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ABSTRACT
Background: Identifying the genes responsible for diseases requires precise
prioritization of significant genes. Gene expression analysis enables differentiation
between gene expressions in disease and normal samples. Increasing the number of
high-quality samples enhances the strength of evidence regarding gene involvement
in diseases. This process has led to the discovery of disease biomarkers through the
collection of diverse gene expression data.
Methods: This study presents GeneCompete, a web-based tool that integrates gene
expression data from multiple platforms and experiments to identify the most
promising biomarkers. GeneCompete incorporates a novel union strategy and eight
well-established ranking methods, including Win-Loss, Massey, Colley, Keener, Elo,
Markov, PageRank, and Bi-directional PageRank algorithms, to prioritize genes
across multiple gene expression datasets. Each gene in the competition is assigned a
score based on log-fold change values, and significant genes are determined as
winners.
Results: We tested the tool on the expression datasets of Hypertrophic
cardiomyopathy (HCM) and the datasets fromMicroarray Quality Control (MAQC)
project, which include both microarray and RNA-Sequencing techniques. The results
demonstrate that all ranking scores have more power to predict new occurrence
datasets than the classical method. Moreover, the PageRank method with a union
strategy delivers the best performance for both up-regulated and down-regulated
genes. Furthermore, the top-ranking genes exhibit a strong association with the
disease. For MAQC, the two-sides ranking score shows a high relationship with
TaqMan validation set in all log-fold change thresholds.
Conclusion: GeneCompete is a powerful web-based tool that revolutionizes the
identification of disease-causing genes through the integration of gene expression
data from multiple platforms and experiments.
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INTRODUCTION
The identification and examination of differentially expressed genes (DEGs) have become
a pivotal foundation for understanding the functioning of genes and their implications in
various biological processes and diseases in the dynamic field of genomics and molecular
biology. DEGs are genes that exhibit significant changes in activity under various
conditions and studying them provides valuable insights into cellular responses, organism
development, and the emergence of diseases. Moreover, DEG analysis holds immense
potential in shaping the future of biological and medical research. It provides a
comprehensive platform for studying and combining diverse datasets, facilitating the
unraveling of the complexities of gene activity. DEG research increasingly emphasizes the
integration of data from multiple sources. The substantial contributions and promising
potential of the data integration in DEG studies are propelling advancements in genomics
and molecular biology. This advancement is crucial for advancing our understanding of
the intricate molecular networks that govern life processes.

Gene expression analysis allows for a direct assessment of gene expression levels in
disease cells compared to control cells. Many algorithms have been developed to identify
DEGs. For instance, a combination of the minimum redundancy maximum relevance
(mRMR) and shortest path method was employed to identify pancreatic cancer
biomarkers (Shen, Gui & Ma, 2017). NETBAGs utilized gene expression profiles and
protein-protein interactions with network propagation techniques for cancer subtyping or
grouping of genes (Wu et al., 2015). Additionally, significant genes have been identified by
integrating cancer gene expression profiles with somatic mutations (Di Nanni et al., 2020).
These approaches showcase the diverse range of algorithms and methodologies employed
in the identification of DEGs and biomarkers in different diseases.

The development of technology has led to the increasing availability of gene expression
data, and the inclusion of a greater number of datasets further reinforces the significance of
genes in relation to diseases. Several studies have focused on integrating multiple gene
expression data sources (Borisov & Buzdin, 2022), exemplified by the identification of key
genes associated with prostate cancer using four microarray datasets (Khan et al., 2022). By
leveraging the combined information from diverse datasets, these studies aim to enhance
our understanding of disease-related genes and uncover valuable insights into the
molecular mechanisms underlying specific conditions.

RNA sequencing (RNA-Seq) and microarray are two well-known experimental
techniques used for gene expression profiling. Each of these experiments has different
advantages and limitations. Microarray is a hybridization technique, whereas RNA-Seq is
referred to as a sequencing-based technique. Microarray is cost-effective, which is
beneficial when dealing with a large number of samples. However, RNA-Seq is increasingly
popular as it offers a higher dynamic range and the ability to discover new genes. The
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combination of these two techniques allows for a higher number of samples and
experiments, leading to the confirmation of gene importance. Combining RNA-Seq and
microarray data in gene expression analysis has its strengths and weaknesses, and the
rationale for doing so depends on the specific goals of the analysis. RNA-Seq and
microarray technologies capture gene expression data differently. RNA-Seq provides more
comprehensive and accurate measurements of gene expression, including quantification of
novel transcripts and detection of low-abundance genes. In contrast, microarrays are cost-
effective and can provide data for a larger number of samples. Combining both yields a
broader gene expression picture and enhances validation. Consistent results between
RNA-Seq and microarray data boost confidence, reducing false positives and improving
reliability. However, integrating data from different platforms requires careful
preprocessing and normalization due to differences in sensitivity and dynamic range. Both
technologies have their own sources of technical and biological variability, complicating
signal identification. Researchers often choose to combine these data sources when
studying a complex biological system or when comprehensive gene expression profiling is
essential, combining data sources can provide a more complete picture. Combining data
from multiple platforms can help validate findings, improving the reliability and
robustness of the analysis.

The combining approach has been employed in various research works focusing on
different disease, such as pancreatic cancer (Nisar et al., 2021), skin cancer (Gálvez et al.,
2019), and hypertrophic cardiomyopathy (HCM) (Xu, Liu & Dai, 2021). The integration of
data from multiple sources is crucial for obtaining accurate and reliable biomarkers.
Several frameworks have been developed for data integration purposes. Conventional
integration techniques mainly involve combining all identified DEGs from different
experiments by either taking intersection or union approaches. However, ranking
techniques can be a better option for prioritizing genes. RankerGUI applies rank-based
statistics to generate ranked profiles and merge them together (Thind, Tripathi &
Guarracino, 2019). Unlike intersection and union approaches, ranking techniques retain a
larger set of important genes. Preprocessing data via normalizing expression values of
multiple profiles was introduced as a vital tool, namely Rank-In algorithm. This algorithm
is referred to as a cross-platform normalization method that minimizes profiling variations
(Tang et al., 2021). However, while the harmonization algorithm effectively removes batch
effects, it can be time-consuming when combining new occurrence datasets. These
approaches contribute to the development of robust techniques that enhance the accuracy
and effectiveness of biomarker discovery through the integration of data from RNA-Seq
and microarray experiments.

Under the same objectives, the integration of several expression datasets would yield a
more precise and accurate identification of disease genes. To address the limitation of the
existing methods, we propose an integrative web-based tool, namely GeneCompete, which
allows all genes from different data sets to compete with each other to be the winner of the
diseases (across all experiments). The competition can be formulated based on various
ranking methods derived from the results of each experimental dataset, whether from
microarray or RNA-seq analyses. While GeneCompete is primarily designed for the
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integration of RNA-seq and microarray data, its ranking methods can also be applied to
any scenario involving gene ranking. This versatility allows a wider array of datasets and
applications to exploit GeneCompete for gene prioritization and ranking, competing
against scores derived from various other analyses.

