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ABSTRACT
While convolutional operation effectively extracts local features, their limited
receptive fields make it challenging to capture global dependencies. Transformer, on
the other hand, excels at global modeling and effectively captures global
dependencies. However, the self-attention mechanism used in Transformers lacks a
local mechanism for information exchange within specific regions. This article
attempts to leverage the strengths of both Transformers and convolutional neural
networks (CNNs) to enhance the Swin Transformer V2 model. By incorporating
both convolutional operation and self-attention mechanism, the enhanced model
combines the local information-capturing capability of CNNs and the long-range
dependency-capturing ability of Transformers. The improved model enhances the
extraction of local information through the introduction of the Swin Transformer
Stem, inverted residual feed-forward network, and Dual-Branch Downsampling
structure. Subsequently, it models global dependencies using the improved self-
attention mechanism. Additionally, downsampling is applied to the attention
mechanism’s Q and K to reduce computational and memory overhead. Under
identical training conditions, the proposed method significantly improves
classification accuracy on multiple image classification datasets, showcasing more
robust generalization capabilities.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks
Keywords Image classification, Convolutional neural networks, Transformer, Attention
mechanism

INTRODUCTION
Hubel & Wiesel (1960, 1962) described the concept of neural receptive fields through their
research on neurons in the visual cortex of cats, which laid the foundation for introducing
the concept of convolutional kernels. In subsequent work, LeCun et al. (1989) and others
proposed the core idea of convolutional neural networks. By employing convolutional
kernels to perform convolutional operations on input images, they achieved the extraction
and classification of image features. As a result, convolutional neural networks (CNNs)
quickly found applications in the field of computer vision. The convolution operation,
utilizing aggregation functions on local receptive fields (Peng et al., 2021), applies crucial
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inductive biases during image processing, hierarchically collecting local features. The
mechanism of shared convolutional kernel weights further facilitates the effective
extraction of local features. Exploiting these advantages, CNNs have emerged as the
mainstream framework in the field of computer vision, achieving state-of-the-art
performance in tasks such as image classification (Kim, Lee & Lee, 2016), object detection
(Redmon et al., 2016), and instance segmentation (Zhu et al., 2021). However,
convolutional neural networks struggle to capture global dependencies due to the limited
receptive field.

Recently, Transformer models based on the self-attention mechanism have become the
mainstream framework for natural language processing (NLP) tasks. They have achieved
great success in capturing long-range dependencies. Many studies have attempted to apply
the self-attention mechanism to computer vision tasks, such as image classification, and
have achieved promising results (Wang et al., 2018; Bello et al., 2019). Unlike previous
approaches, the Vision Transformer (ViT) (Dosovitskiy et al., 2020) treated images as a
sequence of tokens similar to word embeddings in NLP. It utilized a standard Transformer
encoder to process the tokens, modeling the input image based on global relationships and
extracting features. ViT has surpassed state-of-the-art performance on various image
classification datasets and has dramatically inspired subsequent research (Chen, Fan &
Panda, 2021; Han et al., 2021). However, although Transformers are proficient in
modeling long-range dependencies within sequences, they lack a mechanism for local
information exchange, which presents a disadvantage compared to traditional
convolutional approaches. Firstly, since Transformers are designed initially for NLP tasks,
the token dimensions within the Transformer blocks are one-dimensional, disregarding
the 2D structure and local spatial information essential to images. Secondly, factors such as
the quadratic complexity of token length, non-collapsible layer normalization, and GELU
activation function contribute to frequent memory access (Li et al., 2022b), making the
inference speed of Transformer models much slower than CNNs with the same number of
parameters.

