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ABSTRACT
The neurological ailment known as Parkinson’s disease (PD) affects people throughout
the globe. Theneurodegenerative PD-related disorder primarily affects people inmiddle
to late life. Motor symptoms such as tremors, muscle rigidity, and sluggish, clumsy
movement are common in patients with this disorder. Genetic and environmental
variables play significant roles in the development of PD. Despite much investigation,
the root cause of this neurodegenerative disease is still unidentified. Clinical diagnostics
rely heavily on promptly detecting such irregularities to slow or stop the progression
of illnesses successfully. Because of its direct correlation with brain activity, electroen-
cephalography (EEG) is an essential PD diagnostic technique. Electroencephalography,
or EEG, data are biomarkers of brain activity changes. However, these signals are non-
linear, non-stationary, and complicated, making analysis difficult. One must often
resort to a lengthy human labor process to accomplish results using traditionalmachine-
learning approaches. The breakdown, feature extraction, and classification processes
are typical examples of these stages. To overcome these obstacles, we present a novel
deep-learning model for the automated identification of Parkinson’s disease (PD). The
Gabor transform, a standardmethod in EEG signal processing, was used to turn the raw
data from the EEG recordings into spectrograms. In this research, we propose densely
linked bidirectional long short-term memory (DLBLSTM), which first represents each
layer as the sum of its hidden state plus the hidden states of all layers above it, then
recursively transmits that representation to all layers below it. This study’s suggested
deep learning model was trained using these spectrograms as input data. Using a robust
sixfold cross-validation method, the proposed model showed excellent accuracy with a
classification accuracy of 99.6%. The results indicate that the suggested algorithm can
automatically identify PD.
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Keywords Clinical diagnostics, Deep learning, Electroencephalography, Gabor transform,
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INTRODUCTION
As individuals age, there is a notable decline in the quantity of connections between brain
cells, accompanied by a reduction in the size of neurons. In contrast to muscle, skin, and
bone cells, nerve cells exhibit limited regenerative capacity. According to previous research,
it has been observed that as individuals progress in age, there is a notable occurrence of
neuronal death or impairment (Department Human Services & National Health, 2001). PD
is a widely recognized neurodegenerative disorder defined by the gradual deterioration of
neurons in the substantia nigra region of the brain. This condition leads to the impairment
of motor functions and the progress of various symptoms related to movement difficulties.
The underlying cause of PD is the damage and loss of these specific neurons, which
produce dopamine, a neurotransmitter crucial for regulating movement and coordination.
The disruption of typical basal ganglia operating caused by the degeneration of these
neurons is responsible for the motor indications often seen in individuals with PD. The
neurons in question are accountable for synthesizing and releasing a neurotransmitter called
dopamine. Dopamine, a neurotransmitter, is a crucial chemical mediator in facilitating
communication between neurons within the brain. The brain plays a vital role in facilitating
communication between different body regions, ensuring their proper functioning. This
is particularly evident in the coordination of body movements and speech delivery. PD
symptomsmanifest when there is a significant loss of dopaminergic neurons or an abnormal
level of dopamine in the brain (Poewe et al., 2017).

Electroencephalography (EEG) is a standard neuroimaging procedure that involves
attaching electrodes to a subject’s scalp to record and analyze the brain’s electrical
activity. These electrodes record voltages generated by local neuronal activity in the brain.
Researchers can learn about several facets of brain activity and function by analyzing these
voltage patterns. The EEG has been an invaluable resource for researchers in cognitive
neuroscience, sleep science, and neurological disease. Epilepsy, sleep problems, and
sensory transmission are only a few examples of the many ailments for which non-invasive
electronic devices have been extensively employed in medical evaluation (Michel & Brunet,
2019). Skilled neurophysiologists can subjectively and relatively assess and understand the
underlying medical states thanks to observable and substantial changes in EEG patterns
across various disorders. Some neurological disorders have been noted to have subtler shifts.
However, due to the complexity of EEG signals, it can be difficult for human observers
and existing evaluation methods to determine the significance of these shifts reliably.
Diagnosing Alzheimer’s, brain tumors, and PD with EEG has shown much promise, and
there has been an increased interest in research into the efficacy of deep learning (DL) and
neural networks in this regard (Cecere, Corrado & Polikar, 2014; Liu et al., 2020).