In GeneCompete, several ranking methods have been developed based on the simple
winning percentage approach. The rating percentage index (Pickle & Howard, 1981) takes
into account the winning percentage of opponents. Different approaches are suitable for
different applications. For instance, Keener’s method (Keener, 1993) is designed for
ranking football players, while the PageRank technique (Brin & Page, 1998) is employed
for ranking webpages. In general, ranking methods are used to prioritize a collection of
competitors according to their significance level or rating scores. Langville & Meyer (2012)
compiled a comprehensive array of rating methods. Furthermore, a straightforward
forward-looking approach (Ochieng, London & Krész, 2022) has been introduced to
compare the predictive capabilities of these rating methods. More recently, bi-directional
PageRank has improved upon the original PageRank by incorporating additional
information about lost games (Zhou et al., 2022).

These ranking algorithms have often been applied in sports, and they have the potential
to evaluate other domains, such as movies, restaurants, and hotel ratings. Moreover, in
biological studies, previous work (Janyasupab, Suratanee & Plaimas, 2022) introduced
ranking methods for HCM gene expression. Therefore, in this study, our GeneCompete
applies these rating techniques to rank genes across various gene expression datasets with a
novel concept that considers genes as players or teams in games, and the combination of
different datasets is considered as matches in game competitions.

MATERIALS AND METHODS
This section explains the differential expression analysis, data integration strategies, the
web-based platform, ranking methods, and validation techniques, and the gene expression
data used in this work.

Gene expression analysis
Differential expression analysis can be performed in various ways based on the raw gene
expression profiling (Baik, Yoon & Nam, 2020). In this study, we utilized linear models for
microarray and RNA-seq data using the limma package (Ritchie et al., 2015). First, we use
“GEOquery” package (Barrett et al., 2012) to obtain the gene expression profile from Gene
Expression Omnibus (GEO) database. Next, we employed the ‘lmFit’ function to estimate
the mean expression levels of disease and normal samples. Following this, the ‘contrasts.fit’
function was applied to identify the probes that exhibited differential expression between
the two types of tissue. Then, we used the empirical Bayes variance moderation method
(‘eBayes’ function) to calculate moderated t-statistics. Lastly, we used the ‘toptable’
function to extract a table containing the top-ranked probes sorted by p-value. It should be
noted that probes were converted to gene symbols using ‘org.Hs.eg.db’ library in R. In
cases of duplication, the gene with the lowest p-value was chosen. The statistical
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information of genes includes log-fold change (logFC), p-value (pval.), and adjusted
p-value (adj.pval.). To differentiate the expression of two groups, logFC is defined as

logFC ¼ log2
xdisease
xcontrol

� �
(1)

where xdisease and xcontrol represent the mean gene expression levels in disease and control
samples, respectively. A higher logFC value indicates higher expression in disease samples
compared to normal samples, and conversely for a lower value. The null hypothesis states
that there is no significant difference between the averages of the two sample types.
Assuming the null hypothesis is true, the p-value represents the probability of erroneously
rejecting the null hypothesis. Consequently, a p-value closer to 0 suggests that the observed
difference between the two groups is unlikely to occur due to random chance. To mitigate
the risk of false discoveries due to multiple testing, the adjusted p-value (adj.pval) was
computed using the Benjamini-Hochberg correction method. After data collection, the
analysis was performed on all datasets. To easily obtain the differential expression table for
microarray data, the GEO2R tool is available at https://www.ncbi.nlm.nih.gov/geo/geo2r.

Data integration and gene expression ranking strategy
As previously mentioned, the method of performing differential expression analysis can
vary depending on the suitability of the experimental types. The outcomes of gene
expression analysis from various datasets can be likened to ‘matches’ in a gene
competition. Consequently, ranking methods that aim to compute and consolidate scores
to determine a competition winner can assist in distinguishing these outcomes. Applying k
different datasets suggests that we effectively have k matches involving all genes in the
competition. In our scenario, the log fold change served as a competitive score for each
gene. The algorithm of ranking analysis with the conventional data integration method is
illustrated in Algorithm 1. This algorithm requires two inputs, i.e., a list of data frames of
genes with logFC column and row names of gene names, and regulation cases (up-
regulation or down-regulation). Common genes are integrated from all datasets and each
gene is treated as a player in the ranking model, with the log-fold change used for
comparison between two players. A gene with a higher log-fold change is the winner in the
up-regulation case while a gene with a lower log-fold change gene is the winner in the
down-regulation case. All pairs of genes play an equal number of matches, which is the
number of input datasets. The two outputs of the algorithm are the win and loss matrix,
which will be further applied in the ranking algorithms. The winning matrix W = wij

represents the total number of matches player i wins against player j. The losing matrix
L = lij represents the total number of matches player i loses against player j. However, this
intersection process for data integration may eliminate some important genes that are not
presented in all datasets.

We further investigated a new union strategy. The sets of genes from all datasets were
aggregated together, and the combined genes were separated into two categories: positive
and negative logFC genes. The process is demonstrated in Fig. 1, and its algorithm is shown
in Algorithm 2. This algorithm requires three inputs, with an additional input from the
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first algorithm being the log-fold change threshold (thres). First, the large set of genes is
reduced by the condition of logFC > thres for up-regulation and logFC < -thres for down-
regulation. Then, these filtering genes from each dataset are combined and considered as
candidates for ranking. The number of games between each pair of genes is determined by
the frequency with which the two genes appear together in the same dataset. A gene that
exists in a greater number of datasets is likely to participate in a higher number of games.
Then, genes similarly compete with logFC for each dataset to obtain the win and loss

Algorithm 1 Intersection algorithm

Input: Table = List of data frames of genes with logFC column and row names of gene names

Reg = Regulation (Up-regulation or Down-regulation)

Output: W_matrix = A matrix of the winning score of gene i when competing with gene j

L_matrix = A matrix of the losing score of gene i when competing with gene j

1 T_list ← List of row names of T for all T in Table

2 N_table ← LEN(Table) // Number of input datasets

3 Intersect_set ← T_list[0]

4 for k ← 1 to N_table-1 do

5 Intersect_set ← Intersect_set ∩ T_list[k]

6 end for

7 N ← LEN(Intersect_set) // Number of genes in intersection set

8 W_matrix ← [0]N×N

9 L_matrix ← [0]N×N

10 for i,j in Intersect_set do

11 for k ← 1 to N_table do

12 Dat_fil[k] ← Table[k] with rows of Intersect_set

13 if Reg is Up-regulation then

14 W[i,j] ← transpose of sign(sign((( Dat_fil[k] [‘logFC’])[None,:] - (Dat_fil[k] [‘logFC’])[:,None])) + 1)

15 else if Reg is Down-regulation then

16 W[i,j] ← transpose of sign(sign((( Dat_fil[k] [‘logFC’])[:,None ] - ( Dat_fil[k] [‘logFC’])[None,:])) + 1)

17 end if

18 W[i,i] ← 0

19 L ← |sign(W - 1)|

20 L[i,i] ← 0

21 end for

22 W_matrix ← W_matrix + W

23 L_matrix ← L_matrix + L

24 end for

25 return W_matrix, L_matrix
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matrix, as output. Note that thres = 0 is applied in both cases in this work, as shown in
Fig. 1.

