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ABSTRACT
Network operations involve several decision-making tasks. Some of these tasks are
related to operators, such as extending the footprint or upgrading the network capacity.
Other decision tasks are related to network functions, such as traffic classifications,
scheduling, capacity, coverage trade-offs, and policy enforcement. These decisions are
often decentralized, and each network node makes its own decisions based on the
preconfigured rules or policies. To ensure effectiveness, it is essential that planning and
functional decisions are in harmony. However, human intervention-based decisions
are subject to high costs, delays, and mistakes. On the other hand, machine learning
has been used in different fields of life to automate decision processes intelligently.
Similarly, future intelligent networks are also expected to see an intense use of
machine learning and artificial intelligence techniques for functional and operational
automation. This article investigates the current state-of-the-art methods for packet
scheduling and related decisionprocesses. Furthermore, it proposes amachine learning-
based approach for packet scheduling for agile and cost-effective networks to address
various issues and challenges. The analysis of the experimental results shows that the
proposed deep learning-based approach can successfully address the challenges without
compromising the network performance. For example, it has been seen that with mean
absolute error from 6.38 to 8.41 using the proposed deep learning model, the packet
scheduling can maintain 99.95% throughput, 99.97% delay, and 99.94% jitter, which
are much better as compared to the statically configured traffic profiles.

Subjects Artificial Intelligence, Computer Networks and Communications, Emerging
Technologies, Scientific Computing and Simulation
Keywords TIPS, Machine learning, Data mining, Emerging technologies

INTRODUCTION
Different network resources such as bandwidth, power, and spectrum are never abundant,
regardless of the significant developments in the network technologies, to provide higher
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capacities and minimize delays (Huang et al., 2023;OECD, 2022; Shen & Chen, 2018; Sheng
et al., 2019). On the other hand, the traffic growth is immense due to rising trends in
digitization and network-enabled devices from the Internet of Vehicles (IoV), Tactile
Internet (TI), and Internet of Things (IoT) (Cisco, 2021). Moreover, the bandwidth
requirements from the standard services are also rising due to increased quality and
data and latency constraints. As a result, network operators are often challenged to
implement suitable oversubscription models (Ni, Huang & Wu, 2014) and differentiated
service bundling mechanisms that allow them to ensure Return on Investment (ROI).
For example, packet scheduling (Beams, Kannan & Angel, 2021) is a common approach
to controlling service quality in oversubscribed networks where the traffic of different
types needs to be handled according to their service package or the contracted service level
agreements (SLA).

Network deployments often follow a comprehensive planning process that considers
several demographic and statistical factors in addition to seasonal and regular network user
behaviors. The planning processes often utilize the type of services, the technologies, the
required volume of network resources, and the target SLA (Gavriluţ, Pruski & Berger, 2022).
Traditionally, for cellular networks, the erlang traffic intensities describe the expected load
that networks must withstand in different types of points of presence (POP) (Głkabowski,
Hanczewski & Stasiak, 2015). The loads correspond to business models, target ROI, and
other policies of the network operators.

Traditional packet scheduling techniques utilize several factors, including non-
differentiated approaches where traffic scheduling takes place without differences, such
as First-in-First-out (FIFO), Fair Queueing (FQ), Priority Queuing (PQ), and Round
Robin (RR) (Medhi and Ramasamy, 2018). Differentiated approaches, on the other hand,
include classifying traffic into distinct classes and assigning weights or priorities to the
classes. The latter approaches often employ non-differentiated approaches within a class
or priority group. Recently, it has been studied that significant Quality of Service (QoS)
and network utilization improvements can be made with packet scheduling approaches
that consider features, such as time and origin characteristics (TAOC) of traffic (Husen
et al., 2021; Rashid & Muhammad, 2019). The TAOC characterization is related to the
network planning processes, such as traffic forecasting and its breakdown to the level of
traffic origins, formally known as POPs. The TAOC characterization concentrates on novel
features, such as Origin Class Feature (OCF), Volume Feature (VF), Time Feature (TF),
Traffic Intensity Feature (TIF), and Network Resource Feature (NRF).

This article investigates deep learning (DL) based techniques for learning the TAOC-
based packet scheduling algorithms. Following are the contributions of this research,
1. The existing packet scheduling approaches are analyzed in the context of intelligent

methods.
2. A novel DL-based traffic profiling scheme is proposed to fulfill the swarm intelligence

requirement of traffic intensity-based packet scheduling.
3. The traffic intensity-based packet scheduling algorithm is ported to Network Simulator

3 (NS3) for experimental evaluations and analysis.
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4. An analysis of the DL-based profiling scheme and network performance objectives is
presented.
Contributions (1) and (2) are required for implementingTAOC-aware packet scheduling

to bridge the gap between the network planning processes and the functional network
decision-making, such as packet scheduling. The framework also considers network node
role awareness while making packet scheduling decisions.

