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ABSTRACT
For the problem of insufficient small target detection ability of the existing network
model, a vehicle target detection method based on the improved YOLO V3 network
model is proposed in the article. The improvement of the algorithm model can
effectively improve the detection ability of small target vehicles in aerial photography.
The optimization and adjustment of the anchor box and the improvement of the
network residual module have improved the small target detection effect of the
algorithm. Furthermore, the introduction of the rectangular prediction frame with
orientation angles into the model of this article can improve the vehicle positioning
efficiency of the algorithm, greatly reduce the problem of wrong detection and missed
detection of vehicles in the model, and provide ideas for solving related problems.
Experiments show that the accuracy rate of the improved algorithm model is 89.3%.
Compared to the YOLO V3 algorithm, it is improved by 15.9%. The recall rate is
improved by 16%, and the F1 value is also improved by 15.9%, which greatly increased
the detection efficiency of aerial vehicles.

Subjects Autonomous Systems, Computer Vision, Natural Language and Speech, Robotics
Keywords YOLO V3, Vehicle detection, Model optimization, Aerial positioning

INTRODUCTION
Economic development and the rapid development of motor vehicle industry technology
have greatly improved people’s travel conditions, but the ensuing traffic congestion and
frequent accidents have also brought many adverse effects on people’s lives (Wang et
al., 2023). The rapid development of intelligent transportation systems and the relief
of traffic resource scheduling pressure have become important ways to solve the above
problems (Lee & Kim, 2019). Therefore, as the information acquisition channel of the
intelligent transportation system, how to quickly and efficiently acquire vehicle information,
and identify anddetect vehicle targets based on video images has received extensive attention
from researchers.

Combined with deep learning technology, the use of UAV video tracking and shooting
can effectively expand the target detection range and make up for the lack of fixed camera
capture capabilities. However, how to deal with the problem of large numbers of vehicles
and small sizes has become the difficulty of UAV vehicle detection technology. He et al.
(2020) proposed a target detection method using the Histogram of Oriented Gradient
(HOG) feature, which considers factors such as context shape and scale invariance, and
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achieves good performance results. Redmon & Farhadi (2017) adopted the method of
deep learning, and used the YOLO network to extract the features of the image. Through
improvements in normalization, anchor boxes, and the like, a Darknet backbone network
with better performance has been obtained, but the performance in object recognition
still needs to be improved. In 2017, Wojke, Bewley & Paulus (2017) fully considered the
problem of multi-target tracking and recognition, and proposed the DeepSORT model.
Through large-scale database learning and data association, the improved algorithm has
better target detection and tracking capabilities. However, since the algorithm requires a
large number of databases for training, the computational efficiency of the algorithm is
low. In 2019, Voigtlaender et al. (2019) proposed the MOTS model. By adding the identity
secondary identification module to the Mask-RCNN network, the ability to track, segment,
and identify targets is greatly improved. The accuracy of vehicle recognition is over 82.5
percent. However, the algorithm’s ability to adapt to UAV video needs to be strengthened.

Although some research progress has been made in the field of vehicle detection, there
are still some problems such as false detection, missed detection or repeated detection of
small size targets and occluded targets. In addition, in the application scenario of automatic
driving, the target detection algorithm should have both real-time and accuracy, and can
make timely and accurate response to any complex scene and any number of targets.
The existing algorithms are difficult to be guaranteed in real-time performance and are
difficult to be applied, while the first-stage algorithms such as YOLOv2 and YOLOv3
have outstanding performance in real-time performance after continuous improvement.
However, there are still some difficulties in deployment. Aiming at the problem of vehicle
target detection and tracking in UAV video images, this article proposes a multi-scale
enhanced vehicle detection method based on the YOLO V3 network vehicle retrieval
algorithm. Aiming at the problem of vehicle target detection and tracking in UAV video
images, in the article, a multi-scale enhanced vehicle detection method based on the vehicle
retrieval algorithm of the YOLO V3 network is presented. The features of the backbone
network are enhanced to improve the model’s ability to acquire and detect small target
vehicles. Aiming at the problem of multi-target tracking, this article proposes a method
based on location constraints. The method strengthens the correlation between the target
and the trajectory, reduces the number of target ID changes, and improves the target
tracking ability of the algorithm.