Both intersection and union integrating processes were applied to multiple gene
expression datasets to obtain the ranking scores of genes. The union pipeline may appear
similar to the intersection one, but the underlying concepts of the techniques are markedly
different. The intersection strategy ranks only genes which are overlapped in all datasets,
whereas the union considers all genes as candidates. The main difference between the
union and intersection strategies lies in the size of the gene candidate lists they generate.
The intersection strategy yields smaller gene candidate lists, potentially missing important
candidates that are not present in every dataset. Conversely, the union strategy produces
more extensive gene candidate lists, encompassing even rare genes found infrequently in
experimental datasets. However, these less common genes may receive lower ranking

Figure 1 The process of integrating multiple gene expression datasets. First, collecting all gene expression data of interest. Then, calculating logFC
and p-value for differential expressions. Next, filtering logFC to identify up-regulated genes and down-regulated genes. After that, performing a
union strategy for all datasets of up-regulated set and down-regulated set. Then, computing ranking scores from different ranking techniques.
Finally, measuring the performance of the top ranking. Full-size DOI: 10.7717/peerj-cs.1686/fig-1
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Algorithm 2 Union algorithm

Input: Table = List of data frames of genes with logFC column and row names of gene names

Reg = Regulation (Up-regulation or Down-regulation)

thres = Log fold change threshold

Output: W_matrix = A matrix of the winning score of gene i when competing with gene j

L_matrix = A matrix of the losing score of gene i when competing with gene j

1 N_table ← LEN(Table)

2 Data_FC ← [ ]

3 for k ← 1 to N_table do

4 if Reg is Up-regulation then

5 Data_FC[k] ← List of Table[k] with gene with logFC > thres

6 else if Reg is Down-regulation then

7 Data_FC[k] ← List of Table[k] with gene with logFC < -thres

8 end if

9 end for

10 T_list ← List of row names of T for all T in Data_FC

11 Union_set ← { }

12 for s in T_list do

13 Union_set ← Union_set ∪ s

14 end for

15 N ← LEN(Union_set)

16 W_matrix ← [0]N×N

17 L_matrix ← [0]N×N

18 for i,j in Union_set do

19 for k ← 1 to N_table do

20 Dat_fil[k] ← Table[k] with rows of Union_set ∩ row names of Table[k]

21 Remain[k] ← Union_set - Row names of Dat_fil[k]

22 Matrix_remain[k] ← [0]Remain×Remain

23 if Reg is Up-regulation then

24 W[i,j] ← transpose of sign(sign((( Dat_fil[k] [‘logFC’])[None,:] - ( Dat_fil[k] [‘logFC’])[:,None])) + 1)

25 else if Reg is Down-regulation then

26 W[i,j] ← transpose of sign(sign((( Dat_fil[k] [‘logFC’])[:,None] - ( Dat_fil[k] [‘logFC’])[None,:])) + 1)

27 end if

28 W[i,i] ← 0

29 L ← |sign(W - 1)|

30 L[i,i] ← 0

31 W1 ← merge W and Matrix_remain

32 L1 ← merge L and Matrix_remain

33 end for

Janyasupab et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1686 8/32

http://dx.doi.org/10.7717/peerj-cs.1686
https://peerj.com/computer-science/


scores. To become a top-ranked gene candidate, a gene does not need to participate in
every dataset but should perform well in most. The ranking algorithms identify the most
potent candidates by evaluating their performance across multiple datasets. The models for
competing are presented in the next section, and users can choose the appropriate model
for their application.

Web-based platform for ranking analysis
We have developed an online ranking analysis platform called ‘GeneCompete,’ which
allows users to input a list of gene tables along with their corresponding logFC values. The
platform generates scores for the genes and ranks them according to the user’s selected
ranking methods, strategy, and preferred regulation case. Python programming language
was used to develop this platform, utilizing a RankIt module to calculate Elo score. If users
need to apply the platform for different datasets or diseases, they can access it through
https://genecompete.streamlit.app/. For handling large datasets, we also propose the use of
a Python function at https://github.com/panisajan/GeneCompete/ (DOI 10.5281/zenodo.
8383849).

Ranking algorithms
This study applies eight ranking algorithms: the win-loss method, Massey’s least squares
method, Colley’s least squares method, Keener’s method, Elo’s method, Markov method,
PageRank method, and Bi-directional PageRank method. These algorithms have
traditionally been used to rank sports teams and for various other applications. We apply
them to rank genes using multiple gene expression datasets. In this section, we provide the
mathematical definitions of the eight ranking methods and clarify the differences between
them when using intersection and union strategies. We also explain the formation of
ranking competitions and define all the notations used in the models at the beginning of
this section.

Assume that there are k gene expression datasets (or kmatches in the competition) and
St is the set of genes in the dataset t, where t = {1, 2,…, k}. Let Sint = S1 ∩ S2 ∩… ∩ Sk be the
set of overlapped genes in all datasets. Let Supt and Sdownt be the subset of set St with the
condition of logFC > 0 and logFC < 0 in order. Thus, the sets of union genes after filtering
are Sup ¼

Sk
t¼1 S

up
t and Sdown ¼

Sk
t¼1 S

down
t . Consequently, the number of candidate genes

is N = |Sint| in the intersection pipeline and for union, N = |Sup| and N = |Sdown| in case of
up-regulation and down-regulation, respectively.

Algorithm 2 (continued)

34 W_matrix ← W_matrix + W1

35 L_matrix ← L_matrix + L1

36 end for

34 return W_matrix, L_matrix
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In the case of k different datasets, we have k rounds of competition with score-based
winner selection. For each round, the opponent with a higher logFC is the winner and
receives a score of 1 in an up-regulation game. In the case of down-regulation, a gene with
a lower logFC gains a point.

Using the intersection strategies, all overlapped genes play an equal number of games, so
the number of matches between gene i and j (nij) is k. However, in union strategy, each
gene participates in a different number of games, and nij is based on the number of times
gene i and j occur in Supt and Sdownt in case of up-regulation and down-regulation,
respectively. Then, the number of games played by gene i can be computed as Ni ¼

P
j
nij.

The winning matrixW (wij) and losing matrix L (lij) are obtained from Algorithms 1 and 2
for intersection and union strategies, respectively.

Win-loss method
The win-loss method finds the ratio of the number of wins to the number of matches
attended. Let nij be the number of games played between player i and player j, and wij be
the number of times player i wins player j. The ranking of player i can be computed as:

rw ið Þ ¼
X
i

wij

nij
(2)

For the intersection strategy, all genes participate in the same of games, with nij =k(| Sint
|−1), ∀i,j. Then, the ranking can be calculated based on the total number of wins:
rw ið Þ ¼ P

i
wij. The maximum value is k(| Sint |−1) in the case of winning all players in all

matches, and the minimum is 0 when losing every game. In the case of the union strategy,
the term wij/nij only occurs when player i competes with player j. Therefore, the more
datasets to which gene i is connected, the more opponents the gene has. Thus, achieving a
larger winning percentage with more occurrence in datasets leads to higher gene scores.
The advantage of this algorithm lies in its simple concept and low computational time.

Massey’s least squares method
Massey algorithm was originally proposed by Massey (1997) to rank football teams. Let
s ¼ P

i
Ni and X be the s� N matrix present the outcome of games,

Xti ¼
1 if team i win tth game
�1 if team i lost tth game
0 otherwise

8<
:

Each row in Xti contains just two non-zero elements: 1 for the winner and −1 for the
loser. In the Massey algorithm, explicit opponent indices are not used; instead, it relies on
game outcomes (wins and losses) to compute team rankings. This method considers how
teams perform against different opponents, ultimately assigning ratings or rankings. While
the precise mathematical procedures can differ in various Massey algorithm
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implementations, the opponent's identity is typically inferred directly from the game
results.