The rest of the article is divided into the sections as follows: Materials & Methods,
Results, Discussion, and Conclusion. First, the Material and Methods section covers
the packet scheduling strategies, learning mechanism for TAOC, high-level framework for
TAOC-based packet scheduling, DL-basedmodel, and its integration with the TAOC-based
packet scheduling algorithm. Next, the Results section presents the experimental setup and
evaluation metrics for the DL model and network performance. The Discussion section
focuses on the significance of the results and future research directions. The concluding
remarks are provided in the Conclusions section.

MATERIALS & METHODS
Packet scheduling approaches
There are a large number of packet scheduling techniques that work based on traditional
factors, such as weight, priority, class, and arrival order. However, there are very few
techniques proposed that consider TAOC characteristics. A prominent scheme in this
regard has been proposed by Husen et al. (2021) and Rashid & Muhammad (2019) that
considers the TAOC characteristics and network node and layer role. However, the
study does not consider the effects of any machine learning-based real-time TAOC
characterization scheme.

The traditional packet scheduling schemes can be categorized into reactive and proactive
types. The reactive schemes monitor specific parameters, and on a change, the scheduling
decisions are updated, such as in relatively differentiated scheduling (Striegel & Manimaran,
2002), preemption-based scheduling (Miao et al., 2015), and queue length-based delay-
aware packet scheduler (Yu, Znati & Yang, 2015). In addition, the active time fair
queuing (Zhang et al., 2015), competitive rate-based scheduling (Deshmukh & Vaze, 2016),
dynamically weighted low complexity fair queuing (Patel & Dalal, 2016), time-frequency
resource conversion (Sungjoo et al., 2016), modified first come first serve (Xu et al., 2016)
and efficient and flexible software packet scheduling (Saeed et al., 2019) are also reactive
schemes proposed in the recent literature. On the other hand, the proactive schemes adjust
the decision parameters before the changes occur, such as in the multiple dimensions of
locality-based scheduling (Iqbal et al., 2016), multi-generation packet scheduling (Huang,
Izquierdo & Hao, 2017), D2-Pas (Zhang et al., 2019a; Zhang et al., 2019b), calendar queuing
(Sharma et al., 2020) and traffic intensity-based packet scheduling (TIPS) (Husen et al.,
2021; Rashid & Muhammad, 2019).

A summary of a comparison of existing techniques is given in Table 1. The comparison
focuses on the TAOC features, namely the Volume Feature (VF), OCF, Automated
Learning (AL), OC, Time Feature (TF), Traffic Intensity Feature (TIF), and Network
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Table 1 Comparison of existing packet scheduling techniques.

Ref Year Scheme Approach TAOC Features

VF OCF AL OC TF TIF NRF

Striegel &
Manimaran
(2002)

2002 Relatively
differentiated
scheduling

Delay, loss,
throughput

X – – – – – –

Miao et al.
(2015)

2015 Preemption-
based packet-
scheduling
scheme

Fairness
Based

– – – – – – –

Iqbal et al.
(2016)

2015 Multiple di-
mensions of
locality

Minimize the
out-of-order
packets

– X – – – – –

Yu, Znati &
Yang (2015)

2015 Queue
length-based
delay-aware
packet
scheduler

congestion-
and energy-
aware packet
scheduling
scheme

– – – – – – –

Han et al.
(2015)

2015 stochastic
packet
scheduling

– – – – – – –

Lee & Choi
(2015)

2015 Group-based
multi-level
packet
scheduling

Group-based
multilevel
packet
scheduling

– – – – – – –

Zhang et al.
(2015)

2015 Active time
fairness
queuing

Active time
fairness
queuing

– – – – – – –

Deshmukh &
Vaze (2016)

2016 Competitive
rate based

Packet arrival X – – – – – –

Patel & Dalal
(2016)

2016 Dynamically
weighted low
complexity
fair queuing

Weighted fair
queuing

– – – – – – –

Sungjoo et al.
(2016)

2016 Time-
frequency
resource
conversion

Available
bandwidth
constraints

– – – – – – –

Xu et al.
(2016)

2016 Modified first
come first
serve

Delay con-
straints

– – – – – – –

Pavithira &
Prabakaran
(2016)

2016 Binary search
algorithm

Binary search
tree

– – – – – – –

Huang,
Izquierdo &
Hao (2017)

2017 Multi-
generation
packet
scheduling

Redundant
packets

– – – – – – –

(continued on next page)
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Table 1 (continued)

