

Now, if we represent the accumulated degrees of these neighboring nodes at a time t
as d(t )=

∑
gm∈0(gi)k

(
gm
)
, we can further categorize them based on the emotional state

of the nodes. Hence, ds(t ), dIp(t ), dIn(t ), and dR(t ) encapsulate the collective degrees
of neighboring nodes corresponding to the susceptible, positive emotional propagators,
negative emotional propagators, and emotionally immune nodes respectively, at that
moment t.

Drawing from prior academic insights, during the progression of emotional contagion,
an individual categorized as ’susceptible’ is invariably confronted with both optimistic and
pessimistic emotions. Intriguingly, these dual forces tend to counteract each other, leading
to a neutralization of their cumulative impact (Li et al., 2021). Taking this phenomenon
into account, if the collective degree of proximate positive emotion propagators dIp(t )
overtakes that of negative propagators dIn(t ), it’s rational to infer that our reference
node-currently deemed susceptible-stands a higher likelihood of evolving into a conduit
of positive emotions. Contrarily, the influence of negative emotions gains precedence.

Factoring in the degree size of the node gi is pivotal. As a rule of thumb, nodes boasting
a more substantial degree manifest a resilience against influences from adjacent nodes.
Consequently, Fs Ip(gi) embodies the probability of a susceptible node i metamorphosing
into a positive emotion propagator, while Fs In( gi) epitomizes the likelihood of its transition
into a purveyor of negative emotions. Our infection function is articulated, drawing
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inspiration from preceding scholarly works.

A= |dIp(t)−dIn(t)| (4)

FSR
(
gi
)
= γ

dS(t)+dR(t)
dS(t)+dR(t)+A

(5)

FSIp
(
gi
)
=α1

2AdIp(t)
k
(
gi
)
(dIp(t)+dIn(t))

(
when dIp(t)> dIn(t)

)
(6)

FSIn
(
gi
)
=α2

2AdIn(t)
k(gi)(dIp(t)+dIn(t))

(
when dIp(t)< dIn(t)

)
(7)

It’s imperative to note that a node predominantly disseminating negative emotions isn’t
immune to external influences. In fact, it remains susceptible to the sway of surrounding
positive emotion propagators as well as individuals devoid of strong emotional hues
(encompassing both immune and susceptible entities). Should the degree of a positive
emotion propagator surpass its negative counterpart, there is a tangible probability of the
negative node undergoing a ’purification’, subsequently emerging as a beacon of positivity.
The inverse scenario remains equally plausible. Thus, the probability metrics governing
this transformative interplay between positive and negative propagators are meticulously
defined.

FInIp
(
gi
)
= θ1

A
k
(
gi
) (when dIp(t)> dIn(t)

)
(8)

FIpIn
(
gi
)
= θ2

A
k
(
gi
) (when dIp(t)< dIn(t)

)
(9)

Furthermore, a heightened presence of emotionally neutral entities amplifies the
susceptibility of emotional propagators to adopt an immune disposition. This transition
probability towards immunization is also meticulously outlined.

FIpR
(
gi
)
=β1

2(dS(t)+dR(t))
dS(t)+dR(t)+A

(10)

FInR
(
gi
)
=β2

2(dS(t)+dR(t))
dS(t)+dR(t)+A

(11)

Leveraging these defined probabilities, we have successfully sculpted a refined version
of the SIpInRS model.

dS(t)
dt
=−FSIp

(
gi
)
S(t)Ip(t)−FSIn

(
gi
)
S(t)In(t)−FSR

(
gi
)
S(t)+εR(t) (12)

dIp
dt
= FSIp

(
gi
)
S(t)Ip(t)+FInIp

(
gi
)
In(t)−FIpIn

(
gi
)
Ip(t)−FIpR

(
gi
)
Ip(t) (13)

dIn
dt
= FSIn

(
gi
)
S(t)In(t)+FIpIn

(
gi
)
Ip(t)−FInIp

(
gi
)
In(t)−FInR

(
gi
)
In(t) (14)

dR
dt
= FIpR

(
gi
)
Ip(t)+FInR

(
gi
)
In(t)+FSR

(
gi
)
S(t)−εR(t) (15)
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Table 6 Parameters of the network.