This article addresses the limitations of Transformers by leveraging the advantages of
CNNs and proposes three technical improvements to enhance the performance of the
Swin Transformer V2 model. The contributions of this article are as follows: Firstly, we
replace the Patch Partition module and Linear Embedding module in the Swin
Transformer V2 model with a Swin Transformer Stem. Three convolutional layers with
different kernel sizes extract features from input images. This design aims to merge local
features from different receptive fields in the generated feature maps, thus incorporating
richer semantic information. Secondly, to decrease the model’s computation and
parameter load and make the model more lightweight, we adopt a Dual-Branch
Downsampling structure to replace the Patch Merging module in the Swin Transformer
V2 model. Simultaneously, by reducing the dimensionality of the feature maps, sensitivity
to minor input details is reduced, thereby improving the model’s generalization ability.
Finally, to address the significant memory consumption and computational burden
brought about by the attention module, we introduce average pooling layers within the
basic blocks of the Swin Transformer V2. This is done to lower computational costs. To
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maintain feature extraction effectiveness, a residual structure is introduced to mitigate the
effects of downsampling. Furthermore, drawing from the inverted residual feedforward
network structure of CMT model (Guo et al., 2022a), traditional convolutional layers and
depth-wise separable convolutional layers are employed to enhance the extraction of local
information.

BACKGROUND
Since the introduction of AlexNet (Krizhevsky, Sutskever & Hinton, 2017), convolutional
neural networks have emerged as the mainstream models for computer vision tasks
(Shepley et al., 2023; Wang et al., 2020). VGGNet (Simonyan & Zisserman, 2014)
confirmed the effectiveness of network depth in large-scale image classification CNNs,
demonstrating that a convolutional neural network composed solely of convolutional and
pooling layers can achieve state-of-the-art performance in image classification tasks. The
residual learning function proposed by He et al. (2016) addressed the challenge of training
deep neural networks. ResNet, which is eight times deeper than VGGNet, achieved higher
accuracy while being easier to optimize and having lower complexity. The Inception
structure proposed by Szegedy et al. (2015) and others indicated that significant
improvements in recognition accuracy can be achieved by moderately increasing
computational requirements. DenseNet (Huang et al., 2017) directly connected any two
layers with the same feature map size, reducing computational complexity while
improving recognition accuracy. Some research works have focused on reducing the
number of model parameters and computational costs, such as ShuffleNet (Zhang et al.,
2018), EfficientNet (Tan & Le, 2019), and MobileNets (Mehta & Rastegari, 2021, 2022),
and in the context of transformers known for their excellent global modeling capabilities.
Guo et al. (2022b) proposed VAN, which utilized large kernel convolutions to increase the
receptive field, achieving global modeling with pure convolutional layers. ConvNeXt (Liu
et al., 2022b), on the other hand, was a pure convolutional network model composed of
standard convolutional network modules. It achieved performance comparable to
advanced transformers, leading to a reevaluation of the importance of convolutions in
computer vision. These outstanding convolutional neural network models have achieved
remarkable results in image classification tasks. However, due to the limited receptive field
of convolutional kernels in convolutional operations, despite the capability of these
advanced models’ convolutional layers to effectively extract local features, they have failed
to capture global dependencies.

Following the tremendous success of Transformers in natural language processing tasks,
many researchers have attempted to apply self-attention mechanisms and Transformers to
computer vision tasks (Pan et al., 2022; Shaker et al., 2023). The groundbreaking model,
Vision Transformer (ViT), directly employed Transformer encoders to process flattened
one-dimensional image data, demonstrating the feasibility of a pure Transformer
architecture in computer vision. To address the high complexity and computational
requirements of the ViT architecture, Swin Transformer (Liu et al., 2021) introduced a
hierarchical Transformer architecture that achieved linear computational complexity