Ref Year Scheme Approach TAOC Features

VF OCF AL OC TF TIF NRF

Zhang et al.
(2019a) and
Zhang et al.
(2019b)

2019 Distributed
dynamic
packet
scheduling

constructs
schedule lo-
cally at indi-
vidual nodes

– – – X – – –

Saeed et al.
(2019)

2019 Efficient
and flexi-
ble packet
scheduling

Packet rank-
ing, Find
First Set
(FFS), prior-
ity

– – – – – – –

Karimi et al.
(2019)

2019 Channel state
and user re-
quirements

Latency, con-
trol channel,
HARQ, and
radio channel
aware

– – – – – – –

Sharma et al.
(2020)

2020 Calendar
queue

Prioritization
dynamic es-
calation of
packet prior-
ities

– – – – X – –

Wei et al.
(2020)

2020 Shared
bottleneck-
based
congestion
control
scheme

Shared bot-
tlenecks
among sub-
flows and
estimated
the conges-
tion degree
of each sub-
flow.

– – – – – – –

Husen et al.
(2021)

2021 Traffic
intensity-
based packet
scheduling

Traffic in-
tensity varia-
tions

X X – X X X X

Yu et al.
(2021)

2021 Admission-In
First-Out

Maintain a
sliding win-
dow to track
the ranks

– – – – – – –

Resource Feature (NRF). Most existing studies try to address one or more issues related
to network performance and do not consider the requirements of automated learning for
future intelligent networks. The relatively differentiated scheme proposed by Striegel &
Manimaran (2002) uses the traffic volume to improve the throughput and minimize the
delay and packet loss. It does not consider the current state of network resources regarding
NRF, TIF, OC, and TF and lacks the essential AL capability.

Another approach based on the multiple dimensions of locality, proposed by Iqbal
et al. (2016) explicitly uses the OCF to minimize the out-of-order packets (OOP). The
minimization of OOP can reduce buffer overflows on the receiver side, providing an
advantage if the performance is maintained. However, it does not consider the effects of
VF, TF, TIF, and NRF and does not support the AL.
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Another scheme that considers the VF has been proposed by Deshmukh & Vaze (2016),
which measures the packet arrival rates and establishes their competitive ratios to schedule
the packets. In another effort, Zhang et al. (2019a) and Zhang et al. (2019b) studied a
distributed dynamic packet scheduling scheme that uses the OC to schedule the packets on
local nodes. Similarly, Sharma et al. (2020) used the TF for their calendar queuing-based
packet scheduler. It dynamically adjusts the escalation of the packet priorities using the TF.
Although the three schemes above partially consider the TAOC features, none consider the
AL and NRF.

The scheme proposed by Husen et al. (2021) uses most of the features of TAOC, namely
the VF, OCF, OC, TF, TIF, and NRF. The authors have presented extensive experiments
to show that the scheme effectively improves resource utilization and traffic performance,
especially in constrained networks. However, the scheme does not support AL and relies
on domain expertise and network dimensioning processes. This research will exploit the
scheme above and enable the AL to ensure network utilization and performance with agility
and cost-effectiveness.

Some other common techniques proposed by researchers do not support several features
of the TAOC. The details of the schemes have been compared and summarized in Table 1.

It can be observed from the above analysis that few techniques consider the TAOC
features, which are partial except for theTIPS scheme. TheTIPS techniquewas implemented
and evaluated with predefined TAOC features and did not learn from actual live streams
of the traffic. Using predefined TAOC features is a tedious and complex process, as it may
take extensive time to conclude the features and requires domain knowledge and human
intervention.

Learning TAOC features
Learning the TAOC characteristics involves classifying traffic according to volume, origin,
and periodic variations, as shown in Fig. 1. In addition, suitable techniques are required
to approximate the historical TOAC features and use these features to predict the traffic
intensity at a given or future point in time.

In the recent era, future intelligent networks (FIN) (Husen, Chaudary & Ahmad,
2022) have been envisioned, which are expected to use ML techniques to automate
computation, network functions, and operations intelligently. For example, the ML-based
intelligent packet scheduling techniques may learn the network state and usage behavior
and control the scheduling decisions on different types of network nodes. The ML network
techniques provide autonomous, cheaper, and faster decision-making inmanaging network
functionalities.