The Massey matrix is defined as M = XTX. It can be expressed in terms of number of

games asMij ¼ Ni if i ¼ j
�nij if i 6¼ j

�
, where Ni is the number of games played by player i. This

definition is explained by Massey as XTXð Þij ¼ xi � xj, where xi ¼ 1; 2 . . . ;Nf g is the
column vector of X. For the diagonal elements, let’s consider xi � xi, in cases where the
game is played, xi can be 1 or −1, resulting in the summation of the number of games
played by player i. When i ≠ j, the term xi � xj can be non-zero only when there is a match
between player i and j, which has exact values, i.e., 1 and −1 are multiplied together and
summed for every game, resulting in �nij.

Let y be the vector of point differentials, where the tth component of y is the point
difference in the tth game, and p = XTy. Since the Massey rating rms can be calculated from
Xrms = y, then XTXrms = XTXy. Subsequently, the simple Massey linear equation is given as:

Mrms ¼ p (3)

Notice that the last row of M is replaced by a vector of ones, and the last row of p is
replaced by zeros row because M is s singular matrix, and Eq. (3) cannot be solved.
Consequently, the addition of Massey scores of all players equals zero,

P
i
rms ið Þ ¼ 0.

Notably, the win-loss method simply counts the number of wins and losses for each
team without considering the margin of victory or defeat. It's a straightforward way to
assess performance based on win-loss records. On the other hand, the Massey algorithm
takes into account the margin of victory or defeat. It does not just treat all wins and losses
equally. Teams are ranked based on a more sophisticated assessment of their performance,
which can provide a more accurate representation of team strengths. In the intersection
strategy, both Ni and nij (number of games played and number of games won) are equal
for all genes. The rating is primarily based on the win-loss record, which is similar to the
win-loss method. It focuses on the number of games won and lost without considering the
margin of victory or defeat. In contrast, the union strategy assesses performance based on
the percentage of games won. This strategy gives more weight to how convincingly teams
win games, considering the margin of victory. It can provide a more fine-grained
evaluation of team strength, rewarding teams that not only win but also do so decisively.
Key distinction lies in how the algorithms handle the margin of victory or defeat. The win-
loss method and intersection strategy primarily focus on the number of wins and losses,
whereas the Massey algorithm and union strategy consider the margin of victory,
providing a more nuanced and accurate assessment of team performance.

Colley’s least squares method
Colley (2002) discovered a ranking model that applies Laplace’s rule of succession in a
linear model. Let Wi ¼

P
j
wij and Li ¼

P
j
lij be the number of wins and losses for team i.

First, the Colley matrix has a high connection with Massey matrix, C = M + 2I, where I is
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the N × N identity matrix, or it can be defined as Cij ¼ Ni þ 2 if i ¼ j
�nij if i 6¼ j

�
.

Let bi ¼ 1þWi � Li
2

be the difference between the number of wins and losses, which

is derived from the modified winning percentage
Wi þ 1
Ni þ 2

to start the rating at 0.5. The

derivation of bi from the modified winning percentage is presented in Data S1. Then, the
rating rc is computed by solving the equation

Crc ¼ b (4)

Although, the Colley and Massey algorithms stem from different motivations (Devlin &
Treloar, 2018), the two matrices are similar. Hence, they have led to nearly the same results
since our application considers the score of matches as a win-loss record in Massey.

Keener’s method

Keener (1993) proposed a eigen-based ranking model by applying the Perron Frobenius
eigenvector. The concept behind constructing the Keener matrix is to differentiate between
a dense number of players with a win probability around 0.5. This model uses a non-linear

skewing function, h xð Þ ¼ 0:5þ 0:5 sgn x � 0:5ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x � 1j jp� �

. Next, the probability of

winning, based on Laplace’s rule of succession, is represented as aij ¼
Wij þ 1

Wij þWji þ 2
.

Then, the Keener matrix is defined as Kij = h(aij). Definitively, the Keener rating rk is
obtained by solving:

Krk ¼ krk (5)

where λ is the largest eigenvalue, and rk is the corresponding eigenvector.
As mentioned, the intersection strategy considers the same number of games for all

genes. The rating result is based on the winning percentage, similar to Colley, but it has the
advantage of distinguishing near-zero probability, which can lead to more accurate results
than Massey and Colley. For the union strategy, more candidate genes are considered;
however, Keener requires more time to solve for eigenvectors and eigenvalues.

Elo’s ranking method
Elo (1978)’s system was first established for ranking chess players. Player rankings are
based on their previous performances, changes in ratings occur through iterations. Elo’s
rating for team i can be computed as:

rnewE ið Þ ¼ roldE ið Þ þ f jij � lij
� 	

(6)

where

jij ¼
1 if player i win player j
0 if player i loss player j
0:5 if player i and player j are tie

8<
: represents the actual outcome of the game.
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The constant f is set to 10, and lij ¼
1

1þ 10 roldE jð Þ�roldE ið Þ½ �=400 is the expected probability

of player i winning against player j, constructed using a logistic function. Elo’s method
requires the initial ratings of each player as input; this work uses equal values for all
players, with roldE ¼ 1500. When considering the first pair of players, the player who wins
the game gains a higher rating, while the loser’s rating decreases. The process is iterative
until the last pair of players is considered.

Markov method
The Markov chain can be used for ranking by considering a voting process, where the
stronger alternative is voted for by the weaker alternative (Von Hilgers & Langville, 2006).
Nowadays, the Markov chain has been developed in various forms; for example, the (1,∞)
variant is proposed to reduce the sensitivity of the model (Vaziri, Yih & Morin, 2018).
Generally, the original Markov method is constructed using the (0,1) voting matrix

Vij ¼ 1 if player i win player j
0 otherwise

�
.

Next, the transition probability matrix P is obtained by normalizing the voting matrix or
dividing each element by its row summation. Then, the Markov rating vector rmk is
obtained by solving:

rmk ¼ Prmk: (7)

The Markov ranking method takes into account both the opponents and their level of
strength. However, this method has displayed sensitivity to small changes in data and also
requires a long computational time, making it more suitable for solving problems with
small number of players.

PageRank method
PageRank was first proposed by Google’s founders, Larry Page and Sergey Brin, to rank
web pages (Brin & Page, 1998). Unlike the previous methods, this model is constructed
using a network. First, a directed graph G is constructed by considering each node as a
player, with directed edge pointing from the losing player to the winning player. A higher
number of in-degrees for a node indicates a stronger opponent. Let Bu be the set of
neighboring nodes pointing to u, and |v| be the outgoing degree from node v. Then, the
PageRank score rp(u) of player u is defined as:

rp uð Þ ¼
X
v2Bu

rp vð Þ
vj j (8)

Alternatively, the power method is applied to quickly solve for the PageRank rating. Let
A be the N×N adjacency matrix of the graph G. A is normalized by row summation to
obtain Z, and G is a Google matrix computed as G = αZ + (1− α) E, where E is an
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entirely 1/N matrix, and α is a damping factor, usually set to 0.85. Thus, the PageRank
score rp(u) can be computed as:

rp ¼ r0G
c (9)

where r0 is the initial vector, which is set to 1/N if no initial vector is provided, and c is the
number of iterations needed to reach convergence. To apply PageRank in the union
strategy, genes in Sup are treated as nodes in the network for the up-regulated case, and
Sdown for down-regulated case. Genes that participate many games and frequently win
against strong opponents tend to have high PageRank scores.