Network Number
of nodes

Edge
number

Average
degree

Degree
correlation
coefficient

Clustering
coefficient

Maximum
nodal
degree

1. BA scale-free network 10,000 39,998 5.32 −0.032 0.018 347
2. WS Small world Network 10,000 40,000 8.01 −0.041 0.126 15
3. Sina Weibo 31,325 53,264 3.13 −0.328 0.054 2,000

Analysis of model simulation
By employing relevant algorithms, Watts–Strogatz’s (WS) small-world network, Barab’asi-
Albert’s (BA) scale-free network were crafted. Subsequent simulations were carried out
using real-life network datasets from microblogs. The intricate topological data pertinent
to network parameters is presented in Table 6.

(1) Insight into the network structure’s impact on emotional contagion
To maintain consistency, the experiments were initialized based on the reference

group parameters established in the kinetic model. Breakdown of initial proportions
was: Susceptible at 0.96, Positive Emotion Propagators at 0.02, and Negative Emotion
Propagators at 0.02.

These visuals paint a comprehensive picture of state node proportions as contagion
rounds evolve (as shown in Fig. 7). Across the three models, the x-axis represents contagion
rounds, while the y-axis details the tally of respective state nodes. Interestingly, the
contagion pattern largelymirrors the latent four-phase lifecyclemodel. The degradation rate
exerts an influence - after an initial rapid susceptibility downturn during the outbreak phase,
a subsequent gradual rise occurs owing to an increasing cohort of immune individuals.
This process culminates in a stable equilibrium.

Figures 7A–7C show the trends of different state node proportions with the development
of contagion rounds in the BA scale-free network, WS small-world network, and SIpInRS
improved model of the Sina Weibo network, respectively.

A striking observation from the models reveals that theWS small-world network reaches
its emotional propagation peak around t =5. Conversely, the BA scale-free network hits
its zenith earlier, with the negative emotion curve peaking at t =3. Notably, this model’s
ascent both in terms of speed during the initial burst and peak magnitude exceeds the WS
small-world network. This resonates with prior scholarly insights suggesting that contagion
velocities in non-uniform networks overshadow their uniform counterparts (Ran & Chen,
2021).

Contrastingly, the real-world Sina Weibo network’s contagion pace is more gradual,
and its peak, subdued when juxtaposed against the BA network. As illustrated in Fig. 8, the
unique topology of the Sina Weibo network offers an explanation. Despite interconnected
subclusters, inter-cluster connections are sparse, hindering seamless information flow.
Another distinct attribute is Sina Weibo’s follower cap at 2000, fostering a pronounced
presence of ‘‘super disseminators’’. This dynamic is starkly different from platforms
like Twitter, which yields a pronounced cluster phenomenon. Given the pivotal role of
super disseminators in emotional contagion, coupled with microblogs’ intrinsic influence
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Figure 7 Network structural impact on emotional contagion. (A) BA scale-free network simulation re-
sults. (B) WS small-world network simulation results. (C) Sina Weibo simulation results.

Full-size DOI: 10.7717/peerjcs.1693/fig-7

Figure 8 Examining the impact of initial disseminators on emotional contagion. (A) Increase in the
proportion of initial positive emotion transmitters. (B) Increase in the proportion of initial negative emo-
tion transmitters.

Full-size DOI: 10.7717/peerjcs.1693/fig-8

on information dissemination, this stark clustering translates into reduced propagation
efficiency and limited reach when paralleled with BA networks.

(2) Analysis of the influence of initial disseminators’ proportion on emotional spread
Our primary objective is to unravel the intricacies of contagion within actual real-world

networks. Thus, taking the Sina Weibo network delineated in Fig. 8 as a baseline, we
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expanded the nodes representing initial positive disseminators and those signifying initial
negative emotion propagators. This exercise was aimed at understanding the interplay of
these factors on emotional contagion within a multifaceted network landscape.