Recent literature has several studies onML-based techniques for traffic classification and
forecasting. The ML models used in these studies classify the traffic streams. In addition,
they forecast their behavior in the future time based on learning the insights from the
historical usage of the data. The ML models have been used to extract spatiotemporal
features, some of which are also part of TAOC characterization. However, they have not
yet been considered for packet scheduling decisions. For TAOC, specific ML models are
required for traffic classification based on their origin. This classification differs from the
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Figure 1 Components of swarm intelligence for packet scheduling and TAOC characterization.
Full-size DOI: 10.7717/peerjcs.1671/fig-1

traditional classification used for packet scheduling, which is based on the type of flow,
source and destination addresses, port numbers, or applications. For the origin-based
traffic classification, the classes represent the different groups based on the origin areas,
such as serving areas or POPs. The time feature represents the traffic variations per OCF
and captures how traffic patterns change with time, day, week, month, year, or season. The
Volume Feature (VF) captures the variations of the traffic volumes in terms of the number
of packets. It also needs to cover the packet size variations, thus covering the maximum
capacity the switching system has to handle.

Traffic intensity features involve deriving the erlang values for the given OC and VF.
The features mentioned above are used for OC trend curves, and packet schedulers
generate the queues according to the number of OCs. Packets are processed from the input
interfaces to output interfaces in precedence of the predicted values. It can be noticed from
Table 2 that the existing works for traffic classification and prediction do not cover all the
features required for TAOC characterization. However, the studies consider several partial
requirements, such as spatiotemporal features addressed by Zhang et al. (2019a), Zhang
et al. (2019b), He, Chow & Zhang (2019), Bega et al. (2019), Wang et al. (2017), and Wass
(2021). However, these studies do not cover the entire scope of traffic forecasting. For
example, they cannot generate the classes of traffic based on OC and their approximations
using time, volume, and traffic intensity.

Similar is the case with traffic classification, addressed in several existing studies such
as Nguyen et al. (2012), Singh & Agrawal (2011), Zhang et al. (2019a), Zhang et al. (2019b)
and Reddy & Hota (2013). The scope of these studies is very limited to identifying one class
versus other specific application traffic. Therefore, further work is required to investigate
traffic classification and forecasting based on the TAOC features.
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Table 2 Summary of traffic prediction strategies.

Ref MLModel Scope TAOC Features

Type OC TF VF TIF

Nguyen et al.
(2012)

Naïve Bayes
and C4.5
Classifier

Classification
of Interactive
IP traffic

Y X X X X

Singh &
Agrawal
(2011)

MLP, RBF,
C4.5, Bayes
Net and
Naïve Bayes

IP Traffic
Classifica-
tions

Y X X X X

Zhang et al.
(2019a) and
Zhang et al.
(2019b)

Spatial-
Temporal
Cross-
domain
Neural
Network

Traffic Fore-
casting

Y Y Y X X

He, Chow &
Zhang (2019)

Spatio-
Temporal
Convolu-
tional Neural
Network

Traffic Fore-
casting

Y X Y X X

Reddy &
Hota (2013)

Naïve Bayes
classifier,
Bayesian
Network, De-
cision trees,
and Stacking
and Voting

P2P traffic Y X X X X

Bega et al.
(2019)

DeepCog Capacity
Forecasting

Y X Y Y X

Wang et al.
(2017)

Autoencoder
and LSTM

Mobile Traf-
fic Forecast-
ing

X Y Y X X

Wass (2021) Attention
Transformer
model

Mobile Traf-
fic Prediction

X Y Y Y X

High-level framework for TAOC-based packet scheduling
This section focuses on a high-level framework for ML-based TAOC packet scheduling,
which covers several important aspects of packet scheduling. The benefits of the TAOC
features include user traffic classification, prediction, and network state regarding
bandwidth capacity. The high-level implementation of the ML-based TAOC packet
scheduling is shown in Fig. 2. It employs several network layer-specific learners, and the
learning process and forecasting process are distributed.

The Base Learners (BL) provide the OC classification and approximation of the TF,
VF, and TIF features. The predictions from BLs are used to manipulate scheduling on
perimeters of networks, such as the access or backhaul nodes.

Distribution-Aggregate Learners (DAL) aggregate the learnings from the BLs. The DAL
does not learn from the actual traffic on distribution or aggregation nodes; rather, it

Husen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1671 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1671


Figure 2 A swarm intelligence-based TAOC packet scheduling.
Full-size DOI: 10.7717/peerjcs.1671/fig-2

employs the learnings from the BLs and provides the necessary information for deciding
on distribution nodes. The DALs are node role-specific learners and incorporate the effects
of oversubscription.

Similarly, the Core Aggregate Leaner (CAL) and Edge Aggregate Learners (EAL)
aggregate the learning from the DAL and incorporate the node role and oversubscription
effects. The EALs are based on CAL learnings and incorporate the breakout ratio of the
traffic, i.e., the traffic that will leave the network perimeters.