In the non-automated diagnosis of PD using EEG signals, a standard procedure typically
involves several key steps. Firstly, electrodes are placed on the patient’s scalp to record
EEG data, capturing the brain’s electrical activity. The recorded EEG signals are then pre-
processed, which includes tasks such as filtering to remove noise and artifacts, segmentation
to isolate relevant portions of the data, and feature extraction to derive meaningful
information from the EEG signals, such as spectral power or coherence measures.
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These features are subsequently analyzed by medical professionals, often neurologists
or neurophysiologists, who look for distinctive patterns or abnormalities indicative of PD.
The diagnosis is then made based on their clinical expertise and observations. Challenges
in this non-automated approach include subjectivity in interpretation, as different experts
may reach different conclusions from the same EEG data. It also relies heavily on the
experience and training of the clinician, which can introduce variability in diagnostic
accuracy.

Moreover, manual diagnosis can be time-consuming and may not leverage the full
potential of advanced signal processing andmachine learning techniques that could provide
more objective and automated diagnostic aids. However, the advantage of this approach is
that it can benefit from the expertise of skilled clinicians who can integrate EEG findings
with other clinical assessments tomake a comprehensive diagnosis. Nevertheless, the field is
increasingly exploring incorporating automated methods andmachine learning algorithms
to augment the diagnostic process, potentially improving accuracy and efficiency.

The use of machine and deep learning methods for the automated diagnosis and
categorization of PD has gained popularity in the past few years. These approaches utilize
different data sources, such as EEG, Magnetic Resonance Imaging (MRI), patterns of
speech, written exams, interactions, and sensory data. These diverse data sources allow for
a comprehensive analysis of PD, enabling more accurate detection and categorization of
the disease. Recent studies have explored various modalities to implement deep learning
techniques in detecting Parkinson’s disease. However, the current clinical diagnosis still
heavily relies on the anomalies in the motor system observed, which is subjective and
susceptible to human error. Moreover, it is worth noting that there is currently a lack of
distinctive or well-established clinical biomarkers associated with the disease or its related
issues.

In machine learning, conventional methodologies have traditionally depended on
labor-intensive procedures. These procedures encompass various stages, such as signal
decomposition, feature extraction, and classification, all necessary to address the intricate
nature of EEG signals. To address the limitations mentioned earlier, a novel and pioneering
deep-learning model has been developed to facilitate the automated detection and
identification of Parkinson’s disease. This study utilized the Gabor transform, a widely
used technique in EEG signal processing, to transform the raw EEG data into spectrograms.
The DLBLSTM model is a proposed manner that exhibits a distinctive structure. In this
model, each layer is characterized by aggregating its hidden state and the hidden states of
all the layers positioned above it. This representation is then recursively transmitted to all
the layers positioned below it.

The remainder of this paper is organized in the following manner: The second section
thoroughly analyzes the relevant literature. ‘Methods and Materials’ details the dataset
utilized in this study, including the preprocessing and preparation techniques employed
to enhance the quality and representation of the EEG signals. ‘Result and Discussion’ of
the research paper presents the results obtained from the suggested approach. ‘Conclusion
and Future Work’ of this research paper offers the conclusion, highlighting the various
contributions made by this study and discussing its possible uses in real-world scenarios.
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RELATED WORKS
Zhan et al. (2018) employed machine-learning techniques and smartphone-based tasks
to evaluate the level of daily symptoms associated with PD. This approach led to the
development of the mobile PD score. This study conducted a comprehensive evaluation
on a sample size of 129 individuals. The researchers found that gait, among other factors,
played a significant role in determining the overall score. Specifically, gait was found to
have the highest contribution. The results demonstrated a strong correlation between the
newly developed and existing scales commonly used for in-person evaluations, including
the PD Scale of the Society of Total Disorders, the Timed Up and test, and the Hoehn and
Yahr stage assessment. According to Okuma et al. (2018), falls are considered to be the loss
of independence, one of the worst outcomes of PD.

In a study by Gao et al. (2018), an investigation was carried out to evaluate the danger
of falls in patients with PD using clinical, demographic, and neuroimaging data. In
their study, the researchers employed various features to assess the participants. Features
including gait speed, unstable posture, and measurements linked to gait difficulties were
considered. In this study, the researchers examined the classification of two distinct classes:
fall and no fall. To achieve this, they employed support vector machines (SVM) as their
chosen classification algorithm. The results obtained from their experiments demonstrated
accuracies reaching up to 83%. Speech disturbance is a notable characteristic observed in
individuals diagnosed with PD. The database of voice records from people with PD and
people in good health was used in a study byMostafa et al. (2019).