As is evident from Figs. 8A and 8B, simulation outcomes bore a striking resemblance
to trends observed under the kinetic model. Augmenting the proportion of initial
disseminators compresses the duration of the emotional outburst phase while amplifying
the intensity of the peak. This corroborates the assertions made in existing literature
(Xiong et al., 2018). An intriguing distinction emerges: in the kinetic model, bolstering the
proportion of one emotional disseminator doesn’t markedly skew the opposite emotion.
However, in real-world network topologies, the tug of war between positive and negative
emotions is accentuated. As one emotional node gains traction, it simultaneously quells
the opposite emotion. Using negativity as our lens, we discern that a proliferation of nodes
radiating negativity not only exposes more nodes to this emotion but also sways nodes
originally aligned with positivity. This cyclical amplification, where negativity spawns more
negativity, throws the network off-kilter during the outbreak. Eventually, when emotions
plateau, negative nodes still hold a numerical advantage.

This dynamic captures a quintessential real-world phenomenon: post unexpected events,
online emotional currents often flow unidirectionally.

Drawing from this elucidation, a salient takeaway for policymakers emerges: the
formative stages of emotional spread warrant keen oversight. Negligence here can usher in
a domino effect, with negativity reigning supreme during event outbursts. Thus, a proactive
approach during the latency period can potentially avert the spiraling negativity, mitigating
its overarching dominance during event eruptions.

(3) Analysis of the impact of initial disseminator node degree on emotional contagion
Digital ecosystems, especially social networks, are heterogeneous in nature. Influence

varies dramatically across users, with certain nodes, such as opinion leaders, becoming
pivotal in steering sentiment. A case in point is the Weibo vlogger, whose sway can
outweigh that of ordinary users by magnitudes. The node degree serves as a proxy for
such influence. The potency of the initial contagion node’s degree stands paramount in
sentiment propagation.

While Fig. 9 illustrates the sentiment spread emanating from a randomly chosen initial
node, a more nuanced approach is adopted subsequently. By arranging nodes based on
their degree magnitude, Figs. 9A and 9B delineate scenarios where the initial positive and
negative emotion propagators, respectively, are nodes with substantial degrees. Echoing
Zhang, Feng & Yang (2019), a greater node degree can turbocharge emotional contagion.

Simulations reveal a thematic consistency: the influence of the initial propagator’s node
degree on emotion contagion parallels the impact of bolstering node count. A surge in
the corresponding emotion’s propagation velocity is observed, accompanied by an earlier
and heightened peak, in line with findings by Wei et al. (2021). Crucially, the node degree
plays an instrumental role in sentiment spread, potentially even surpassing the effects of
augmenting the initial node proportion, especially in neutralizing contrary emotions.

In real-world digital landscapes, opinion leaders command outsized influence. Even in
the face of dissenting views, the majority, swayed by the herd mentality, often gravitates
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Figure 9 Evaluating the influence of initial disseminator node degree on emotional spread. (A) In-
creasing the initial positive emotion transmitter node degree. (B) Increasing the initial negative emotion
propagator node size.

Full-size DOI: 10.7717/peerjcs.1693/fig-9

towards these influencers’ perspectives. This exemplifies the formidable, and sometimes
daunting, leverage of opinion leaders in the digital emotional arena. Consequently,
prominent internet personas, especially high-degree nodes, must exercise prudence. Their
substantial reach demands responsibility. By setting positive precedents and disseminating
objective, balanced sentiments, especially at the onset of events, they can shepherd online
emotional currents towards constructive trajectories.