The predictions from each of the learners are provided as input to the respective
TIPS schedulers (Rashid & Muhammad, 2019), such as Access-Packet Scheduler (APS),
Distribution-Packet Scheduler (DPS), Core-Packet Scheduler (CPS), and Edge-Packet
Schedulers (EPS).

TAOC learning with LSTM
Erlang distribution can represent the TAOC characteristics. On the other hand, recurrent
neural networks (RNN) (Jain & Medsker, 1999), as shown in Fig. 3, is a deep learning
paradigm suitable for predicting the Erlang distribution based on the traffic characteristics
of each access node. Moreover, since the traffic originating from a given node depends on
the previous pattern, the patterns are generally interlinked and may also repeat in future
time intervals. Finally, the traffic patterns depend on the serving area’s demographics.
Traditional neural networks can be used to characterize traffic with temporal dependencies;
however, RNNs, due to their specific architecture, can address the issues in a better manner.

An analysis of LSTM
Long short-term memory (LSTM) (Houdt, Mosquera & Nápoles, 2020) is a special RNN
cell that addresses the issues faced with traditional RNNs, such as loss of the long-term
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Figure 3 Recurrent neural network.
Full-size DOI: 10.7717/peerjcs.1671/fig-3

Figure 4 LSTM Structure for TAOC.
Full-size DOI: 10.7717/peerjcs.1671/fig-4

dependencies due to vanishing gradient issues, as discussed in Bengio, Simard & Frasconi
(1994).

Figure 4 shows that an LSTM employs three gates to control adding or removing
information from the cell state. The forget gate (ft) defines what information needs to be
removed from the cell state. It analyses the previous state (yp) and current input sequence
(xt).

The ft is defined in Eq. (1), and its output is always between 0 and 1 for each state in
the cp where zero means discarding it.

ft= σ
(
Wf.

[
yp,xt

]
+bf

)
(1)

The information that needs to be retained in the current state of the cell is determined in
two steps. First, the input gate (it) function, as defined in Eq. (2), determines the parameters
that need to be updated. Then, the candidate parameter values (c̃t) are generated by the
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tanh function as per Eq. (3). Next, these are combined to update the values of ct as per
Eq. (4).

it= σ
(
Wf.

[
yp,xt

]
+bi

)
(2)

c̃t= tanh
(
Wc.

[
yp,xt

]
+bc

)
(3)

ct= ft∗cp+ it∗c̃t (4)

The output of the LSTM is based on the current state, and the sigmoid function is
applied to select the values to be output. The final output of the cell is obtained by applying
the tanh function to the above values and multiplied by the output gate. The output gate
function is defined in Eq. (5), and the current output state is defined in Eq. (6).

ot= σ
(
Wo.

[
yp,xt

]
+bo

)
(5)

yt= ot∗tanh(ct) (6)

TAOC learning model (TLM)
TIPS scheduling algorithm requires five different values, including the time, node function,
number of downstream nodes, and rank and weight of the erlang values. Therefore, the
objective of the TLM is to characterize each access node and provide the above mentioned
information to the upstream node. To cope with the above requirements, an LSTM-based
encoder–decoder model is adopted, as shown in Fig. 5.

The above model is replicated for each physical interface on the downstream side. In
addition to the unit model for each interface, an aggregate model combines the input and
output values. The model takes the ts number of sample values of x and predicts the m
number of values for t+1,T+2,...,t+m.

In the unit model, Cei represents the LSTM cells for the encoder where i falls in (t,t+n)
and Cdj represents the LSTM cells for the decoder part. The j ranges from t+1 to t+m.
The D(Ld) forms the dense layer, which receives the state information from all the cells
and transforms it into the output of Ld dimension. On the other hand, D(1) is a dense
layer (Helen Josephine, Nirmala & Alluri, 2021) that receives the m inputs and connects the
F layer to connect a single dimension stream. The F flattening layer (Chen et al., 2023) that
receives the inputs equals the hidden layers ( Le) multiplied by the ts units.

The TLM is installed on each network node with the downstream nodes, such as the
aggregation layer (DAL) and core nodes (CAL). The core nodes receive the swarm of g
inputs fed to TLM(c) nodes. The TLM(g) nodes provide the data to TIPS instances running
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Figure 5 TLM unit model.
Full-size DOI: 10.7717/peerjcs.1671/fig-5

Figure 6 TLM on downstream and upstream nodes.
Full-size DOI: 10.7717/peerjcs.1671/fig-6

on G nodes, and TLM(c) provides the data for the TIPS instances running on C nodes, as
shown in Fig. 6.

