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ABSTRACT
Dependence on the internet and computer programs demonstrates the significance
of computer programs in our day-to-day lives. Such demands motivate malware
developers to create more malware, both in terms of quantity and variety. Researchers
are constantly faced with hurdles while attempting to protect themselves from potential
hazards and risks due to malware authors’ usage of code obfuscation techniques.
Metamorphic and polymorphic variations are easily able to elude the widely utilized
signature-based detection procedures. Researchers are more interested in deep learning
approaches than machine learning techniques to analyze the behavior of such a
vast number of virus variants. Researchers have been drawn to the categorization
of malware within itself in addition to the classification of malware against benign
programs to examine the behavioral differences between them. In order to investigate
the relationship between the application programming interface (API) calls throughout
API sequences and classify them, this work uses the one-dimensional convolutional
neural network (1D-CNN) model to solve a multiclass classification problem. On API
sequences, feature vectors for distinctive APIs are created using the Word2Vec word
embedding approach and the skip-gram model. The one-vs.-rest approach is used
to train 1D-CNN models to categorize malware, and all of them are then combined
with a suggested ModifiedSoftVoting algorithm to improve classification. On the open
benchmark dataset Mal-API-2019, the suggested ensembled 1D-CNN architecture
captures improved evaluation scores with an accuracy of 0.90, a weighted average
F1-score of 0.90, and an AUC score of more than 0.96 for all classes of malware.

Subjects Data Mining and Machine Learning, Security and Privacy, Neural Networks
Keywords Malware classification, Dynamic analysis, API sequence, 1D-CNN, Skip-gram,
Ensemble learning

INTRODUCTION
Information technology has a significant impact on our daily lives in the modern day.
People of all ages use e-commerce, e-banking, e-healthcare, and other online services
frequently to meet their everyday needs as the internet’s accessibility has increased.
Due to the sheer number of people who are exposed to the internet, malicious coders
are motivated to explore all avenues for emotionally and financially exploiting victims.
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Malware (a malicious application) is the main tool used in cyberattacks to carry out hostile
actions on the computers of targeted or harmed users (Aslan & Samet, 2020).

The number and variety of malicious programs continue to grow, posing an ongoing
challenge to antimalware vendors and researchers. According to statistics from the
Kaspersky Security Bulletin Report 2021, there were 64,559,357 distinctmalicious programs
discovered between November 2020 and October 2021, consisting 20 different categories
such as Backdoor, Trojan, etc (Kaspersky, 2021). According to SonicWall’s cyber threat
analysis, there are now 5.5 billion known instances of malware, growing 2% annually
by 2022 (SonicWall, 2023). It would be accurate to claim that the number of malware
programs is increasing tremendously, but not the variety. Again, the resulting harms to
people and businesses are getting worse every day. Therefore, research aimed at classifying
malware can help in malware detection and mitigation.

The most popular method of malware detection is signature-based detection, which
involves searching for a certain signature in a previously built signature store in order
to label a program as malicious (Shijo & Salim, 2015). The majority of anti-malware
vendors employ this approach, which stores signatures of previously identified malware
for malware detection, albeit the signature store may be updated often. However, it
is possible for both newly obfuscated malware and previously identified malware to
go undetected (Ucci, Aniello & Baldoni, 2019). The other way for identifying malware by
looking at the execution time parameters and related behaviors is behavior-based detection.
The identification of both old and new unknown malware is better with behavior-based
method than with signature-based method, albeit there may be a time-space trade-off
between the two (Gibert, Mateu & Planes, 2020). In these situations, the researchers are
compelled to look for rational, practical, and cutting-edge methods in order to identify
unidentified malware. A behavioral study using several machine learning algorithms has
demonstrated the potential for improving malware identification and classification (Ucci,
Aniello & Baldoni, 2019; Tayyab et al., 2022). Compared to machine learning algorithms
deep learning models are becoming more and more popular, but the time and resource
requirements for model training continue to be a problem (Liu et al., 2017; Alom et al.,
2019). Deep learning also performs well in the domain of information security, in addition
to applications for image analysis and language processing (Tekerek, 2021).

To investigate the categorisation of each class of malware in this study, the application
program interface (API) sequences from various malware classes are used as the
characteristics. This work focuses onmethods for improvingmulticlass classification results
when working with unbalanced dataset. To combine the results of various one-dimensional
convolutional neural network (1D-CNN) classifiers trained using the one-vs-rest idea, a
1D-CNN based ensembled architecture is provided. Training and testing are done with the
help of the data collection Mal-API-2019 from Catak et al. (2020).