YOLO V3 NETWORK MODEL
YOLO V3 algorithm
In the aspect of target recognition, the traditional sliding window detection method has
weak generalization ability and low accuracy, and the detection speed is slow. The deep
learning method can effectively improve the efficiency of target detection. The RCNN
target detection method proposed in 2013 can improve the speed of target detection to a
certain extent through the combination of regional candidate frame and SVM classifier,
but the model of this method is complex and the detection accuracy is not high. The
improved Faster RCNN reduces the calculation of the model through a two-stage detection
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method, but it still can not meet the actual work requirements in the real-time detection.
In 2016, the YOLO model was proposed to take target detection as a regression problem,
which increased the test speed of target detection to 45 frames per second, and became
the main method to improve the efficiency of target detection. Considering the working
environment of target detection in this article, the work of this article is to improve the
YOLO model.

The YOLOV3model is the third version of the YOLO network development, and it is an
important algorithm for real-time detection of targets. Based on inheriting the advantages
of the previous two versions, the algorithm has made more effective improvements
in multi-target detection. The improvement in the prediction of the candidate frame
reduces the confidence loss of the original network model and improves the imbalance
problem of object category detection (Tang, Wang & Kwong, 2017). Through the increase
in the number of logical classifiers and clustering categories, the prediction effect of the
target category is improved, and the feature map fusion technology of multiple scales is
introduced, so that the model can be applied to target detection applications of different
sizes.

The YOLO V3 model divides the acquired image into several small grid units. Its model
predicts a series of candidate boxes for the location information of each grid cell and
calculates its confidence. Its calculation formula is as follows:

C j
i = Pij (Ob)∗ IoU truth

pred (1)

where C j
i is the confidence degree of the j-th candidate frame corresponding to the i-th

unit. Pij(Ob) is a function corresponding to the detection target. IOU truth
pred is the intersection

and union ratio of the prediction box and the real location box.

Improved YOLO V3 algorithm
The YOLO V3 algorithm can meet the image detection of multi-scale targets and can meet
the needs of most image detection. However, for UAV video images, the targets of video
vehicle detection are all small-sized, so it is necessary to improve the small-scale detection
based on the existing algorithm model.

To make the YOLO V3 algorithm more suitable for the detection of small-scale targets,
the network structure adapts to the three detection scales in the original model is optimized
and improved.

The feature map of scale three is fused with the second residual block of the network.
Meanwhile, the scale network suitable for large targets is deleted to improve the
computational efficiency of the model and the adaptability of UAV target detection (Bruch
et al., 2019). In order to make the YOLO V3 algorithm more suitable for small-scale target
detection, this article optimizes and improves the network structure adapted to the three
detection scales in the original model, fuses the feature map of scale three with the second
residual block of the network, and deletes the scale-one network suitable for large targets,
which is to improve the computational efficiency of the model and the adaptability of the
UAV target detection.
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Table 1 Allocation of anchor boxes at different scales.

d Ranges Anchor boxes

2
√
h×w ≤ 41.5 (10,18), (8,30), (15,35), (19,55), (25,54)

3 41.5≤
√
h×w ≤ 86.4 (24,82), (33,60), (45,88)

4
√
h×w ≥ 86.4 (57,130)

In the process of using the YOLO V3 network algorithm, it refers to the idea of the
anchor box, and improves the training efficiency of the network model by pre-setting the
size of the candidate box. The setting of the network candidate frame is mainly obtained
through K-means cluster analysis, which has a good predictive ability, but also greatly
reduces the convergence speed of the model.

In response to the above problems, this article uses AvgIoU as the objective function of
the model to optimize the clustering analysis method. Its expression is as follows:

AvgIoU =

∑k
i=1
∑nk

j=1 IoU
(
bi,cj

)
n

(2)

Where bi is the i-th real label frame of the target sample, cjrepresents the j-th cluster
center of the cluster analysis algorithm, nk is the sample size corresponding to the k-th
cluster center, k is the number of clusters, and n is all the number of samples, IoU is the
intersection ratio of the sample label box and the cluster center box.