There are two approaches available for implementing TLM on the DAL layer. The first
approach is to install TLM on the egress interface of the access nodes, which predicts
the di(m+1) used by the TLM instances running on DAL. This approach is efficient for
large-scale networks and allows the distributed learning model. The other approach is to
implement TLM on the ingress interfaces of aggregation nodes, i.e., DAL nodes. In this
case, it serves two purposes; the TLM provides the base learning as well as di(m+1) in
addition to gi(m+1).

RESULTS
This section covers the details of the experimental setup, various parameters, evaluation
metrics, and their measured results. First, mean absolute error (MAE) and mean squared
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Figure 7 Experimental network topology.
Full-size DOI: 10.7717/peerjcs.1671/fig-7

error (MSE) are used for the TLM evaluation to determine the difference from the actual
traffic features. Next, the throughput, delay, and jitter values are measured for the network
performance. Finally, the cumulative distribution function (CDF) is used to depict the
results of different measurements, as it can show how the different metrics vary throughout
the experiment.

Experimental setup
The TLM was implemented using the KERAS library (Gulli & Pal, 2017) in Python for
experimental analysis, and the source code is available as supplementary material. The
TIPS was originally implemented for NS2 and was ported to Network Simulator 3 (NS3)
(Riley & Henderson, 2010) to integrate the TLM.

Network topology
Figure 7 shows the experimental network setup following the state-of-the-art hierarchical
topology. The hierarchal network topologies offer several benefits in scalability, redundancy,
performance, security,manageability, andmaintenance (Cisco, 2022;Zhang & Liang, 2008).
The access nodes represent a serving area with a distinct traffic profile. The access nodes
to aggregation nodes connectivity is achieved with dedicated physical links with different
data rates according to the requirements of the serving area. Furthermore, the access node
to aggregation nodes connectivity follows the rule of proximity, i.e., the access nodes from
co-locating areas are connected to the same aggregation node.

For the experimental setup, traffic sources are configured to generate the traffic
with Gaussian distribution, a well-known internet traffic distribution discussed in Bothe,
Qureshi & Imran (2019) and Meent, Mandjes & Pras (2006). Although all the access nodes
will follow a Gaussian distribution, their mean values and shapes are different for different
types of demographics of the serving area, as discussed in a study conducted by Husen et
al. (2021).
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Table 3 Specifications of different links.

Link Capacity Delay Packet Scheduler

Ba1, Ba2, Ba3 [500 Kbps, 750 Kbps, 1 Mbps, 1.25 Mbps] [2 ms, 2 ms, 2 ms, 2 ms] FIFO
Bg1, Bg2,Bg3 4 Mbps 2 ms TIPS
Bc 6 Mbps 2 ms TIPS
Be 5 Kbps 2 ms FIFO

The specifications of different links are given in Table 3. The access to aggregation
links follows random allocation for each experiment instance and uses a FIFO scheduler.
The TIPS is not used on access links as it represents a single traffic profile. On access to
aggregation nodes, the link’s capacity is set to 4 Mbps, and aggregation to the core link has
a 6 Mbps capacity. Both of the above links use the TIPS packet scheduler. The edge links
connecting the destination nodes use the FIFO scheduler as there is only a single type of
traffic profile.

Traffic Intensity based Packet Scheduling
The Traffic Intensity based Packet Scheduling (TIPS) is a packet scheduler that schedules
packets according to the traffic profile of the downstream links. Packets are enqueued to
different queues with dynamic dequeue order following the ranks of the traffic profile, and
the size of the dequeue is dependent on the weights of traffic profiles. The control traffic is
separated and handled with different policies different from TIPS. The TIPS was initially
developed for NS2 (Husen et al., 2021); however, since the NS2 development has stopped, it
was ported to Network Simulator 3 (NS3) (Riley & Henderson, 2010). The implementation
of TIPS for NS3 is available in the supplementary material of this paper.

TLM performance results and analysis
This section focuses on analyzing the traffic generated from the serving areas, evaluating the
performance of TLM on aggregation and core nodes, and then, the network performance
analysis, which includes throughput, delay, and jitter. Finally, the network performance
shall be compared with the results obtained without TLM.