The remainder of the article’s contents are organized as follows: works by other
researchers that are connected to the study are discussed inRelatedWork. The preprocessing
of the dataset, followed by the algorithm, and other specifics of the suggested design are
explained in the Ensembled 1D-CNN Architecture section. Comparison of the results and
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performance-related graphs are shown in the Experimental Setup and Results section. The
conclusions are highlighted in the final section.

RELATED WORK
The discipline of malware analysis has benefited from the work of numerous researchers.
For this area of study, there is an enormous amount of literature. The suggested method
uses convolutional neural network (CNN) to classify malware into multiple classes. The
relevant literature is examined in relation to the classification of malware into several
families using CNN and other techniques.

Vinod et al. (2010) performed dynamic analysis on four types of metamorphic malware
and producedmalware signatures tracing their API sequences. In their experimental setting,
they employed the API sequences of a total of 80 viruses from four families and 20 benign
programs. They have calculated the degree of membership of a malware to a malware class
using the chi-square test. They achieved accuracy of 80%, 80%, 75%, and 75% for the
respective families G2, MPCGEN, IL SMG, and NGVCK using this method. Additionally,
they suggested that greater precision may be attained by increasing the number of samples.
The method of signature matching is vulnerable to newly discovered malware samples.

Control flow graphs and API call graphs were extracted by Mehra, Jain & Uppal (2015)
using 600 instances of malware and 150 benign samples. The desired features have
been extracted from API call graphs using their suggested Gourmand Feature Selection
technique. They performed classification using the WEKA tool and achieved accuracy of
89%, 92.24%, 94.56%, 99.10%, and 91.08%, respectively, using the KNN, VP, NB, J-48,
and SMO classifiers. They didn’t parse API sequences sequentially; instead, they exclusively
used portable executables.

Zhang et al. (2016) suggested a simple malware classification system using ensemble
learning, using data from the Microsoft malware classification challenge of kaggle. It
successfully assigned malware samples from the unbalanced training dataset to the
appropriate family. Kolosnjaji et al. (2016) considered system call sequences to classify
malware. They have extracted best features using convolutional and recurrent network
layers. They have achieved average precison of 85.6% and recall of 89.4% using this hybrid
neural network architecture.

Han et al. (2019) used the TF-IDF technique to examine the relationship between API
calls in API sequence on 807 benign and 3,027 malicious (both packed and unpacked
variation) samples. In order to identify and categorize malware, they applied the machine
learning techniques Random Forest, Decision Tree, KNN, and XGBoost on their developed
explainable malware detection framework (MalDAE). They used static, dynamic, and fused
API sequences. They were able to reach accuracy of 84.96%, 79.65%, 74.74%, and 83.15%
using dynamic API sequence, which is better than static API sequence. However, with
fused API sequence, the accuracy increased to 94.39%, 88.42%, 85.26%, and 93.33%,
respectively. Due to the difficulty in dealing with the large number of malware variations,
they claimed that deep learning approaches could increase productivity. Using system call
sequences frommalicious and benign Android applications, Xiao et al. (2019) showed high
recall of 96.6% and low FPR of 9.3%.
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A dataset of 7107 API sequences for eight different classes of malware was produced
and published by Catak et al. (2020). In order to do multiclass classification, they have
additionally trained single layer long short-term memory (LSTM), two layers LSTM, DT,
KNN, RF, and SVM on the dataset. In comparison to all other models, they achieved
Recall and Precision of 0.47 using single layer LSTM. Li & Zheng (2021) used this dataset to
classify malware utilizing API calls using LSTM and gated recurrent unit (GRU) models.
They have achieved recall of 0.58 and 0.59 for LSTM and GRU, respectively, with precision
of 0.56 for both approaches. Demirkiran et al. (2022) classified malware families using the
same benchmark dataset as Catak et al. (2020). They have contrasted the Transformer,
CANINE-S, and BERT models with their proposed model RTF. With an F1-score of
0.61 and an AUC score of 0.88, the RTF model outperformed all other models.