(4) Analysis of the degradation rate’s impact on emotional contagion
The unique trajectory of the novel coronavirus, characterized by recurring flare-ups,

renders it an unyielding challenge. Even during moments of relative tranquility, public
concern remains palpable, amplifying during heightened outbreak phases. The pervasive
and recurrent nature of the epidemic sentiment poses unique challenges for control
measures. Reflecting on global policy responses, a majority of nations have opted for a
strategy of virus coexistence, suggesting that the current dynamic may persist indefinitely.
Hence, the SIRS base model, augmented with a degradation rate, provides a more apt
framework for investigating emotional contagion linked to epidemic narratives.

Figure 10 elucidates the kinetic equation’s nuanced interplay with degradation rate. The
degradation rate, which dictates the likelihood of the immune reverting to susceptibility
and subsequently becoming emotion disseminators, primarily shapes the latter stages of
the emotional contagion cycle. As degradation rates rise, emotions wane more gradually,
culminating in a diminished immune proportion when equilibrium ensues. Within
real-world digital networks, the degradation rate is intrinsically tied to epidemic trajectory
and preventive measures. A stable recent epidemic history, coupled with adept control
mechanisms, tends to lessen public fixation on the crisis. Consequently, this reduces the
degradation rate, as individuals gradually shift focus away from the epidemic.

Comparative analysis with actual data
Data from Sina Weibo, pertaining to the epidemic in Sanya, Hainan, from August 2022,
were extracted and analyzed. This real-world data was juxtaposed against our simulation
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Figure 10 Probing the impact of degradation rate on emotional contagion. (A) Increased degradation
rate. (B) Reduced degradation rate.

Full-size DOI: 10.7717/peerjcs.1693/fig-10

Figure 11 Real data synthesis. (A) Comparison of curve fitting effect of immune subjects (B) Compar-
ison of curve fitting effects of positive emotion disseminators. (C) Comparison of curve fitting effects of
negative emotion disseminators.

Full-size DOI: 10.7717/peerjcs.1693/fig-11

outcomes. The initial confirmed case on August 1 was designated as the reference point,
t0. The daily ratio of positive to negative sentiment disseminators was derived from the
total count of corresponding sentiment-laden tweets, divided by the day’s overall tweet
volume. The model incorporated parameters inspired by previous control group findings.
The x-axis delineates the temporal evolution, while the y-axis captures the overarching
proportion for each emotional state. These comparative findings are illustrated in Fig. 11.
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The comparative insights reveal a remarkable congruence between actual data trends
and our simulation projections. Notably, our model offers a more nuanced and faithful
representation of netizen sentiment dynamics during the novel coronavirus epidemic when
contrasted with the conventional SISR framework. This underscores the model’s potential
in simulating real-world scenarios and forecasting netizen reactions amidst health crises.

CONCLUSIONS
Building upon traditional infectious disease models, an SIpInRS model for emotion
contagion amongst netizens was devised, incorporating elements that influence emotion
contagion within a genuine epidemic context. The degradation rate, reflecting the unique
nature of the novel coronavirus epidemic, was introduced, elevating the model’s adherence
to contagion dynamics prevalent during this pandemic. Furthermore, the classification of
emotion disseminators into positive and negative categories brought additional granularity,
further aligning the model with observed epidemic sentiment patterns.

Simulation experiments illuminated several pivotal dynamics:
•The infection rate was found to influence the velocity of emotion spread.
•Both incitement and purification rates were identified as determinants shaping the
overarching emotional orientation of the network.
•The immunity rate was discerned to influence the proportional distribution across
emotional states at equilibrium.

The SIpInRSmodel underwent further refinement, entailing the definition of a contagion
probability function interlinkedwith the inherent topology of complex networks. Simulated
outcomes revealed that an increased count of initial emotion disseminators, coupled with
an augmented initial contagion node degree, can potentiate the rapidity and peak amplitude
of emotion contagion across the broader social network matrix. Moreover, an upsurge in
either positive or negative emotions was observed to markedly suppress its counterpart.
Pertinently, the degradation rate emerged as a crucial factor, impacting the deceleration
of emotion contagion in intermediary and subsequent phases, and dictating the terminal
equilibrium proportions of various emotional states.
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