In their study, Zhang (2017) proposed the utilization of stack autoencoders (SAE) as
a method for diagnosing PD remotely by complete telephone-based assessments. The
researchers collected participants’ personal information and vocal data, which were then
inputted into a machine learning algorithm to analyze the speech records (Zhang, 2017).
In a study by Wagh & Varatharajah (2020), a novel 8-layer graph-CNN architecture
was introduced to classify neurological diseases. The proposed model attained an
impressive accuracy rate of 85% in accurately identifying and classifying these diseases.
Researchers (Koch et al., 2019) explored using a Random Forest Classifier to identify
PD. The classifier was intended to use EEG information manually and automatically
retrieved by clinicians. The area under the receiver operating characteristic curve (AUC)
analysis revealed that the suggested classifier achieved a 91% accuracy (Koch et al., 2019).
Two hybrid models, the convolutional neural network (CNN) and a recurrent neural
network (RNN), were presented by Shi et al. (2019), which reported that the former model
demonstrated a detection accuracy of 82.89% in identifying PD.

In a previous study by Lee, Hussein & McKeown (2019), a hybrid model was introduced
that effectively combined CNN and LSTM to leverage EEG data’s spatial and temporal
features. The projected model attained an impressive accuracy of 96.9% in accurately
distinguishing between individuals with PD and healthy controls (HC). This study
demonstrates modern machine learning methods’ promise to enhance PD diagnostic
precision and throughput. The model’s learning process involves acquiring representations
that strongly correlate with clinical features, specifically disease severity, and levels of
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dopaminergic activity. Previous studies used a framework based on artificial neural
networks (ANN) to analyze EEG data. This framework has been employed to differentiate
individuals with PD from control subjects. The results of this approach have established a
high level of accuracy, with a classification accuracy of 98%. Additionally, the sensitivity
of the framework, which refers to its ability to identify individuals with PD correctly, was
found to be 97%. Moreover, the specificity of the framework, which indicates its capacity
to identify control subjects accurately, was determined to be 100% (Shaban, 2021).

To diagnose PD, the research team led by Shail Raval considers all relevant factors. The
symptoms were the primary focus of this research. These included things like stiffness,
resting tremors, changes in voice, etc. For secure data transport, techniques like checking
for duplicates and identifying faulty nodes are recommended. The proposed method
successfully covers long transmission distances. The concept of retransmission is also
supported (Raval, Balar & Patel, 2020). This research examines acoustic equipment voice
input for PD prediction. Predicting PD in patients involves analyzing the speech patterns
of various individuals. Multilayer perceptron and logistic regression (LR) frameworks were
used to detect PD in a speech dataset (Mei, Desrosiers & Frasnelli, 2021).

The suggested frameworks by Parajuli, Amara & Shaban (2023) begin by categorizing
the sleep EEG time series into three phases of sleep, further converting the segmented
communication in the domain of time-frequency using the constant wavelet transform
and the variationalmode disintegration, and then implementing novel convolutional neural
networks on the time-frequency illustrations. Additionally, the suggested deep-learning
algorithms were utilized to display the traits that allowed for an accurate prediction of
moderate cognitive decline in Parkinson’s disease. In this article (Shaban & Amara, 2022),
we provide a deep-learning method based on a just-proposed 20-layer convolutional
neural network (CNN) used on the visual representation of the Wavelet domain of a
resting-state EEG. The suggested way successfully identified PD and distinguished between
participants with PD who were taking medication and subjects who were not. A deep
learning-based model for the diagnosis of Parkinson’s disease (PD) utilizing resting
state electroencephalogram (EEG) signals is presented in this article (Delfan et al., 2023).
The study aims to create an automated model to extract intricate hidden nonlinear
characteristics from EEG and show how it may be applied to unobserved data.

A workable medical decision-making strategy that aids doctors in identifying patients
with PD was recently developed by Kaur, Aggarwal & Rani (2020). Therefore, several
hyperparameters need to be tweaked and established to evaluate DL algorithms; this
work presents a specific method for optimizing grid searches in design for constructing
an improved DL algorithm to anticipate the early diagnosis of PD. Hyperparameters,
efficiency, and optimization of the DL technique are all part of the grid-searching
optimization approach. Classifying MR images of healthy controls and PD patients using
the DL-NN model is the focus of the research of Sivaranjini & Sujatha (2020). AlexNet, a
CNN architecture, is used to improve PD detection. The MR image is evaluated to yield
accuracy metrics, and a transfer-learned network is then trained on the data. Quan, Ren
& Luo (2021) introduced a Bi-LSTM technique to diagnose PD using a speech signal’s
time-series dynamics. The amount of energy of the under-voiced to unvoiced segment
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and onset to voiced segment transitions is used to assess the flexible speech characteristic.
To improve the accuracy of FOG identification in a real-world home setting, Sigcha
et al. (2020) suggested a unique technique using RNN. For their PD prediction work,
Leung et al. (2021) concentrated on creating DL, an ensemble technique. The first part
of the process involved feature extraction using DaTscan, while the second part involved
feature extraction using medical assessments of motor symptoms. Initial baseline screening
findings four years later were predicted using an ensemble of DNN models trained on
subsets of the retrieved features.