Wei et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1665 3/17

http://dx.doi.org/10.7717/peerj-cs.1665
https://peerj.com/computer-science/


relative to the image size while enabling multi-scale modeling. MViTs (Fan et al., 2021;
Li et al., 2022a) performed pooling operations on the Q, K, and V components of the
attention mechanism in Transformers to reduce the number of tokens, significantly
reducing the computational overhead of the multi-scale Transformer architecture.
Although Transformers excel at capturing long-range dependencies, they often overlook
local feature details. Local details are crucial for visual tasks relating to lines, shapes, and
object structures. To address this challenge, many researchers have attempted to
incorporate convolutional neural networks (d’Ascoli et al., 2021; Wang et al., 2022) to
complement the deficiency of Transformers in local feature extraction. CvT (Wu et al.,
2021) improved the performance and efficiency of ViT by introducing a novel hierarchical
structure that included convolutions and a convolutional Transformer block with
convolutional projections. This work falls into the category of integrating the strengths of
both CNNs and Transformers. It combines the local feature extraction capability of CNNs
based on inductive biases with the global information capture capability of Transformers
based on global modeling. The proposed approach enhances the performance of Swin
Transformer V2 by integrating these two strengths.

METHODS
Model overall architecture
The improved model introduces three technical advancements to Swin Transformer V2.
Firstly, the network stem of Swin Transformer V2 is replaced with the Swin Transformer
Stem, replacing the original Patch Partition and Linear Embedding modules. Secondly, the
Patch Merging module is replaced with a Dual-Branch Downsampling structure. Thirdly,
convolutional networks and downsampling layers are introduced in the Swin Transformer
blocks. Additionally, the self-attention mechanism in the Swin Transformer V2 blocks
incorporates average pooling to reduce computational costs. The MLP module in the
original Swin Transformer V2 is replaced with an inverted residual feed-forward network
composed of convolutional layers to enhance the extraction of local features. The overall
framework is illustrated in Fig. 1. The depicted model is the Swin Transformer V2-Tiny
version, which inherits the original Swin Transformer V2 architecture. The input
resolutions at each stage are downscaled by 4, 8, 16, and 32 factors, respectively.

In Swin Transformer V2, the input three-channel images were divided into patches of
size 4 × 4. These patches were then flattened into one-dimensional vectors and linearly
mapped to obtain tokens that can be input into the self-attention mechanism. However, it
is evident that the divided patches do not preserve the 2D structural information of the
image, and modeling the internal structure of the patches can only be achieved through
poor linear projection. The present work introduces Swin Transformer Stem to address
this limitation. This structure employs convolutional layers with different kernel sizes of 1,
3, and 5 to perform convolution operations with different receptive fields on the input
image. The results from these operations are then concatenated to integrate local
information across different channel directions. Subsequently, a 1 × 1 convolutional layer
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is used to enhance the extraction of local information. Finally, a convolutional layer with a
stride of 2 is employed to extract local features and achieve a 4× downsampling for the
entire module, as shown in Fig. 2. The convolutional operations based on induction and
bias enable better preservation of local information in the resulting feature map, which is
lacking in the Transformer architecture.

Figure 1 Overall network architecture. Full-size DOI: 10.7717/peerj-cs.1665/fig-1
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The Dual Branch Downsampling structure replaces the Patch Merging module in the
original Swin Transformer V2 model. This design aims to downsample the input to the
improved Swin Transformer blocks by a factor of 2 to reduce computational costs, as
shown in the DBD module of the overall framework diagram. The first branch performs
3 × 3 max pooling to downsample the feature maps, then uses a convolutional layer to
extract local information from the pooled features. The second branch employs a
convolutional layer with a stride of 2 for local information extraction and downsampling
by a factor of 2. The second branch utilizes grouped convolution to reduce computation.
Finally, a 1 × 1 convolution is applied to fuse the features from the concatenated feature
maps in the channel dimension.