In the optimized algorithm, the larger the number of clusters k is, the greater the
detection stability of the objective function is, and the relationship between the objective
function and the number of detection layers is considered comprehensively. Through the
experiment summary, the number of anchor boxes selected by the improved algorithm is
9. The specific sizes are mainly (10,18), (8,30), (15,35), (19,55), (25,54), (24,82), (33,60),
(45,88) and (57,130).

Considering that the sensitivity of different anchor boxes corresponding to different
feature maps is very different, it needs to be placed on a feature map of the appropriate
size. Thus, it needs to be allocated. According to the IoU between the anchor boxes and
the real frame, assuming that the height and width of the anchor boxes are h and w
respectively, there is a relationship between the size of the anchor boxes and the number of
down-sampling d, and the distribution results of the anchor boxes are shown in Table 1.

Network optimization
For the initial YOLO v3 algorithm model, there is also the problem of deep networks. The
main reason is that the size selection of the residual model is unreasonable, which can result
in the stacking of multiple residual modules as well as affect the model calculation (Naqvi et
al., 2022). Improving the residual module and using the combination of multiple receptive
field modules can better improve the above problems. The improved residual module
structure is shown in Fig. 1.
In Fig. 1, when two residual modules work on the input feature map at the same time,

the convolution kernels with different receptive fields have different extraction operations
on the feature map. The smaller receptive field residual module is responsible for detail
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Figure 1 Two-way residual module optimization.
Full-size DOI: 10.7717/peerjcs.1673/fig-1

feature extraction, and the larger receptive field residual module is mainly responsible for
the overall feature extraction of the target. After convolution fusion, the comprehensive
features of the detection target are obtained (Chen & Chen, 2020). At the same time, the
low-rank decomposition method is used to decompose the 5×5 convolution kernel into
two serial convolution kernels of 5×1 and 1×5, which can greatly reduce the calculation
amount of model analysis under the premise of ensuring the effect of feature extraction.

The influence of the number of residual modules is considered separately. For the four
scales of 104×104, 52×52, 26×26 and 13×13, the number of residual modules contained
in each scale is considered to be 1∼4. After target testing, the mAP results were 78.5%,
88.7%, 82.1, and 72.7%, respectively. It can be seen from the results that the mAP values
of the two residual models are the highest, which is better than the other three cases.
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Therefore, this article chooses to use two residual modules to complete the corresponding
image detection work.

Introduction of direction angle
In the classic YOLO V3 model, the angle of the detection target is not considered. In
addition, the labeling of the target is not clear and precise enough, especially when the
vehicle is very close, the overlapping of the rectangular frames will lead to errors in the
identification and tracking of the target. Introducing a rectangular frame with orientation
angles can effectively solve the above problems (Cho & Yoon, 2018).

In the article, by positioning the six-dimensional vector ( bx , by , bw , bh, θ , Pr ) of the
target position information, the angle of the target can be accurately reflected, where bx and
by are the position coordinates of the target center, bw and bh are the width and height of
the rectangular frame, θ is the direction angle of the target, and Pr is the position prediction
confidence. Its expression is as follows.

bx = σ (tx)+ cx
by = σ

(
ty
)
+ cy

bw = pwe tw

bh= phe tw

(3)

Where σ is the Sigmoid activation function of the model, pw and ph are the width and
height of the anchor box, respectively, and (cx , cy) are the coordinates of the upper left
corner of the anchor box.

After considering the direction angle, the loss function is also improved accordingly.
Therefore, the input–output loss function and the direction-angle loss function are
respectively introduced and expressed by cross-entropy. The final improved loss function
can be expressed as follows.

L
(
bx ,by ,bw ,bh,θr

)
= λcr

s2∑
i=1

M∑
j=1

W ob
ij

[
(xgj −xi)

2
+
(
ygi −yi

)2]
+λcr

s2∑
i=1

M∑
j=1

W ob
ij

[
(W g

ij −Wij)2+
(
hgij−hij

)2]

+λp

s2∑
i=1

M∑
j=1

W ob
ij

[
Cg
ij logCij+ (1−C

g
ij )log

(
1−Cij

)]
+λcl

s2∑
i=1

M∑
j=1

W ob
ij Cross Entropy

(
θ
g
i ,θi

)
(4)

In the formula, s2 is the number of grid units; M is the number of anchor boxes; λcr ,
λpr and λcl are the weight parameters of the corresponding losses. When the coordinates of
the center point in the i-th anchor box are ( xgi , y

g
i ) and it contains the true center point,

W ob
ij = 1; otherwise,W ob

ij = 0. θ gi is the angle between the center points, and θi is the angle
of the i-th point. For multiple objects appearing in the image, each object corresponds to
a bearing angle. i is the number of targets in the detected image.
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Where the expression formula of cross entropy is as follows.