Access traffic profiles
The TLMperformance’s primary expectation is traffic profile diversity. Several experiments
were conducted with different traffic profiles. Distinct traffic profiles were generated for
each experiment iteration with separate distribution parameters such as mean and standard
deviation. A set of randomly selected traffic profiles generated according to Gaussian
distribution are shown in Figs. 8, 9 and 10 for different aggregation nodes to demonstrate
the effects of Gaussian parameters. The lower and upper parts of the graphs of the figures
above show the cumulative density and histogram of the data rates generated by the
respective node. The histogram on the top part of the graphs shows that an access node’s
traffic follows a Gaussian distribution (Yamanaka & Usuba, 2020). This implies that for a
given mean value, there are equal chances of traffic generated below or above.
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Figure 8 Traffic measured at aggregation node 1.
Full-size DOI: 10.7717/peerjcs.1671/fig-8

Figure 9 Traffic measured at aggregation node 2.
Full-size DOI: 10.7717/peerjcs.1671/fig-9

Prediction accuracy of TLMs
This section analyses the performance of the TLM models on different nodes. The TLM
learners are used on G1, G2, G3, and C1 as per the selected links. The prediction accuracy
of different TLMs is shown in Figs. 11, 12, 13 and 14. The figures present the histograms of
the actual data rates and those predicted by the respective TLM. A summary of the mean
absolute error (MAE) and mean squared error (MSE) is given in Table 4, which shows
the MAE values between 8.41 to 6.38 for TLM on nodes G1, G2, G3, and C1. Since the
TLMs coordinate with each other to realize swarm learning, the latency of the inter TLMs
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Figure 10 Traffic measured at aggregation node 3.
Full-size DOI: 10.7717/peerjcs.1671/fig-10

Figure 11 The TLM prediction accuracy on the aggregate node (G1). (A) The figure shows the his-
togram of aggregate TLM (G1) prediction accuracy. (B) The brown color represents the TLM’s predicted
data rate values. (C) The black color represents the actual data rate values.

Full-size DOI: 10.7717/peerjcs.1671/fig-11

may pose a limitation. In practice, to address it, low-latency dedicated communication
links can be used to address it. The latency issues between inter-TLM communications can
also be minimized by implementing the TLMs on the same location as the nodes of the
network. The location of TLMs for different network nodes is an essential factor to ensure
optimal performance. In this work, the TLMs were implemented in the same location
as the respective network nodes to eliminate the effects of the latency. If the TLMs are
implemented in a centralized location to avail benefits of the cloud computing paradigm,
low latency dedicated networks would be required.
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Figure 12 The TLM prediction accuracy on the aggregate node (G2). (A) The figure shows the his-
togram of aggregate TLM (G2) prediction accuracy. (B) The brown color represents the TLM’s predicted
data rate values. (C) The black color represents the actual data rate values.

Full-size DOI: 10.7717/peerjcs.1671/fig-12

Figure 13 The TLM prediction accuracy on the aggregate node (G3). (A) The figure shows the his-
togram of aggregate TLM (G3) prediction accuracy. (B) The brown color represents the TLM’s predicted
data rate values(C) The black color represents the actual data rate values.

Full-size DOI: 10.7717/peerjcs.1671/fig-13

Network performance analysis of TLM
This section evaluates the network performance using TIPS with TLM as a packet scheduler
on links on aggregation and core nodes. The throughput, source-to-destination delay, and
jitter are measured with and without TLM.

Figure 15 shows the maximum throughput achieved with and without TLM. Without
TLM, TIPS uses statically configured profiles. The TLM learns the traffic profiles of access
nodes on run time and provides necessary information for scheduling decisions. It can be
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Figure 14 The TLM prediction accuracy on the core node (C1). (A) The figure shows the histogram of
core TLM prediction accuracy. (B) The brown color represents the TLM’s predicted data rate values (C)
The black color represents the actual data rate values.

Full-size DOI: 10.7717/peerjcs.1671/fig-14

Table 4 Summary of performance of TLM.

Node MAE MSE

G1 8.41 72.83
G2 7.19 53.25
G3 6.38 42.68
C1 7.33 54.22

seen that the TLM achieves the same throughput as the manually engineered profiles. For
both cases, the throughput achieved was 2,000 Kbps for almost 50% of measurements. The
average difference with the TLM algorithm I observed to be 0.05% in throughput.

Similarly, Fig. 16 shows the maximum delay achieved with and without TLM. Without
TLM, TIPS uses statically configured profiles. It can be seen that delay measurements with
TLM are the same as with the manually engineered profiles. For both cases, the maximum
delay is centered around 15 to 17.5 ms. The average delay difference with TLM is observed
to be 0.03%.

Finally, Fig. 17 shows the maximum jitter achieved with and without TLM. Without
TLM, TIPS uses statically configured profiles. Similar to delay results, it can be seen that
the TLM maintains the same jitter as the manually engineered profiles. The maximum
jitter is around two milliseconds for both cases. The average jitter difference with TLM
is 0.05%, which shows that it can limit the jitter by 99.95%, as achieved with the manual
configurations.
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Figure 15 Comparison of maximum throughput (Kbps). (A) The upper part of the figure shows the
throughput histogram curves with and without TLM. (B) The lower part of the figure shows the CDF
curves with and without TLM. (C) The gold color refers to the throughput values with TLM and black
color refers to the throughput values without TLM.