Vasan et al. (2020) performed image-based malware classification using an ensemble of
pretrained CNNmodels, VGG16 and ResNet-50, and the open dataset Malimg. Comparing
the ensembling approach to conventional ML-based models, it demonstrated excellent
accuracy. To solve the uneven size of the malware files of the employed datasets BIG2015
and DumpWare10, Tekerek (2021) created a method called CycleGAN and the B2IMG
method to convert binaries to images. Their experimental findings demonstrate greater
accuracy compared to other CNN-based algorithms. Catak et al. (2021) created images
from binaries using their dataset. The final dataset is applied to CNN for classification after
dataset enhancement with additive noise approaches and picture augmentation. According
to experimental findings, a dataset that includes noise factor has a classification accuracy
of 0.96 for malware classes, which is higher than the accuracy of 0.83 for a dataset that
does not include noise factor. By using recurrent neural network (RNN) and CNN, Sun
& Qian (2021) have performed static analysis of the visual malware images used in their
RMVC approach. Even with a small training dataset, they discovered accuracy greater than
92%. They mentioned testing their method’s efficacy in dynamic analysis as a potential
future direction. Using malware images made from malware binaries, Hammad et al.
(2022) performed malware classification. The Malimg dataset is used to train and evaluate
k-nearest neighbors (KNN), support vectormachine (SVM), and extreme learning classifier
(ELM)models. Features are retrieved usingGoogleNet (a deep learningmodel) andTamuar
(a texture feature that correlates to human visual perception). They discovered that ELM
performed better than any other model. They have recommended that data augmentation
be used, which could enhance classification outcomes.

All prior authors have worked on LSTM applying text vectorisation approaches such
as TF-IDF, BERT, and CANINE with the open dataset Mal-API-2019. Again, from
the literature, it is found that CNN-based models perform better for sequential data
classification. Kavak et al. (2021) also emphasized the use of current social theories to build
new theoretical constructs for designing behavioral models that can deal with cybersecurity
challenges.

This study examines the semantic connections between APIs in API sequences using the
Word2Vec embedding method and the Skip-gram model. The 1D-CNN classifiers trained
on the dataset using the one-vs-rest classification method are combined in the proposed
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Figure 1 Proposed ensembled 1D-CNN architecture.
Full-size DOI: 10.7717/peerjcs.1677/fig-1

ensembled 1D-CNN architecture. The output from each classifier is integrated with the
suggested ModifiedSoftVoting method, which looks at efficiency improvement.

METHODOLOGY
Proposed ensembled 1D-CNN architecture
In this study, the suggested architecture presented in Fig. 1 ensembles eight separately
trained 1D-CNN models to address the multiclass malware classification problem. The
mentioned architecture comprises three phases and utilises the Mal-API-2019 dataset
for training and testing. In the first phase, the dataset is vectorised using the Word2Vec
Skip-gram model, and weight vectors are assigned to various APIs after investigating the
semantic relationships between the APIs in the API sequences. In the second phase, eight
1D-CNN models are trained as One-vs-rest classifiers to learn one class against all others.
The final phase uses the fundamental concept of combining classification abilities to classify
individual types against all others. To combine all of those models and solve this multiclass
classification problem, aModifiedSoftVoting algorithm is suggested.
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Figure 2 Malware distribution class wise.
Full-size DOI: 10.7717/peerjcs.1677/fig-2
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Figure 3 Sample distribution before preprocessing.
Full-size DOI: 10.7717/peerjcs.1677/fig-3

Phase-I: vectorizing Mal-API-2019
Dataset Description: The Mal-API-2019 dataset consists of API sequence records of 7107
malwares of eight different classes. Figure 2 speaks about the frequency distribution of each
class and Fig. 3 shows the frequency of malware samples considering the API sequence
length before preprocessing.

Figures 2 and 3 shows thatMal-API-2019 is highly imbalanced. Such diverse distribution
has adverse effect on the success of classification. The said dataset is interpreted as having
two atrributes named APIseq and Mclass. The former represents the sequence of APIs called
by the malware and the latter represents the class of that malware. Each entry in APIseq is
interpreted as a sentence of type Mclass made up of finite number of words i.e., APIs with
repetitions from the APIVocabulary = {API0,API1,API2,....,APIn}. The Mclass ranges from
0 to 7 representing eight different type of senetences maping to 8 malware classes. For
the representation of textual documents in a multidimensional vector space, the vector
space model is particularly popular. In one of the previous work TF-IDF vectorization
technique has been used on DLL sequences for host based anomaly detection (Panda &
Tripathy, 2020). In a comparable manner, word embedding vector of each distinct API of
APIVocabulary is created using Skip-gram model of Word2Vec embedding technique. The
redundant API occurrences are eliminated in order to address the dataset’s variability with
regard to the length of each entry. The distribution of records in the processed dataset
against record length following duplicate removal is shown in Fig. 4.