Cross Entropy
(
θ
g
i ,θi

)
=−

∑
θ
g
i logθi. (5)

EXPERIMENTAL RESULTS AND DATA ANALYSIS
Parameter setting
The aerial photography data set VEDAI is selected as the data set for the algorithm
verification of this article. VEDAI is a dataset for vehicle detection in aerial imagery as a
tool to benchmark object detection algorithms in an unrestricted environment. In addition
to containing very small vehicles, the database also exhibits different variability, such as
multiple orientations, lighting/shadow variations, specular reflections or occlusions. The
dataset contains 1,210 aerial images of 1024×1024 with a spatial resolution of 12.5 cm.
There are also multiple car targets in this data set, which is suitable for the detection
and verification of small targets. The data set contains nine types of targets. They include
boats, cars, campers, planes, pick-up vehicles, tractors, trucks, vans and other categories.
70% of the image data in the data set are used for model training in the article, and the
remaining image data are used for testing the optimized model. The stochastic gradient
descent method is selected to optimize the model, and the learning rate of the algorithm is
set to 0.001, and the attenuation coefficient is 0.005.

The performance evaluation of the model is measured by the recall rate, precision and
F1-score, and their expressions are as follows.

precision=
TP

TP+FP
(6)

recall=
TP

TP+FN
(7)

F1=
2 ·precision · recall
precision+ recall

. (8)

In the formula, TP, FP, and FN are positive samples predicted as positive by the model,
negative samples predicted as positive by the model, and positive samples predicted as
negative by the model.

Data analysis
1. Comparison of optimization algorithms
The optimized algorithm is compared with the original YOLO algorithm, and the results
are shown in Table 2.

As can be seen from the results in Table 2, the algorithm in this article has a precision
rate of 84.3%, which is much higher than other YOLO algorithms; and the recall rate of
83.9% is also the best result among all algorithms; the F1-score of this algorithm reaches
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Table 2 Comparison of detection accuracy of different algorithms.

Model Precision Recall F1-score FPS

YOLO V3 73.4% 67.2% 70.2% 45
YOLO V3+RESNET34 66.2% 65.4% 67.3% 85
YOLO V2 (Couteaux et al., 2019) 67.5% 61.5% 64.4% 48
The improved YOLO V3 algorithm in the article 84.3% 83.9% 84.1% 36

Table 3 Comparison of training time and detection error rate of different algorithms.

Model Training
time
(minutes)

The anchor
boxes are
allocated
after optimization

YOLO V3 576 11.3
YOLO V3+RESNET34 564 13.2
YOLO V2 (Couteaux et al., 2019) 483 18.2
Improved YOLO V3 algorithm in this article 585 9.8

Table 4 Comparison of the effect of anchor boxes on detection accuracy.

Model Equal distribution
of anchor boxes

Allocation after
anchor boxes
optimization

YOLO V3 79.4% 74.2%
YOLO V3+RESNET34 78.5% 76.3%
YOLO V2 (Couteaux et al., 2019) 66.2% 65.5%
Optimization algorithm after adding anchor boxes
allocation

84.3% 82.8%

84.1%. Since the relatively complex structure of the model, the detection speed of this
algorithm is 36 f/s, which is inferior to other algorithms.

The training time and detection error rate of different algorithm models are compared,
and the results are shown in Table 3.

It can be seen from the results in Table 3 that for the abovemodels, theminimum training
time of YOLO V2 model is 483 min, while that of the algorithm model in this article is
585 min. The main reason is the optimization of the model network. The optimization
of the residual network structure leads to the extension of the training time. Considering
the application environment of target detection, the time is still acceptable. In terms of
detection error rate, due to the improvement of the detection algorithm, the detection
error rate of the algorithm in this article is 9.8%, which is better than other algorithms.