Improved attention mechanism
The traditional self-attention mechanism transforms the input X into query (Q), key (K),
and value (V) vectors. In this mechanism, the similarity between pairs of elements is
calculated as the dot product between the query vector Q and the key vector K (Vaswani
et al., 2017), as shown in Eq. (1):

Attn Q;K;Vð Þ ¼ Softmax
QKTffiffiffiffiffi
dk

p
� �

V (1)

However, the research conducted on Swin Transformer V2 (Liu et al., 2022a) has found
that when this approach is applied to large-scale vision models, a few pixels often dominate
the learned attention maps of specific blocks and heads. To address this issue, we adopt the
scaled cosine attention method from Swin Transformer V2, which uses the logarithm of
attention between pixel pairs i and j, scaled by a cosine function with natural
normalization. This results in more gentle attention values, as shown in Eq. (2):

Sim qi; kj
� � ¼ cos qi; kj

� �
=sþ Bij (2)

Figure 2 Swin transformer stem. Full-size DOI: 10.7717/peerj-cs.1665/fig-2
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where Bij represents the relative positional bias between pixels i and j, and s is a learnable
scalar. The attention calculation is performed according to the following Eq. (3):

Attn Q;K;Vð Þ ¼ Softmax
Sim QKTð Þffiffiffiffiffi

dk
p þ B

� �
þ V (3)

However, the attention module of Swin Transformer V2, while capable of capturing
global dependencies effectively, suffers from significant computational and memory
overhead. Previous works have attempted to address this issue by simultaneously
downsampling Q, K, and V or downsampling K and V. These downsampling operations
were achieved using depth-wise separable convolutions. Inspired by these works, we
propose a different approach in this article. Instead of using depth-wise separable
convolutions, we introduce average pooling as a downsampling layer to reduce the
computational complexity. Specifically, we perform 2× downsampling on Q and K using
average pooling. Experimental results demonstrate that average pooling outperforms
depth-wise separable convolutions for downsampling. Furthermore, motivated by the
success of the residual link compensation pooling in MViTv2, we also introduce a residual
link structure after the pooling operation on Q. As shown above, our improved attention
mechanism differs from the original attention mechanism of Swin Transformer V2, as
shown in Fig. 3. The computation of our improved attention mechanism is represented by
the following Eq. (4):

Attn Q;K;Vð Þ ¼ Softmax
Sim Q0K 0ð Þffiffiffiffiffi

dk
p þ B

� �
Vþ Q (4)

Figure 3 Structural diagram of the improved attention mechanism.
Full-size DOI: 10.7717/peerj-cs.1665/fig-3
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where Q0 ¼ AvgPool Qð Þ 2 R
H�W

4 �dk , K0 ¼ AvgPool Kð Þ 2 R
H�W

4 �dk . The relative positional
bias B is calculated based on logarithmic spatial coordinates. When computing attention,
the relative positional bias is propagated between windows using an offset window. During
this process, the extrapolation required is much smaller than what would be needed when
using linear spatial coordinates.

Inverted residual feed-forward network
The inverted residual feed-forward network is an essential compensation for the Swin
Transformer V2’s limited ability to extract local features. It is designed to be placed at the
end of the Swin Transformer Block to extract more important and prominent features, as
shown in Fig. 4.

The MLPs used in the ViT and Swin Transformer V2 consist of two fully
connected and two Dropout layers. The first fully connected layer has four times the
number of neurons as the input channels and is activated using the GELU activation
function. The second fully connected layer restores the original number of channels. In
contrast, CMT and NextViT attempted to replace the fully connected layers with
convolutional layers to extract more local features. This work introduces the CMT
network’s IRFFN structure, consisting of two 1 × 1 convolutional layers, two Dropout
layers, and a depth-wise separable convolutional layer. The two convolutional layers
expand the number of channels by four times and then restore it to the original number of
input channels, allowing for further extraction of local features. The convolutional layer
uses a 3 × 3 kernel size and incorporates residual structures to improve gradient
propagation. The use of depth-wise separable convolution ensures that the computational
cost is negligible.