Panda et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1677 6/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1677/fig-2
https://doi.org/10.7717/peerjcs.1677/fig-3
http://dx.doi.org/10.7717/peerj-cs.1677


0 500 1000 1500 2000 2500

No. of Malware sample in the range

<25

>=25 & <50

>=50 & <75

>=75 & <100

>=100 & <125

>=125 & <150

>=150

L
e
n
g
th

o
f
A
P
I
S
e
q
u
e
n
c
e
in
P
ro
c
e
s
s
e
d
D
a
ta
s
e
t

1812

2855

1834

500

56

50

0

Figure 4 Sample distribution after preprocessing.
Full-size DOI: 10.7717/peerjcs.1677/fig-4

Finding Word Embeddings for each API: The word embeddings are discovered using
Skip-gram by taking into account all the records of APIseq for each unique API. Skip-gram
does well with small datasets and depicts less common words better than more frequent
ones (Mikolov et al., 2013). With the aim of capturing the embeddings (feature vectors) of
each unique API that qualify the meaning of the API they represent, a skip-gram neural
network model, as shown in Fig. 5, is utilized. Such feature vectors can be quite useful in
describing theMclass type. For each target API, the skip-gram technique takes into account
all windows of size ` in order to extract the semantics of the APIs into embeddings. The
embedding matrixW1 shown in Fig. 5, which is given to the 1D-CNN models for training
purposes in Phase-II of the proposed architecture, serves as the word embeddings for
all different APIs. The weight matrix W2 can be employed to predict the likelihood of
various words given a context word. Since the main goal of this effort is to obtain the word
embeddings, W2 is not utilized.

Phase-II: training 1D-CNN models
Due to their effectiveness, deep learningmodels are becomingmore andmore popular. The
convolution layer, pooling layer, and fully connected artificial neural network layer (Dense
Layer) are the three basic layers that make up the one-dimensional convolutional neural
network (1D-CNN), a deep learning model. These models use convolution and pooling
operations to learn features from sequential input, such as texts, and then conduct binary
or multiclass classification in the dense layer. It performs the convolution operation with
various kernels on the spatial input texts in the convolution layer to produce corresponding
one-dimensional feature maps.

x lj = f
( M∑

i=1

x l−1i ∗k
l
ij+b

l
j

)
(1)

The operation of the one-dimensional convolution layer is as described in Eq. (1), where
k and j represents convolution kernels and number of kernels respectively. M denotes
channel number in input x l−1 with b as the bias to the corresponding kernel. The ∗ is
the convolution operator and f () is the activation function. The pooling layer uses the
avarage pooling or max pooling method with a predetermined window to reduce the
feature dimension produced by the convolution operation. Output of the final pooling
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Figure 5 Word2Vec skip grammodel.
Full-size DOI: 10.7717/peerjcs.1677/fig-5

layer l+1 is given as input to the dense layer and the output of the dense layer is evaluted
as described in Eq. (2), where w and b denotes weight and bias respectively.

h(x)= f
(
w l+1.x l+1+bl+1

)
(2)

The architecture and description of the 1D-CNN model utilised in this study for training
and testing are shown in Fig. 6. Following the procedures outlined in Algorithm-1,
each 1D-CNN classifier identified as modelc in Fig. 1 is trained using Mal_APIc an
intermediate dataset of the processed dataset. The statements 2-13 in Algorithm-1 generates
the set OvR_Mal_API_Datasets, which is a collection of intermediate datasets. Every
intermediate dataset present in OvR_Mal_API_Datasets labels the record containing the
‘‘class of interest’’ as 1 (positive) and the ’’rest all’’ as 0 (negative). The statements 14-20
trains 1D-CNN classifiers corresponding to each of the intermediate dataset present in
OvR_Mal_API_Datasets and returns 1D_CNN_Classifier_List , a list of classifiers. The
third phase of the architecture combines the capabilities of all of these trained models.
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Figure 6 Summary of the 1D-CNNmodel.
Full-size DOI: 10.7717/peerjcs.1677/fig-6