Considering the influence of anchor boxes allocation on the algorithm accuracy, the
comparison results are shown in Table 4.

It can be seen from the results in Table 4 that the allocation of anchor boxes can effectively
improve the detection accuracy of the algorithm for small target models, increasing it from
the original 79.4% to 84.3%.
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Figure 2 Convergence curve of network loss function.
Full-size DOI: 10.7717/peerjcs.1673/fig-2

Table 5 Comparison of detection accuracy of different indicators.

Model Precision Recall F1-score FPS

YOLO V3 73.4% 67.2% 70.2% 45
YOLO V3+RESNET34 76.5% 70.6% 71.3% 60
Algorithm after optimization of two-way residual network 88.3% 81.4% 84.7% 42

2. The optimization effect of the network model
Similarly, this article uses the previous VEDAI dataset, and the convergence curve of the
loss function of its network model is shown in Fig. 2.

From the results in Fig. 2, it can be seen that when the number of iterations reaches
25,000, the parameters of the model are stable. The convergence of the classic YOLO V3
model is similar, with a relatively higher loss function. The VEDAI data set is used to
conduct a comprehensive index test on the improved network, and the test results are
compared with other algorithms. The results are shown in Table 5.

As can be seen from the results in Table 5, the precision rate of the improved network
model is 88.3%, which is much higher than other YOLO algorithms; and the recall rate
reaches 81.4%, which is still the best result among all algorithms; the F1-score of this
algorithm reaches 84.7%. However, due to the complex structure of the residual module,
the algorithm is slightly lacking in reasoning speed, but it is not far behind the YOLO v3
model before improvement.

The comparison of the detection results of the improved YOLO V3 network model with
orientation angle detection is shown in Table 6.

From the results in Table 6, it can be seen that the detection accuracy of the algorithm
model can be effectively improved through the improved model with the direction angle.
The precision rate of the improved network model is 89.3%, which is much higher than
the YOLO V3 algorithm, and also better than the YOLO V3 algorithm without direction
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Table 6 Comparison of detection model indicators of different algorithms.

Model Precision Recall F1-score FPS

YOLO V3 73.4% 67.2% 70.2% 45
YOLO V3-tiny (Adarsh, Rathi & Kumar, 2020b) 64.8% 59.1% 61.9% 68
Algorithm after optimization of two-way residual network 88.3% 81.4% 84.7% 42
The final optimization algorithm with improved orientation
angle

89.3% 83.2% 86.1% 41

detection. In terms of recall rate, the recall rate of the improved algorithm model reached
83.2%, which is still the best result among all algorithms. The F1-score of its algorithm also
increased from 84.7% to 86.1%. The model designed in the article improves the detection
accuracy of the direction angle to the target, but due to the increased complexity of the set
model, the algorithm reasoning speed is reduced. However, the overall difference is not
big, and it can meet the target detection task of UAV aerial photography vehicles.

On the whole, the improved algorithm model in the article can effectively improve the
detection accuracy of the algorithm model without greatly sacrificing the detection rate,
and can also improve the effect of small target detection of the model, which proves the
effectiveness of the improved model.

CONCLUSION
The article improves the YOLOV3model tomake it more suitable for small target detection
with aerial vehicles. Through the improvement of the detection layer and the distribution
of the anchor box, the detection accuracy of themodel is improved. The optimization of the
network structure and the improvement of the feature extraction network have improved
the efficient detection ability of the algorithm model for small target vehicles in aerial
photography. Based on the improved network model, the improved model has a stronger
ability to identify small target vehicles through the introduction of a rectangular prediction
frame with direction angles. Through data calculation and experimental verification,
the improved model can effectively locate the position information of the aerial vehicle.
Meanwhile, its algorithm is sensitive enough to the direction, which can effectively improve
the wrong detection and missing detection problems of the original model. The accuracy
of the improved model detection is 89.3%, which is better than that of the YOLO V3
algorithm without direction detection, and is improved by 15.9% compared with the
YOLO V3 algorithm. In terms of recall rate, the improved algorithm improves the recall
rate by 16% and the F1 value by 15.9%, which is the best result of all algorithms.
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