Figure 4 Inverted residual feed-forward network. Full-size DOI: 10.7717/peerj-cs.1665/fig-4
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RESULTS
Experiment datasets
To validate the improvement of the enhanced model’s performance, this study conducts
experiments on three datasets with significantly different numbers of classes. These
datasets include the Oxford 102 Category Flower Dataset (Nilsback & Zisserman, 2008),
the Oxford-IIIT Pet Dataset (Parkhi et al., 2012), and the Imagewoof Dataset (Howard &
Gugger, 2020) from the University of San Francisco. The Oxford-IIIT Pet Dataset consists
of a collection of pet images with 37 different categories, exhibiting significant scale, pose,
and lighting variations. The Imagewoof dataset is a subset of 10 categories from the
Imagenet dataset, explicitly focusing on dog breeds, which presents a challenging
classification task due to the similarity among the categories. The dog breeds included in
this dataset are Australian terrier, Border terrier, Samoyed, Beagle, Shih Tzu, English
foxhound, Rhodesian ridgeback, Dingo, Golden retriever, and Old English sheepdog. The
102 Category Flower Dataset contains images of 102 different flower categories,
showcasing significant scale, pose, and lighting variations. This dataset includes categories
with significant intra-class variations and several closely related categories. The
characteristics of these three datasets are summarized in Table 1.

Model evaluation metrics
This article employs three evaluation metrics, namely computational cost, Top-1 accuracy,
and Top-5 accuracy, to assess the improved model. Computational cost refers to the total
computational operations executed during training or inference. It is commonly used to
evaluate the computational complexity of a model, aiding in measuring its performance on
different hardware devices and its computational resource requirements. In this study, we
utilize the ptflops toolkit from the PyTorch scientific computing library to quantify the
computational cost of the enhanced model. Accuracy, on the other hand, signifies the
proportion of correctly predicted samples by the classification model out of the total
number of samples, serving as a measure of the model’s performance in image
classification tasks. This is a common performance evaluation metric, as illustrated in
Eq. (5):

Accuracy ¼ TPþ TN
TPþ FNþ FPþ TN

(5)

where TP represents the number of instances that are labeled as positive and correctly
classified as positive, FN stands for the number of instances labeled as positive but
mistakenly classified as negative, FP signifies the number of instances labeled as negative

Table 1 Dataset characteristics.

Datasets Classes Total number Training set number Testing set number

The Oxford-IIIT pet 37 7,390 5,913 1,477

Imagewoof 10 12,954 9,025 3,929

102 Category flower 102 8,189 6,587 1,602
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but incorrectly classified as positive, and TN corresponds to the number of instances
labeled as negative and correctly classified as negative. When the model predicts an image,
it provides N probabilities for each class, indicating the network’s predictions of the
likelihood that the test image belongs to each class. Top-1 accuracy refers to the accuracy of
the class that ranks first among the N (where N > 1) class probabilities, matching the actual
class label, as depicted in Eq. (6):

Accuracy ¼ FirstðTPþTNÞ

TPþ FNþ FPþ TN
(6)

where First() denotes the count of instances where the highest classification probability
matches the label, similar to Top-1 accuracy, Top-5 accuracy refers to the accuracy of the
top five ranked classes among the N (where N > 5) class probabilities, which includes the
actual result, as shown in Eq. (7):

Accuracy ¼ FiveðTPþTNÞ

TPþ FNþ FPþ TN
(7)

where Five() denotes the count of instances where the correct label is among the top five
highest classification probabilities. A more minor computational cost indicates lower
resource requirements for deploying the model among the three evaluation metrics.
Conversely, higher Top-1 and Top-5 accuracies signify the model’s more robust
classification capability.

Comparison with previous models
The improved network architecture selected for this experiment is the Swin Transformer
V2 Tiny version. The input consists of three-channel images with a size of 256 × 256 pixels.
The window size used for partitioning the images and computing attention is 16 × 16. In
the first stage, the number of channels is set to 96. The four stages of the network consist of
repeated blocks with the following repetition counts: 2, 2, 6, and 2.