Researchers are using amaterial known as ametal–organic framework (MOF) to capture
hyperpolarized xenon (Zeng et al., 2020; Zhang et al., 2023) selectively. The research
likely investigates how disruptions in calcium balance contribute to the development
and progression of Parkinson’s disease. It may also explore potential treatments or
interventions to restore proper calcium regulation as a therapeutic approach (Zhang
et al., 2022a; Zhu et al., 2021; Shen et al., 2020). This involves monitoring factors like the
driver’s eye movements, heart rate, steering behavior, or other data sources to identify
fatigue-related patterns and features (Wang et al., 2022a; Shen et al., 2023). Neurogenesis
generates new nerve cells, neurons, from neural stem cells or progenitor cells (Zhang
et al., 2022b; Sun et al., 2023). In healthcare, this data might include patient vital signs,
electrocardiogram (ECG) readings, or other types of time-series data (Wang et al., 2022b;
Shan et al., 2023). It entails the application of a low electrical current in an alternating
pattern to specific areas of the brain through electrodes placed on the scalp (Huang et al.,
2023; Xu et al., 2022). This approach can be precious in IoT applications where real-time
responsiveness and adaptability to changing conditions are critical, such as healthcare
monitoring systems (Cheng et al., 2016). The method is designed to retrieve similar lung
CT images from extensive databases efficiently (Zhuang et al., 2022; Zhuang, Jiang & Xu,
2022). It likely utilizes the ORB algorithm, which is employed to detect and describe
critical features within the images (Zhang et al., 2022c). By iteratively improving the image
reconstruction using differential sparse techniques, this approach aims to produce higher-
quality CT images while minimizing radiation exposure (Lu et al., 2023b; Lu et al., 2023a).
Such modeling can be indispensable for various applications in cardiology, including the
study of cardiac function and the development of medical devices (Liu et al., 2023; Hu et
al., 2021).

Existing approaches for diagnosing PD using EEG data have their own set of pros and
cons. Traditional manual diagnosis by expert neurologists offers the advantage of clinical
expertise and the ability to consider various clinical symptoms and medical history in
conjunction with EEG data. However, it can be subjective, time-consuming, and prone
to inter-rater variability. On the other hand, automated machine learning approaches
provide the advantage of objectivity and the potential to process large datasets rapidly.
They can extract intricate patterns from EEG signals that might be challenging for human
observers to discern. However, they often require substantial amounts of labeled data
for training, and the interpretability of their results can be limited. The dense connected
Bi-LSTM architecture represents a promising approach for PD diagnosis using EEG data.
It combines the strengths of bidirectional LSTM networks, capable of capturing temporal
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dependencies in EEG signals in both forward and backward directions, with the benefits
of dense connections that facilitate the flow of information across network layers. This
architecture excels in learning complex patterns and temporal dependencies within EEG
data, making it well-suited for PD diagnosis. By leveraging the recurrent nature of LSTM
networks, it can model long-range dependencies and subtle changes in EEG signals over
time, which are essential for detecting PD-related abnormalities.

METHODS AND MATERIALS
Problem formulation
Given a dataset of EEG recordings, the objective is to develop a novel automated
identification approach for PD using DL techniques. The goal is to accurately classify
individuals as PD-positive or PD-negative based on their EEG signals. Let X be the dataset
consisting of N EEG recordings, where each recording xi corresponds to the EEG signal of
the ith individual. Each EEG recording is signified as a time series of T data points, denoted
as xi= (xi1,xi2,...,xiT ), where xij represents the jth data point in the ith recording.