Phase-III: ensemble with SoftVoting
Using the ModifiedSoftVoting method outlined in Algorithm-2, the classification abilities
of independently trained classifiers in the 1D_CNN_Classifier_List are ensembled. In
this phase a Test Set is created from the processed dataset using stratified sampling as
shown in statement 2 of the algorithm. Based on the outcomes of all the trained classifiers
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for each record in the Test Set, this algorithm determines the best predicted class. In the
1D_CNN_Classifier_List , each classifier (modelc) predicts two probability scores of each
record in the Xtest as ‘not in class of interest’ and ‘in class of interest’ respectively as per
statements 3-7 of the algorithm. ClassificationScore( cscore) is a two dimensional array with
a size of (mX2) wherem represents count of records inXtest . The ith row of cscore represents
probability score for the ith record of Xtest as ‘not in class of interest’ and ‘in class of interest’
at index 0 and 1 respectively. ClassProbability( cproba) is a two dimensional array of size
(mX8) where m represents count of records in Xtest . The j th column of cproba will contain
m probability scores of m records of Xtest as ‘in class of interest’ using j th classifier modelj
in 1D_CNN_Classifier_List . The ith row of cproba represents probability scores of ith record
of Xtest as ‘in class of interest’ for all classifiers in 1D_CNN_Classifier_List respectively.

Algorithm 1 1D-CNN Classifiers
Require: W1, ProcessedDataset{ APIseq,Mclass }
Ensure: 1D_CNN_Classifiers_List
1: EmbeddingMatrix =W1

2: OvR_MalAPI_Datasets=φ
3: for each distinct class c ∈Mclass do
4: Mal_API c =φ
5: for each Record {APIseq,Mclass} ∈ ProcessedDataset {APIseq,Mclass} do
6: if (Mclass== c) then
7: Mal_API c =Mal_API c ∪{APIseq,1}
8: else
9: Mal_API c =Mal_API c ∪{APIseq,0}
10: end if
11: end for
12: OvR_MalAPI_Datasets=OvR_MalAPI_Datasets∪{Mal_API c}
13: end for
14: 1D_CNN_Classifiers_List =φ
15: for eachMal_API c ∈OvR_MalAPI_Datasets do
16: Xtrainc ,Xtestc ,Ytrainc ,Ytestc = train_test_split (Mal_API c [APIseq],

Mal_API c [Mclass],0.8)
17: modelc = Conv1D_Model(Xtrainc ,Ytrainc ,EmbeddingMatrix,validation_data
= (Xtestc ,Ytestc))

18: 1D_CNN_Classifiers_List = 1D_CNN_Classifiers_List ∪ {modelc}
19: end for
20: Return 1D_CNN_Classifiers_List
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Algorithm 2ModifiedSoftVoting
Require: 1D_CNN_Classifier_List as Clist , ProcessedDataset{ APIseq,Mclass }
Ensure: confusion_matrix as cm
1: Set cm[n][n] = 0 F n: Number of distinct class inMclass

2: Xtest ,Ytest = test_split (ProcessedDataset {APIseq,Mclass}) F Test Set of multiclass
records

3: for each c ∈Clist do
4: cindex =Clist .index(c) F cindex : Index of classifier c in Clist

5: cscore = c .predict (Xtest ) F cscore : Predicted ClassificationScore
6: cproba[: cindex ] = cscore[: 1] F Column 1 of cscore is assigned to column cindex of cproba
7: end for
8: for each r ∈ cproba do F Row wise traversal on cproba
9: rindex = cproba.index(r) F rindex is the row index of r in cproba
10: cplabel = indexof (max(r)) F cplabel :Predicted label as index of largest element in r
11: ctlabel =Ytest [rindex ] F ctlabel : Actual label at rindex in Ytest
12: cm[ctlabel ,cplabel] = cm[ctlabel,cplabel]+1
13: end for
14: Return cm

Statements 8-13 in Algorithm-2 constructs the confusion matrix(cm) by ensembling
all the predictions. The cm is a square matrix of dimention (nXn) where n is the count of
distinct classes in Mclass. It contributes to the estimation of several performance metrics as
mentioned in Eqs. (3), (4), (5) and (6). The fundamental parameters required to calculate
various performance metrics are TP , FN, FP, and TN. These parameters for a specific class
of interest is interpreted in the cm as a case of:
a) TP (True Positive): When malware of ‘‘class of interest’’ is predicted as ‘‘class of

interest’’
b) FN (False Negative): When malware of ‘‘class of interest’’ is predicted as some other

class.
c) FP (False Positive): When some other class of malware is predicted as malware of

‘‘class of interest’’
d) TN (True Negative): When malware of other class is predicted as malware of other

class.
Tables 1 and 2 represents two exemplary cases of confusion matrix and TP, FP, FN,

and TN parameters for specific ‘‘class of intertest’’ C3 and C2 respectively in the context of
multiclass problem.