Bi-directional PageRank method
The improved model of PageRank is developed for sport ranking (Zhou et al., 2022).
Bi-directional PageRank (BiPageRank) considers both win and loss whereas PageRank
computes only the winning score. This work shows the outperforming results of
BiPageRank when compared with PageRank using both synthetic data and application of
four sports: soccer, basketball, ice hockey, and baseball. The BiPageRank can be computed
as:

rs ¼ rp � rq (10)

where rp is the PageRank score, and rq is the backward propagation of PageRank score,

which can be calculated as rq uð Þ ¼ P
v2Qu

rq vð Þ
jvjin , where Qu is the in-neighbor of node u, and

|v|in is the in-degree of node v. PageRank rp assigns a higher score to players who frequently
win against strong teams. In contrast, rq assigns a higher value to players who lose to low-
rated teams. Thus, the BiPageRank score improves upon PageRank by considering both
the wins and losses of the players.

Validation technique
Leave-one-out cross-validation (LOOCV) is applied to obtain the performance. For each
iteration, one dataset is considered as a testing set, whereas the remaining ones are the
training set. This process is performed on all datasets. To evaluate the performance, area
under the ROC curve (AUC) and under the precision-recall curve (AUPR) are used as the
measurement tools. The positive set is defined as genes with logFC > 1 and adj.p.val < 0.05
in the up-regulated case, and genes with logFC < −1 and adj.p.val < 0.05 in the down-
regulated cases. Note that, in LOOCV, the normalized AUPR (AUPRN) is applied instead
of AUPR because of the imbalance datasets. The AUPRN is computed from raw AUPR
divided by baseline positive proportion (number of positive/total number of samples).

Gene expression data
We applied two datasets, Hypertrophic cardiomyopathy (HCM) and Microarray Quality
Control (MAQC), to validate the performance of our integration strategies.

Janyasupab et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1686 14/32

http://dx.doi.org/10.7717/peerj-cs.1686
https://peerj.com/computer-science/


Gene expression data of hypertrophic cardiomyopathy
Different experimental types, sample origins, and platforms used to collect data on HCM
provide varying information. To ensure the reliability of results and confirm the
importance of genes to the disease, it is crucial to include a larger number of samples in the
model. In this study, we gathered nine datasets of HCM gene expression data collected
from the Gene Expression Omnibus (GEO) database. The data comprise four microarray
datasets: GSE36961, GSE32453, GSE68316 (Yang et al., 2015), and GSE1145 and five
RNA-Seq datasets; GSE89714, GSE130036 (Liu et al., 2019), GSE160997 (Maron et al.,
2021), GSE180313 (Ranjbarvaziri et al., 2021), and GSE141910. In total, there are 464
samples, consisting of 213 cases and 251 controls. The characteristics of the HCM gene
expression data are provided in Table S1.

Microarray quality control project
The United States Food and Drug Administration (FDA) provides data of Microarray
Quality Control (MAQC) and Sequencing Quality Control (SEQC). MAQC was first
developed to evaluate agreement across microarray data and is provided in GSE5350 (Li
et al., 2014; MAQC Consortium, 2006; Su et al., 2014; Wen et al., 2010). With the
emergence of next-generation sequencing technologies, SEQC was introduced to access
RNA-Seq performance, and it is available in in GSE56457 (MAQC Consortium, 2014),
GSE47774 (Su et al., 2014), and GSE48016 (Munro et al., 2014; Wang et al., 2014). From
the four types of samples provided by the United States Food and Drug Administration
(FDA), we have selected two types of RNA samples: A (Universal Human Reference RNA)
and B (Human Brain Reference RNA). We gathered nine datasets from GEO database to
obtain gene expression data from 1442 samples, with 721 samples for each type, as
provided in Table S2.

RESULTS
After introducing the online platform, the results of various ranking techniques for HCM
and MAQC are analyzed.

Online platform
The integration of multiple gene expression datasets with GeneCompete can be accessed
through https://genecompete.streamlit.app/. GeneCompete requires CSV input files of the
gene expression table, with the first column containing gene names. This data can be pre-
processed using any suitable tools for flexibility. The numerical column is also user-
defined, with logFC applied as default.

As depicted in Fig. 2A, users need to specify the regulation case and strategy they wish to
use. When selecting a union strategy, it’s important to properly adjust the logFC threshold,
as processing many genes can be computationally intensive. Before ranking, datasets are
filtered with logFC > thres for up-regulation and logFC < -thres for down-regulation. We
recommend keeping the number of candidate genes below 10,000 for user validation.
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Then, users can choose the ranking technique(s) they prefer, including Win-loss, Massey,
Colley, Keener, Elo, Markov, PageRank, or Bi-PageRank. The example demonstrates a
comparison of three methods: Win-loss, PageRank, and Keener. In Fig. 2B, the obtained
results of the rating scores and rankings can be downloaded.

Figure 2 GeneCompete: a web-based tool. (A) The starting page for setting up an input and options. (B) The result page of selected ranking scores.
Full-size DOI: 10.7717/peerj-cs.1686/fig-2

Table 1 The total number of genes in each dataset.

No. GEO accession no. Number of genes Number of genes with logFC > 0 Number of genes with logFC < 0

1 GSE36961 37,846 20,152 17,694

2 GSE32453 11,696 5,460 6,236

3 GSE68316 6,768 2,490 4,278

4 GSE1145 21,753 12,155 9,598

5 GSE89714 15,240 9,320 5,913

6 GSE130036 16,779 4,021 12,758

7 GSE160997 13,758 2,668 11,090

8 GSE180313 15,802 12,041 3,761

9 GSE141910 17,124 8,612 8,512

Total 45,695 36,715 32,461
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Differentially expressed genes from multiple datasets of HCM
Differential expression analysis conducted on datasets obtained from different platforms
can yield varying sets of important genes. Using more datasets can enhance the accuracy of
gene identification. In this study, we incorporated a larger number of datasets compared to
previous research (Janyasupab, Suratanee & Plaimas, 2022), resulting in an intersection of
3,194 genes, as opposed to the previous 3,259 genes. However, the presence of genes in all
datasets does not necessarily indicate their significance in the disease context. Table 1
provides the total number of genes in each dataset, with a union of all datasets resulting in
45,695 genes. Hence, the advancement of GeneCompete within this research lies in our
capacity to larger datasets, thereby furnishing a valuable tool for others to apply various
ranking techniques to their own datasets. Additionally, the incorporation of a union
strategy to handle multiple datasets enhances robustness and extents the list of potential
gene candidates. To streamline computational efficiency, we have categorized these genes
into two cases: up-regulated (with logFC > 0), yielding 36,715 candidate genes, and down-
regulated (with logFC < 0), resulting in 32,461 candidate genes for ranking purposes. To
show sensitivity of logFC threshold, the absolute of logFC is applied as a competing score
(|logFC| < thres, thres = 1, 2, 3, 4). In Fig. S2, AUC and AUPRN tends to be lower in a
higher logFC threshold except for classical method and average logFC which not consider
the number of datasets.