In this experiment, the network is trained using a batch size of 64 for the input images.
The training is performed for 300 epochs. Data augmentation is applied using the mixup
technique. The activation function used is AdamW optimizer with weight decay. The
learning rate is decayed using the cosine annealing method with the warmup. To ensure
fairness in the experiment, no pre-training is used, and the training settings are kept
identical. The highest accuracy achieved within 300 iterations is considered the absolute
accuracy. Detailed training parameters are provided in Table 2. For comparison, the
models used include ViT, PVTv2, Swinv1, CMT, MViTv2, and Swinv2. All experiments
are conducted under the same conditions. The model parameters, computational cost, and
accuracy of the three datasets are shown in Table 3.

In order to verify the improvement in accuracy of the enhanced model relative to the
excellent model, this study conducts experiments using the PVT, MViT, CMT, and Swin
Transformer models. Among these, the PVT model is based on the ViT model and
introduces a pyramid structure, creating a pure Transformer model. The MViT model,
building upon a pure Transformer architecture, incorporates pooling operations to reduce
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the computational load. In contrast, the CMT model merges convolutional neural
networks into the Transformer architecture to enhance the extraction of local features,
achieving a fusion of Transformer and CNN capabilities. By comparing the accuracy
results from the experiments, it is evident that the improved model in this research
outperforms both pure Transformer network models and models incorporating CNN
layers in terms of performance. This validates the effectiveness of the improved model,
which leverages the strengths of both Transformer and CNN. Compared to the original
Swinv2 Tiny model, the improved model shows significant improvements on The Oxford-
IIIT Pet, Imagewoof, and 102 Category Flower datasets, with an increase of 16.2%, 11.8%,
and 4.3%, respectively. This demonstrates its more robust generalization capability. The
improved model also achieves higher accuracy compared to the pure Transformer-based
model, the PVT and MViT models based on improved Transformers, and the CMTmodel
with introduced CNN layers.

Ablation experiments result
In this section, ablation experiments are conducted to validate the effectiveness of the
proposed components: Swin Transformer Stem, Dual-Branch Downsampling, and the
improved Swin Transformer Block. The experimental results are presented in Table 4.

It can be observed that the improved model demonstrates more robust performance,
with an increase of 16.18, 11.83, and 4.3 percentage points on the three datasets,
respectively. The introduction of convolutional layers to compensate for the limitations of

Table 2 Parameterization of model and training.

Model parameter Value Training parameter Value Training parameter Value

Image size 256 Batch size 64 Warmup lr 0.0000005

Windows size 16 Epochs 300 Scheduler Cosine

Embed dim 96 Warmup epochs 20 Decay epochs 30

Depth 2,2,6,2 Weight decay 0.05 Decay rate 0.1

Num heads 3,6,12,24 Optimizer AdamW Random erase mode Pixel

Drop path rate 0.2 Base lr 0.0005 Mixup alpha 0.8

Table 3 Comparison of network performance on three datasets.