Full-size DOI: 10.7717/peerjcs.1671/fig-15

Figure 16 Comparison of maximum delay from source to destination (milliseconds). (A) The upper
part of the figure shows the delay histogram curves with and without TLM. (B) The lower part of the fig-
ure shows the CDF curves with and without TLM. (C) The gold color refers to the delay values with TLM
and the black color refers to the delay values without TLM.

Full-size DOI: 10.7717/peerjcs.1671/fig-16
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Figure 17 Comparison of maximum jitter (milliseconds). (A) The upper part of the figure shows the
jitter histogram curves with and without TLM. (B) The lower part of the figure shows the CDF curves with
and without TLM. (C) The gold color refers to the jitter values with TLM and black color refers to the jit-
ter values without TLM.

Full-size DOI: 10.7717/peerjcs.1671/fig-17

DISCUSSION
The TIPS has been compared with several state-of-the-art scheduling algorithms (Husen
et al., 2021), and it has shown that TIPS provides advantages in terms of throughput,
delay, and jitter in congested networks. This research has evaluated the automated traffic
profile learning with the deep learning model, TLM, and compared it with traffic profiles
statically configured on the network nodes through the network dimensioning processes.
The efficiency of TLM in learning the TAOC characteristics is demonstrated and shows
that the performance is better than the statically configured profiles.

The intelligent automation of future network functions and processes is essential. It has
been envisioned in several recent articles such as Brito, Mendes & Gontijo (2020), Wang et
al. (2020), and Zhu et al. (2020), where ML-based automation has been indicated as the
primary requirement. Several researchers have already started investigations to integrate
the intelligence into the network functionalities, such as the Kalman filter for predictive
resource allocation (Teixeira & Timóteo, 2021) and model-free Kalman-Takens filter for
the signal-to-noise ratio prediction in 5G networks (Teixeira & Timóteo, 2023). However,
the studies above, like most other existing approaches, still depend on domain expertise
and inductive learning and lack the automated learning of traffic and network resource
state, a common challenge with fuzzy Inference systems (Liu & Li, 2022). On the other
hand, state-of-the-art DL approaches have several advantages in automating network
functions compared to fuzzy systems intelligently. Thus, avoiding manually configured
traffic profiles with the DL approach is a significant challenge in future intelligent networks
as the human-based network dimensioning processes are expensive in cost, time, and agility.
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The TLM can intelligently automate the traffic profile learning process with distributed
learning architecture, eliminating human intervention and making the network agile to
user behavior and network changes.

The previous subsections show that the same performance can be obtained with
TLM, thus eliminating the costly traffic engineering or profile-building processes. The
aspects of TLM coordination and related limitations, such as the latency and detection
of traffic profiles, have also been evaluated. Several experiments were conducted to show
the effectiveness of the automated approach with TLM. The results have shown that it
saves costs, automates traffic profile learning, and makes networks responsive to network
dimensionality factors, such as traffic changes.

The TLM model evaluated in this research is an RNN-based model well-known for
detecting temporal dependencies. However, spatial dependencies in the traffic profiles
may also exist. Future work in this direction includes the incorporation of spatial learning
models along with temporal models, such as convolutional neural networks. Since the
conventional DL models lack the explainability of decisions (Wang et al., 2022), the
objective function-based feature engineering to make explainable decisions requires
further investigation.

CONCLUSIONS
Packet scheduling is an active area of research for mobile and fixed networks, and
the researchers strive to improve performance, QoS, and network utilization. The
TAOC characterization can overcome the shortcomings of traditional decentralized
and independent techniques on each network node. Research has recently concentrated on
such features to develop a swarm intelligence-based system. The TAOC characterization is
an important area, and the manual procedures used previously are inefficient in handling
traffic dynamics. The value of ML-based TAOC packet scheduling lies in its capability to
bridge the gaps between network planning and functional decisions. The ML-based swarm
intelligent packet scheduling framework, i.e., TLM and TIPS introduced in this article, can
intelligently automate the TAOC characterization process and capture real-time traffic,
network, and user dynamics. To verify this, the TIPS was ported to NS3 for performing
experiments. The experimental results have shown that the proposed approach can address
the challenges without affecting the network performance metrics. It has been shown in
this work that with MAE from 6.38 to 8.41 (both DAL and CAL), the TAOC-based packet
scheduler, along with the TLM, can maintain throughput, delay, and jitter with less than
0.05% variation as compared to the statically configured traffic profiles.
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