Prioritization techniques with up- and down-regulation genes
LOOCV involves leaving one dataset as the testing set while combining the others using
ranking methods. Higher performance indicates a stronger relationship with the DEGs of
the test set.

To compare the ranking performance with the original method, we consider two cases:
up-regulation and down-regulation. The original or classical method for identifying DEGs
based on applying specific criteria: a logFC > 1 and an adj.p.val. < 0.05 for up-regulation
genes, and a logFC < −1 and an adj.p.val. < 0.05 for down-regulation genes. Subsequently,
each gene’s count score is calculated by summing the total number of datasets meeting the
criteria of logFC > 1 and logFC < −1, for each up or down cases. The average logFC
(Avg_logFC) is then directly computed as the mean logFC across datasets. The ROC curve
becomes visible after a single iteration of leave-one-out cross-validation. The ROC curves
for union strategy in up-regulation and down-regulation can be found in Datas S2 and S3,
while the results for intersections are presented in Datas S4 and S5. Fig. 3 shows that the
original method exhibits the low predictive power for DEGs in both up-regulation and
down-regulation cases. The count score method improves upon the original approach,
suggesting that genes present in more datasets with a high absolute logFC are more likely to
predict DEGs. Consequently, ranking scores that consider the number of datasets can be
valuable for the prediction.

Notice that many cases demonstrate the union strategy yielding higher performance
than the intersection approach across many ranking methods. In the case of the win-loss
method, the union strategy, which considers the number of datasets a gene has joined,
demonstrates better performance than the intersection strategy, with the same number of
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datasets. Massey’s approach applied the winning score as input, showing similar
performance for both methods. Colley and Elo, utilizing a probability of win, can reduce
the effectiveness of the union ranking strategy due to genes that appear in a greater number
of datasets having a higher probability of score reduction, unlike the intersection strategy
that maintains a consistent score regardless of dataset count. A modification of the Keener
matrix did not improve rankings for this task and achieved a similar performance to the
win-loss method. The Markov method shows high sensitivity in union ranking, especially
in cases of up-regulation. This implies that minor data changes can lead to substantial
ranking differences; for instance, a lower-ranked player defeating the highest-ranked
player might result in a significant increase in the former’s ranking. Both PageRank and
BiPageRank exhibit similar behaviors, though BiPageRank displays slightly lower
performance. By the concept of PageRank, genes that wins other important genes tend to
have a higher score. Moreover, we observe that genes that are presented in a higher

Figure 3 Performance measurement. (A) and (B) represent the performance in terms of area under the ROC curve (AUC) and under the precision-
recall curve (AUPR) for up-regulated cases, respectively. (C) and (D) represent the performance in terms of area under the ROC curve (AUC) and
under the precision-recall curve (AUPR) for down-regulated cases, respectively. Full-size DOI: 10.7717/peerj-cs.1686/fig-3
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number of datasets play a higher number of matches and have a higher chance to receive a
PageRank score. Among PageRank, Win-loss, Keener, and BiPageRank, as illustrated in
Fig. 3, most instances demonstrate that PageRank and BiPageRank exhibit superior
performance in terms of both the AUC of the ROC curves and the AUPR of the precision-
recall curves. The common thread shared by PageRank, Win-loss, Keener's Algorithm, and
BiPageRank is their focus on ranking genes within their respective relationship networks.
While PageRank and BiPageRank underscore the significance of connections and links to
other nodes, Keener's Algorithm takes into account both local and global influences from
others. Conversely, Win-loss simplifies ranking by relying on binary outcomes in
competitive scenarios.

It is worth noting that in both the intersection and union strategies, genes can be
categorized based on their positive and negative logFC values. Comparisons between the
separated and non-separated versions can be found in Fig. S1. Interestingly, the outcomes
appear more favorable for the separated approach. However, it is important to highlight
that the separated approach yields only 23 candidate genes for up-regulation and 105 for
down-regulation.

Winner genes with the best top ranking

The PageRank method method stands out as the best approach for intersection strategy.
Tables S3 and S4 present the top 10 ranking genes for both up-regulated and down-
regulated cases. The logFC values of genes in many datasets are lower than 1 in up-
regulated case and greater than −1 in down-regulated case. This suggests the gene
expression differences in HCM are not reaching a two-fold changes compared to normal
patients.

Tables S5 and S6 display the top 10 ranking genes obtained by each method.
Interestingly, the top genes identified by the win-loss, Keener, PageRank, and BiPageRank
methods are quite similar. In Table 2, our method identifies the top-ranking genes using
PageRank, which is supported by existing literature evidence. HCM is closely associated

Table 2 Top 10 genes detected by PageRank.

No. Up-regulated genes Down-regulated genes

1 SLITRK4 FCN3

2 SFRP4 CORIN

3 CA3 HOPX

4 FRZB MYH6

5 MXRA5 SERPINA3

6 SMOC2 TUBA3E

7 THBS4 CD163

8 FNDC1 SMTNL2

9 FMOD CCL2

10 DIO2 RARRES1
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with dilated cardiomyopathy (DCM), a type of heart muscle disease that can lead to heart
failure and life-threatening arrhythmia (Tobita et al., 2018).

Among the top 10 up-regulated genes, SLITRK4 has been identified as a promising
biomarker for HCM gene tests (Zheng et al., 2021). It is commonly differentially expressed
in the datasets related to the study of HCM patients, such as GSE130036 and GSE36961
(Cui et al., 2022). SFRP4 is known to be involved in cardiac development and various
cardiovascular diseases (Zeng et al., 2019). It has been identified as a hub gene in the HCM
key module (Ma et al., 2021b) and as an up-regulated DEGs in HCM (Ren et al., 2016). In
addition, SFRP4 is associated with ischemic cardiomyopathy, a type of heart muscle
disease (Alimadadi et al., 2020), and has been verified as a hub gene associated with heart
failure (HF) (Zhou et al., 2020).

For CA3, an increase in its expression has been confirmed by immunohistochemistry as
a myocardial protein (Coats et al., 2018). Moreover, CA3 expression levels were
significantly higher in the plasma of heart failure patients than in control patients (Su et al.,
2021). FRZB has been identified as a hub gene in the HCM key module (Ma et al., 2021b)
and hub biomarkers for dilated cardiomyopathy (DCM) (Fang et al., 2022). In addition,
FRZB has been recognized as a potential immune-related key genes involved in ischemic
cardiomyopathy through random forest analysis and nomogram (Zheng et al., 2023).

MXRA5 has been identified as a key gene with prognostic value in left-sided HF (Zhou
et al., 2020). It is extracellular-associated proteins included in the top 500 genes in the HF
consensus signature (Ramirez Flores et al., 2021). SMOC2 has been defined as a real hub
gene of HCM due to its high intramodular connectivity values (Jiang et al., 2021). The
protein encoded by the differentially expressed methylated gene SMOC2 was found to be
upregulated in Chagas disease cardiomyopathy (Shi et al., 2022). THBS4 is implicated in
severe HCM and heart failure pathogenesis (Tsoutsman et al., 2013). It is also predicted to
play a role in the development of DCM (Zhao et al., 2018). THBS4 expression has been
associated with hypertrophic cardiac disease (Peisker et al., 2022). FNDC1 was among the
10 most up-regulated transcripts in patients undergoing repair of tetralogy of Fallot heart
tissue, compared with right ventricle donor tissue (Brayson et al., 2020). Both FNDC1 and
MXRA5 have been identified as novel extracellular matrix (ECM) biomarkers in calcified
valves, making them potential targets in the development and progression of aortic
stenosis (Bouchareb et al., 2021).