Model Flops (G) Imagewoof The Oxford-IIIT pet 102 Category flower

Top-1 Acc Top-5 Acc Top-1 Acc Top-5 Acc Top-1 Acc Top-5 Acc

PVTv2_B1 2.1 85.4% 97.5% 79.7% 93.5% 95.6% 98.7%

Swinv1_Tiny 4.5 78.8% 97.7% 70.7% 93.7% 94.1% 98.4%

CMT_S 4.0 79.7% 96.7% 59.0% 82.3% 74.9% 87.5%

MViTv2_Tiny 4.7 85.6% 97.2% 83.2% 96.0% 95.3% 98.9%

Swinv2_Tiny 6.6 75.8% 97.6% 66.4% 91.2% 91.1% 97.6%

Ours 5.7 87.6% 98.7% 82.6% 96.8% 95.4% 98.8%

Note:
The results of the model presented in this article are shown in bold.
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the Transformer in capturing local features resulted in accuracy improvements on all three
datasets. Specifically, there is an increase of 4.19 percentage points on the Imagewoof
dataset, 2.43 percentage points on the 102 Category Flower dataset, and 0.54 percentage
points on The Oxford-IIIT Pet dataset. Comparing the results before and after
incorporating the Dual-Branch Downsampling structure, it can be observed that the
model’s generalization ability improved when combining the feature maps extracted by the
convolutional layer with the downsampling layer that retains translational invariance. The
improvements are 10.56 percentage points on The Oxford-IIIT Pet dataset, 10.41
percentage points on the Imagewoof dataset, and 3.05 percentage points on the 102
Category Flower dataset. The experiment also attempted to extract local features once
again using depth-wise separable convolutional layers in the downsampling stage of the
attention mechanism. However, the data indicates that using average pooling yielded
better results, with a 0.48 percentage point improvement on the Imagewoof dataset. The
model’s accuracy is further enhanced after applying the Swin Transformer Stem, which
extracts local information with different receptive fields and fuses feature maps on the
channel dimension. The improvements on the three datasets reach 16.18, 11.83, and 4.3
percentage points, respectively.

It can be observed that the final accuracy of the proposed improved model is higher than
that of both the advanced pure Transformer model and the model combining
convolutional neural networks, which greatly depends on several network modules
proposed in this study. Firstly, the convolutional layers in Swin Transformer Stem utilize
convolutional kernels of different sizes, enabling the extraction of local features at different
scales and preserving more semantic information. Secondly, the concatenation operation is
employed for feature map fusion in the downsampling structure of the dual branch, which
also helps retain rich semantic information along the channel dimension. Additionally, the

Table 4 Performance of the improved model on three datasets.

Block DBD Stem Accuracy(ours)

DWConv AvgPool

The Oxford-IIIT pet √ × × × 66.96(+0.54)%

√ × √ × 76.98(+10.56)%

× √ √ × 77.05(+10.63)%

× √ √ √ 82.60(+16.18)%

Imagewoof √ × × × 79.99(+4.19)%

√ × √ × 86.21(+10.41)%

× √ √ × 86.69(+10.89)%

× √ √ √ 87.63(+11.83)%

102 Category flower √ × × × 93.57(+2.43)%

√ × √ × 94.19(+3.05)%

× √ √ × 94.32(+3.18)%

× √ √ √ 95.44(+4.30)%
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improved Block enables global modeling and further extracts local features through
IRFFN. Although this network model performs well, it still has some limitations. For
instance, compared to lightweight pure convolutional neural networks, the improved
model has higher accuracy but more significant parameter and computational
requirements, resulting in slower inference speeds. Therefore, it not easy to deploy to
mobile or industrial scenarios at this time.

CONCLUSION
In this work, we conduct technical enhancements to the Swin Transformer V2 model,
resulting in an improved version that combines the strengths of both the Transformer and
CNN. In this enhanced model, we integrate the advantages of Transformer and CNN by
introducing the Swin Transformer Stem, a dual-branch downsampling structure, and a
reverse feedforward network. These modifications endow the model with the ability to
extract local information while capturing long-range dependencies effectively.
Furthermore, we apply average pooling to the self-attention mechanism, thereby reducing
the computational load of the model. Experimental results demonstrate that when
compared to the Swin Transformer V2-Tiny network, the improved model effectively
leverages the strengths of both CNN and Transformer, resulting in significant performance
improvements.

In future research endeavors aimed at further enhancing model accuracy and exploring
the potential of image classification, we intend to undertake the following measures: We
plan to adjust the number of blocks in each stage to improve model accuracy. By
appropriately increasing or decreasing the number of blocks, we can optimize the balance
between model complexity and performance. Secondly, we intend to design more suitable
feature fusion strategies. In the first and second stages, we plan to forgo self-attention
mechanisms in favor of lighter-weight convolutional modules. This approach can capture
different scale and fine-grained feature information while reducing computational
overhead. Additionally, given the subpar classification performance of the improved model
on large datasets, we plan to introduce a feature pyramid structure. This will empower
different-scale features in each stage with solid semantic information. Consequently, the
model will be able to fuse robust semantic information from low-resolution feature maps
and rich spatial information from high-resolution feature maps simultaneously.
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