Accuracy of the model is estimated as count of correct predictions divided by total
count of predictions. Equation (3) mathematically represents the calculation of accuracy.
Sometimes accuracy may mislead, hence the performance is ensured by calculating average
of precision, recall and F1 score respectively for all classes in multiclass classification
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Table 1 When class of interest is Class-3.

Table 2 When class of interest is Class-2.

problem.

Accuracy =
∑n

i=1cm[i,i]∑n
i=1
∑n

j=1cm[i,j]
(3)

Precisionc =
cm[c,c]∑n
i=1cm[i,c]

(4)

Recallc =
cm[c,c]∑n
i=1cm[c,i]

(5)

F1c =
2

1
Recallc

+
1

Precisionc

(6)

Precision for a specific class c (Precisionc) is estimated to see the impact of FP as higher
concern than FN , as explained in Eq. (4). It is estimated as the number of true positives
devided by the number of predicted positives. Recall for a specific class c (Recallc) is
estimated to see the impact of FN as higher concern than FP. It is estimated as the number
of true positives divided by total number of actual positives. F1-Score of a specific class c
(F1c) is the harmonic mean of Precisionc and Recallc. It is used to ensure high precision
against high recall. Weighted and macro average of precision, recall and F1-score are
used as perfomace metrics for multiclass problems. Unweighted mean of each of these
performance metrics are referred as macro average measure. Weighted mean of each of
these performance metrics are referred as weighted average measure using count of samples
of each class as the weight.
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Table 3 Classification report of 1D-CNNmodels.

OvR_Mal_API_Datasets 1D_CNN_Classifiers_List Precision Recall f1-score Accuracy

Rest(0) 0.99 0.99 0.99
MAL_API0 model0

Adware(1) 0.88 0.83 0.85
0.98

Rest(0) 0.91 0.95 0.93
MAL_API1 model1

Backdoor(1) 0.61 0.46 0.52
0.88

Rest(0) 0.95 0.97 0.96
MAL_API2 model2

Downloader(1) 0.78 0.66 0.72
0.93

Rest(0) 0.95 0.95 0.95
MAL_API3 model3

Dropper(1) 0.65 0.63 0.64
0.91

Rest(0) 0.93 0.95 0.94
MAL_API4 model4

Spyware(1) 0.52 0.43 0.47
0.89

Rest(0) 0.90 0.93 0.91
MAL_API5 model5

Trojan(1) 0.46 0.36 0.40
0.85

Rest(0) 0.95 0.96 0.95
MAL_API6 model6

Virus(1) 0.73 0.70 0.72
0.92

Rest(0) 0.93 0.94 0.93
MAL_API7 model7

Worm(1) 0.60 0.56 0.58
0.89

EXPERIMENTAL SETUP AND RESULTS
The experimental work for the described ‘‘Ensembled 1D-CNN architecture’’ is carried
out using ‘‘Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz ’’ HPC with 128 GB of RAM,
‘‘NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] ‘‘ GPU, Ubuntu-18.04 LTS, and
Python 3.8.

In Phase-I of the architecture, the word embedding matrixW1 [500 X 281] is constucted
for a total of 280 disinct APIs using Skip-gram model. The final word embeddings of each
distinct API in embedding matrixW1 is found using window size `= 10, vector size= 500
after considering several combinations of window size and vector size.