FMOD has been identified as upregulated DEGs in heart failure (Kolur et al., 2021). It is
a type of fibromodulin that is upregulated in clinical and experimental heart failure
(Andenæs et al., 2018). DIO2 is a direct transcriptional target of the FoxO1 protein, which
is involved in relative hypertrophic growth of neonatal cardiomyocytes in vitro and in vivo
(Ferdous et al., 2020). It has been reported that DIO2 is up-regulate in the hearts of DCM
mice (Wang et al., 2010).

For the top 10 of down-regulated genes, FCN3 is a key dysfunctional gene. It was
identified by studying the network of differentially expressed genes between HCM and
healthy controls (Cui et al., 2022). Additionally, FCN3 is associated with the development
of HF (Jiang, Zhang & Zhao, 2022). CORIN was identified as a downregulated mRNAs in
the myocardial tissues of patients with HCM (Cao & Yuan, 2022). It was reported to be a
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cardiac protease that activates natriuretic peptides, the expression of which has been
examined and studied in the activity of mouse and human failing hearts (Chen et al., 2010).
Regarding HOPX, the relationship between HOPX gene variations and HCM was
investigated. The results suggest that HOPX may cause pathogenesis or manifestation of
HCM (Güleç et al., 2014). A study showed that HOPX expression is reduced and
completely absent in severe heart failure (Trivedi et al., 2011). In addition, the HOPX gene
plays an adjusted role in HCM pathogenesis through SRF-dependent genes (Alkanli & Ay,
2019). It was reported that the expression of MYH6 is dominant in human cardiac atria
and plays roles in cardiac muscle contraction, including the composition of the cardiac
muscle thick filament (Razmara & Garshasbi, 2018). Moreover, MYH6 mutations were
evaluated in HCM phenotypes (Hsieh et al., 2022). The study showed that mutations in the
MYH6 gene result in the abnormal development of cardiac muscle cells, which can lead to
HCM.

SERPINA3 is significantly perturbed in heart failure proteins shared between two
studies (Chen et al., 2022). It was reported to be downregulated in HCM compared to
healthy controls (Chen et al., 2018). It is a common down-regulated DEGs in GSE130036
and GSE36961 (Cui et al., 2022). TUBA3E was identified as an HCM hub gene in the
negative module (Jiang et al., 2021). It is also a common down-regulated DEGs in
GSE130036 and GSE36961 (Cui et al., 2022). TUBA3E is included in a list of down-
regulated genes expressed in patients with both HCM and DCM (Chaffin et al., 2022).

A study suggested that the potential function of CD163 macrophages is in supporting
the homeostasis of cardiac tissue (Zhang et al., 2021). CD163 plays a key role in the
pathogenesis of HCM (Zhao et al., 2016). It is a common down-regulated DEGs in
GSE130036 and GSE36961 (Cui et al., 2022). A study reported that SMTNL2 is a down-
regulated HF gene (Kolur et al., 2021). Regarding CCL2, it was reported that the CCL2-
CCR2 signaling pathways are associated with the development and progression of
cardiovascular disease (Zhang et al., 2022). RARRES1 expression was observed to be absent
in the HCM samples in many of the fibroblast populations (Larson et al., 2020). It is one of
the top three DCM down-regulated genes (Ma et al., 2021a).

To confirm the biological relevance of each ranking, we performed a gene set
enrichment analysis. The results of up-regulation and down-regulation are shown in
Tables S7 and S8, respectively. For up-regulation, genes in each method are involved in
similar pathways, such as the extracellular region (GO:0005576), extracellular region part
(GO:0044421), extracellular matrix (GO:0031012), extracellular space (GO:0005615),
proteinaceous extracellular matrix (GO:0005578) and neurogenesis (GO:0022008). For
down-regulation, genes were enriched in immune response (GO:0006955), extracellular
region (GO:0005576), and defense response (GO:0006952).

Differentially expressed genes from MAQC datasets
We also investigated the performance of GeneCompete by applying data from Microarray
Quality Control (MAQC). In Fig. S3, we present the performance results of each method
based on both intersection and union approaches. Notably, the classical method
demonstrates the weakest performance among all methods evaluated. When comparing
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the AUC values, the union algorithm consistently yields lower scores compared to the
intersection method across all ranking methods. However, the AUPRN values are notably
higher when utilizing the Win-loss, Massey, Keener, PageRank, and BiPageRank methods.
One limitation to consider is that the intersection algorithm considers only 415 genes as
players, whereas the union approach includes 22,988 genes in the up-regulation case and
17,971 in the down-regulation case. Consequently, we opt for the union strategy due to its
ability to maintain similar performance even when dealing with genes that exhibit
significant differences. In the union strategy, PageRank emerges as the method with the
highest average performance, as depicted in Table S9.

First, the pre-processing steps are performed in ‘limma’ package. In this part, we applied
the absolute value of logFC as the input for the competing score. Genes with a higher
absolute value of logFC can be either expressed more highly in sample A or B. The results
are compared by using all provided methods with several logFC thresholds (thres). The
performances are validated using TaqMan quantitative PCR technology (MAQC
Consortium, 2014). These 1,044 gene symbols were obtained using ‘seqc’ library in R.

Figure 4 Area under the ROC curve of different methods.
Full-size DOI: 10.7717/peerj-cs.1686/fig-4

Figure 5 Area under the precision-recall curve of different methods.
Full-size DOI: 10.7717/peerj-cs.1686/fig-5
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The original method filters genes by the condition of |logFC| < thres and adj.p.val < 0.05.
The ranking methods also filter with five thresholds (thres = 1, 2, 3, 4, 5) before calculating
scores. The results in Figs. 4 and 5 show that similar AUC values are obtained from all
methods, while the original method yields the worst AUPR. This indicates that the ranking
can improve the performance in predicting SEQC. Among the methods, PageRank shows
the highest performance, especially in AUPR. It is followed by Win-loss, Keener, and
BiPageRank, which have similar ranking performance.

Furthermore, ‘GeneCompete’ also requires a logFC threshold when the union strategy is
selected. We presented here the different threshold selection with the corresponding
performance of all ranking methods as shown in Figs. 4 and 5. Most AUPR decreases when
the threshold is lower, whereas the AUC for each method is not dependent on the
threshold. Table 3 shows that the top-ranking hits found by PageRank at each threshold
produce similar genes. For example, GFAB, ALB, GPM6A, and HBE1 occur in the top 10
ranking of all five thresholds. In addition, many genes in the top 10 ranking are also found
in the TaqMan list, indicating the high predictive performance of PageRank. Genes verified
by TaqMan were underlined in Table 3.

The computational cost of each ranking technique
Our online platform, GeneCompete, is designed for gene expression data ranking analysis
and integration. It encompasses various ranking algorithms, each with distinct
computational characteristics in terms of differences in time and cost of calculation. In our
approach, the technique is notably based on the number of genes that overlap or combine
for competitive analysis. Our exploration, involving different gene counts and datasets,
reveals that most algorithms offer reasonable computational costs, ensuring swift results as
depicted in Fig. 6. However, an increase in the gene count corresponds to extended
computational time, particularly evident in the case of the Markov and Elo methods. The
computational cost of Elo and Markov exhibits exponential growth with higher gene
counts. Under such circumstances, Elo's method showcases the lowest performance due to
the iterative nature of both Markov and Elo, which involve repetitive calculations until

Table 3 The top-ranking hits for different thresholds.

No. Thres = 1 Thres = 2 Thres = 3 Thres = 4 Thres = 5

1 GFAP GFAP GFAP GFAP GFAP

2 ALB AHSG ALB ALB ALB

3 AHSG ALB HBE1 SPARCL1 SPARCL1

4 STMN2 HBE1 STMN2 STMN2 GPM6A

5 AFP STMN2 AHSG HBE1 HBE1

6 HBE1 AFP AFP GPM6A SYT4

7 APOA2 PMEL PMEL AFP STMN2

8 GPM6A APOA2 APOA2 SYT4 HBB

9 PMEL GPM6A SPARCL1 HBB SYNPR

10 HBZ SPARCL1 GPM6A APOA2 AFP
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stability is achieved. Notably, PageRank and BiPageRank demonstrate favorable outcomes
in both identifying crucial genes (winning genes) and maintaining reasonable
computational costs.

DISCUSSION
Nowadays, transcriptomics data have significantly increased due to technological
advancements. Analyzing heterogeneous data plays a vital role in merging information
from diverse sources and platforms. Larger volumes of data provide stronger evidence
regarding the correlation between genes and diseases, making it crucial to consider
integration techniques. This study specifically focuses on combining gene expression data
from various datasets and platforms. Numerous research studies have aimed to develop
techniques for obtaining log-fold change, which directly indicates the contrast in
expression between normal and diseased patients. Integration of various data from
different platforms provides more complete information to cope with a disease of interest
to better understand genes functions based on their expressions. This underscores the
importance of developing distinct tools for analyzing differential expressions. However,
most of the algorithms have been designed for individual datasets. In our study, we
leverage ranking techniques to merge multiple expression datasets and prioritize the most
relevant genes for diseases.

For this task, ranking methods are employed as a novel concept for obtaining ranking
scores. In this concept, genes are treated as players, and their log-fold change values serve
as scores. The number of datasets utilized represents the number of matches. In this model,
p-values are not incorporated, and high-ranking genes tend to have lower p-values,
indicating the significance of differential gene expression. The results demonstrate that the
union strategy outperforms the intersection strategy. This is because the set of genes that
appear in all datasets alone cannot determine significance. Consequently, by considering

Figure 6 Computational cost. A dashed and solid lines represent intersection and union strategies,
respectively. Full-size DOI: 10.7717/peerj-cs.1686/fig-6

Janyasupab et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1686 24/32

http://dx.doi.org/10.7717/peerj-cs.1686/fig-6
http://dx.doi.org/10.7717/peerj-cs.1686
https://peerj.com/computer-science/


the union of genes across all datasets, the gene pool expands, resulting in improved utility.
However, using a large number of genes is not suitable for certain models, particularly
linear equations. Hence, the union strategy initially segregates positive and negative log-
fold change values to facilitate their utilization in the up-regulated and down-regulated
models, respectively. This work faces a limitation concerning the selection of the logFC
threshold. When opting for a low threshold, it can lead to an overwhelming number of
genes, making it difficult to discern the most relevant ones from noise. Conversely, a very
high threshold results in a limited gene selection, potentially overlooking important
candidates with slightly lower logFC values. Striking the right balance between sensitivity
and specificity in threshold selection is crucial for obtaining meaningful results.

Among all ranking methods employed, PageRank demonstrates the most predictive
performance in terms of both AUC and AUPR. The PageRank algorithm leverages both
the strength of the player (gene) and the strength of the opponent (high logFC genes) to
determine the ranking scores. In the case of the union strategy, PageRank is also influenced
by the number of datasets in which a gene participates. To provide further clarity, a gene
receives a higher PageRank score if its logFC is greater than that of genes with high logFC
and if it is involved in a larger number of datasets in the case of up-regulation. Conversely,
for down-regulation, the opposite applies. This approach aims to identify genes that
consistently exhibit significant differential expression across multiple datasets. In the result
section, we also present the win-loss method, which closely aligns with the performance of
PageRank. The similarity in the top-ranking genes between these two methods suggests
that the win-loss method can be a viable alternative for ranking genes in this context.

In this study, we introduce GeneCompete, an online platform for conducting ranking
analysis and integrating gene expression data. The input for this platform consists of a list
of data frames representing the logFC table. Prior to analysis, pre-processing steps can be
performed using various tools such as ‘limma’ (Smyth et al., 2005), ‘DESeq2’ (Love, Huber
& Anders, 2014), and ‘edgeR’ (Robinson, McCarthy & Smyth, 2010). It is worth noting that
certain datasets may exhibit high absolute logFC values, which can result in a large number
of candidate genes during the selection of positive and negative cases. As shown in Fig. 6, a
higher number of genes leads to higher computational time, especially for Markov and
Elo’s methods. To address this, larger filtering thresholds can be implemented to reduce
the number of genes.

This approach is not restricted to the specific disease studied in this research; it can be
extended to various other diseases as well. Our method is versatile, employing the
calculation of each ranking algorithm without the need for disease-specific information or
computations. To apply this methodology, one simply adapts the input data to suit the
relevant disease and particulars. The algorithm then autonomously computes ranking
scores, organizes genes based on these scores, and offers outcomes for subsequent analysis
and experimentation. Users can easily leverage the method, opting for the most suitable
technique and identifying top genes of interest by utilizing scores generated by
GeneCompete’s diverse algorithms. Varied pre-processing techniques can be employed for
data from different platforms, and managing a substantial gene count is achievable
through the application of appropriate filtering thresholds. Notably, the PageRank
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technique, in conjunction with the union strategy, is highly recommended due to its
computational efficiency and impressive ranking performance.

CONCLUSIONS
This study introduces a novel online tool, called ‘GeneCompete’, that combines a union
strategy with various ranking approaches to integrate multiple gene expression datasets.
The effectiveness of these algorithms is demonstrated through their application to HCM
and MAQC gene expression data obtained from microarray and RNA-Seq technologies.
Not only can genes with their log-fold change scores from expression analyses be used in
this tool, but other types of data containing lists of genes with their scores can also be input.
GeneCompete will automatically summarize the ranking scores and prioritize the genes
based on their competition scores, as well as identify the overall winner for the
competitions.

The union strategy is proposed as it considers a larger pool of candidate genes compared
to previous integration pipelines. The ranking scores exhibit strong performance,
particularly with the PageRank method, in both up-regulation and down-regulation cases.
Notably, the top-ranking genes tend to have high absolute log-fold change values in
individual datasets, indicating their potential biological significance.

The promising results obtained from this work suggest that in the future, it will be
possible to develop more accurate prioritization techniques for identifying important
genes. These techniques could significantly contribute to advancements in gene expression
analysis and facilitate the identification of key genes associated with various biological
processes and diseases.
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