To address the imbalanced multiclass malware classification problem, a number of
1D-CNN models are trained and validated with the one vs. rest classification principle in
Phase-II of the architecture. Figure 6 depicts the best configuration of the 1D-CNNmodel,
which is decided by working around several way of consideration of convolution layers,
MaxPolling layers, and dense layers with various parameters such as filters, kernel size,
pool/window size, batch size, activation functions. Adam is found as the best optimizer
after working around multiple optimizers like Adam, Adaboost and Adadelta. The training
and validation of each modelc respective toMclass is done with 80:20 stratified split ratio of
their respective dataset MAL_API c from OvR_MalAPI_Datasets. OvR_MalAPI_Datasets
is a set of eight datasets corresponding to eight models constructed using Algorithm-1.
The performance metrics of each modelc respective to malware classes Adware, Backdoor,
Downloader, Dropper, Spyware, Trojan, Virus, and Worms are mentioned in Table 3.
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(A) AdwareVr val-loss (B) AdwareVr Precision-Recall (C) AdwareVr ROC-AUC

(D) BackdoorVr val-loss (E) BackdoorVr Precision-Recall (F) BackdoorVr ROC-AUC

(G) DownloaderVr val-loss (H) DownloaderVr Precision-Recall (I) DownloaderVr ROC-AUC

(J) DropperVr val-loss (K) DropperVr Precision-Recall (L) DropperVr ROC-AUC

(M) SpywareVr val-loss (N) SpywareVr Precision-Recall (O) SpywareVr ROC-AUC

Figure 7 (A–O) Performance plots of 1D-CNN classifiers (Adware, Backdoor, Downloader, Dropper,
and Spyware).

Full-size DOI: 10.7717/peerjcs.1677/fig-7

Figures 7 and 8 depicts the accuracy-loss plot during training and validation, ROC plot,
and Precision-Recall plot with AUC score of all the eight individual classifiers.

The classification capabilities of all these eight trained classifiers are ensembled using
the proposed ModifiedSoftVoting algorithm as described in Algorithm-2 and used in
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(A) TrojanVr val-loss (B) TrojanVr Precision-Recall (C) TrojanVr ROC-AUC

(D) VirusVr val-loss (E) VirusVr Precision-Recall (F) VirusVr ROC-AUC

(G) WormsVr val-loss (H) WormsVr Precision-Recall (I) WormsVr ROC-AUC

Figure 8 (A–I) Performance plots of 1D-CNN classifiers (Trojan, Virus, andWorms).
Full-size DOI: 10.7717/peerjcs.1677/fig-8

PHASE-III of the architecture. With a stratified split rate of 20%, the multiclass Test Set is
obtained from ProcessedDataset{ APIseq,Mclass} created in PHASE-I. ModifiedSoftVoting
algorithm gets the best predicted class for each record of the multiclass Test Set, considering
the predicted results of all the 8 trained classifiers.

The statistical significance of the Ensembled ModifiedSoftVoting model is ensured
by correlating its performance to a Base model. Figure 9(A) depicts a description of the
design of the base model, a 1D-CNN multiclass classifier model. The confusion matrix
and ROC-AUC plot of the base model are depicted in Figs. 9(B) and 9(C). In Table 4, the
classification report for the ensemble ModifiedSoftVoting model is contrasted with the
base model.

The performance of the base model and the ensembled ModifiedSoftVoting model is
statistically correlated using a stratified sample of 20% from the MAL-API-2019 dataset
in order to maintain the class distribution. The contigency table at Table 5 is constructed
using the predicted labels for both models in comparison to the actual labels in the test set
to conduct McNemar’s test. There is a significant difference in the proportion of errors,
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(B) Confusion Matrix

(C) ROC - AUC(A) Model Summary

Figure 9 (A–C) The base model and its performance.
Full-size DOI: 10.7717/peerjcs.1677/fig-9

Table 4 Comparison of clssification reports.

(A) EnsembledModifiedSoftVoting model (B) Base Model

Precision Recall f1-score Precision Recall f1-score

Adware 0.95 0.95 0.95 Adware 0.82 0.80 0.81
Backdoor 0.87 0.86 0.87 Backdoor 0.56 0.62 0.59
Downloader 0.99 0.92 0.95 Downloader 0.74 0.66 0.69
Dropper 0.97 0.89 0.93 Dropper 0.54 0.61 0.57
Spyware 0.77 0.87 0.82 Spyware 0.44 0.40 0.42
Trojan 0.85 0.89 0.87 Trojan 0.44 0.41 0.42
Virus 0.89 0.95 0.92 Virus 0.75 0.74 0.74
Worms 0.97 0.90 0.93 Worms 0.56 0.58 0.57

Accuracy 0.90 Accuracy 0.59
Macro avg 0.91 0.90 0.90 Macro avg 0.61 0.60 0.60
Weighted avg 0.90 0.90 0.90 Weighted avg 0.59 0.59 0.59
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Table 5 Contigency table for McNemar’s test.

Base model correct prediction Base model incorrect prediction

ModifiedSoftVoting model correct prediction 810 470
ModifiedSoftVoting model incorrect prediction 29 113

Adware Backdoor Downloader Dropper Spyware Trojan Virus Worms

Predicted

Adware

Backdoor

Downloader

Dropper

Spyware

Trojan

Virus

Worms

A
c
tu
a
l

72 0 0 0 3 1 0 0

0 173 1 0 13 6 7 0

3 1 184 3 4 3 3 0

0 3 0 158 11 4 1 1

0 10 0 1 146 6 4 0

0 3 1 1 7 177 7 4

1 2 0 0 2 4 190 1

0 7 0 0 4 7 2 180

0
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100
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Figure 10 Confusionmatrix of ensembledModifiedSoftVoting model.
Full-size DOI: 10.7717/peerjcs.1677/fig-10

considering α as 0.05. This ensures the statistical superiority of the ensembled model over
the base model.

Figure 10 depicts the confusion matrix of the classification statistics of the Test Set after
ensembling. Figure 11A shows the ROC with AUC Score and Fig. 11B shows the Precision-
Recall plot with AUC score of all the eight classes of malware present in Mal-API-2019
using the proposed ensembled ModifiedSoftVoting model.

The performance comparison between the suggested ensembled model using the
ModifiedSoftVoting approach and models put out by other authors in their works using
the same dataset, Mal-API-2019, is shown in Table 6. With their suggested RTF model,
Demirkiran et al. (2022) acquired themost recent best average F1 score of 0.61. They trained
a group of pre-trained transformer models known as the random transformer forest (RTF)
using bootstrap sampling on the initial training set. However, our suggested ensembled
model outperforms all other models with an average F1 score of 0.90 and does not use
bagging techniques.

Panda et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1677 17/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1677/fig-10
http://dx.doi.org/10.7717/peerj-cs.1677


(A) ROC-AUC (B) Precision-Recall

Figure 11 Performance plots of ensembledModifiedSoftVoting model.
Full-size DOI: 10.7717/peerjcs.1677/fig-11

Table 6 Comparison of result with works of other authors.

Accuracy Macro-avg precision Macro-avg recall Macro-avg F1-score

Single Layer LSTM (Catak et al., 2020) – 0.50 0.47 0.47
Two Layer LSTM (Catak et al., 2020) – 0.40 0.41 0.39
LSTM with Case2 (Li & Zheng, 2021) 0.55 0.56 0.58 0.57
GRU with Case2 (Li & Zheng, 2021) 0.55 0.56 0.59 0.57
RTF Model (Demirkiran et al., 2022) 0.60 – – 0.61
Proposed EnsembledModel 0.90 0.91 0.90 0.90

CONCLUSION AND FUTURE DIRECTIONS
API call sequences are becoming recognized as a key characteristic for categorizing
malware. To classify eight extremely unbalanced malware classes, the proposed ensembled
architecture of separately trained 1D-CNN models has demonstrated good results in
this work. The experimental set-up using the Mal-API-2019 benchmark dataset has
demonstrated significant improvement in classification accuracy, which is now 90%. The
macro averaged precision, recall, and F1 score for all classes are calculated to be 91%, 90%,
and 90%, respectively. The ROC plot in Fig. 11(A) displays AUC score values of 0.99, 0.97,
0.97, 0.98, 0.95, 0.96, 0.98, and 0.99, respectively, for themalware classes Adware, Backdoor,
Downloader, Dropper, Spyware, Trojan, Virus, and Worms. The Precision-Recall plot in
Fig. 11(B) displays AUC score values of 0.97, 0.92, 0.95, 0.96, 0.90, 0.91, 0.96, and 0.96 for
eachmalware class, as previously mentioned. These results are encouraging and support the
model’s effectiveness suggested in this article. Compared to past studies’ findings, which
had a maximum macro average F1 score of 61%, this result clearly represents a significant
improvement. The impact of the data augmentation strategy on the classification outcomes
for such imbalanced classes is not investigated in this work. Another approach is to examine
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the effects of statistical feature engineering approaches on classification outcomes, such as
PCA and duplicate subsequence removal techniques.
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