The objective is to train a deep-learning model to learn the mapping function F that
can automatically identify Parkinson’s disease from the EEG recordings. The model takes
the raw EEG data as input and outputs a classification label yi, indicating whether the
individual is PD-positive (yi= 1) or PD-negative (yi= 0). Formally, the problem can be
represented as follows:

Given the dataset X = {(x1,y1),(x2,y2),...,(xN ,yN )}, where xi represents the EEG
recording for the ith individual and yi represents the corresponding label indicating
PD-positive or PD-negative, the objective is to find the optimum parameters θ of the
deep-learning model F that minimize the classification error:

θ∗=
arg min
θ

1
N

N∑
i=1

L
(
F(xi;θ),yi

)
(1)

where L(·) is a suitable loss function, such as cross-entropy, and F(xi;θ) represents the
output of the deep-learning model with parameters θ for the input EEG recording xi. The
aim is to train the deep-learning model using the proposed densely linked bidirectional
long short-term memory (DLBLSTM) architecture, which leverages the Gabor transform
to convert the raw EEG data into spectrograms. The trained model should demonstrate
excellent performance in terms of classification accuracy, as validated using a robust sixfold
cross-validation method.

Proposed methodology
The raw EEG data from the recordings is pre-processed to remove noise and artifacts. This
step ensures the data is in a suitable format for further analysis. The Gabor transform,
a widely used technique in EEG signal processing, is applied to the pre-processed EEG
data. This transform converts the time-domain EEG signals into spectrograms, which
capture the frequency content of the signals over time. From Fig. 1, the overall structure of
the Parkinson’s disease detection methodology is depicted. The figure visually represents
the different components and their connections within the proposed approach. Figure 1
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Figure 1 The overall structure of Parkinson’s disease detection methodology.
Full-size DOI: 10.7717/peerjcs.1663/fig-1

presents a high-level overview of the method, illustrating the flow and relationship between
the various stages of the automated identification of Parkinson’s disease using deep learning
and EEG analysis.

Filtering techniques play a crucial role in preprocessing EEG signals. Bandpass filtering
is commonly applied to EEG data, as these signals encompass a frequency range of 0.5 Hz
to 100 Hz or even more. This process effectively mitigates unwanted low-frequency
drift and high-frequency noise, ensuring that the underlying neural activity remains
prominent. Additionally, notch filtering is employed to combat power line interference,
typically occurring at 50 Hz or 60 Hz, depending on the geographical region. In parallel,
artifact removal techniques are instrumental in refining EEG data quality. Independent
Component Analysis (ICA) is a powerful tool for blind source separation, effectively
isolating EEG signals into independent components. This separation aids in identifying
and removing artifacts like eye blinks and muscle activity from the EEG dataset.

The proposed deep-learning model, DLBLSTM, is introduced. This architecture is
specifically designed to address the challenges posed by the non-linear, non-stationary,
and complex nature of EEG signals. DLBLSTM represents each layer as the sum of its
hidden state and the hidden states of all layers above it. This representation is recursively
transmitted to all layers below it, allowing for a rich and comprehensive representation
of the EEG data. The DLBLSTM model is trained using the spectrograms obtained from
the Gabor transform as input data. The model learns the underlying patterns and features
distinguishing PD-positive and PD-negative EEG recordings. During training, methods
like backpropagation and gradient descent are used to fine-tune the settings of the model.
Once the DLBLSTM model is trained, it can classify new EEG recordings as PD-positive
or PD-negative. The model takes the spectrogram of the input EEG signal as input and
produces a classification output based on the learned representation of PD-related patterns.
A robust sixfold cross-validation method measures, how well the suggested deep-learning
model performs. The dataset is partitioned into six parts; five are used to train the model,
while the sixth is used to assess its efficacy. This procedure has six iterations, each using
a distinct portion of the data for validation. The classification accuracy is computed to
measure how well the model identifies Parkinson’s disease. Cross-validation with more
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prominent folds (e.g., 10-fold) provides a more accurate estimate of model performance
but can be computationally expensive, especially for complex models or large datasets.
Six-fold cross-validation strikes a balance by offering a reasonable assessment of model
performance while being less computationally intensive than methods with more folds.

Dataset
The open neuro dataset comprises 15 PD patients and 16 HC controls. Its origin may be
traced back to the University of California, (Rockhill et al., 2020). Both groups had similarly
aged and sexed participants who scored again on cognitive tests and were equally likely to
be right-handed. The average duration of their condition was 4.5 to 3.5 years. The data
was collected using a counterbalanced order of PD patients taking or not taking their
medication. During OFF medication recordings, HC individuals went without medication
for at least 12 h, whereas ON medication recordings involved regular dosing. We sampled
at 512 Hz using a 32-channel Bio semi-active Two EEG device. At least 3 min of resting
state EEG data was obtained and pre-processed. Muscle activity artifacts, electrical noise,
eye blinks and motions, and other sounds have all been evaluated and eliminated by hand.
The 0.5 Hz high pass filter has been helpful to all EEG replays.

Gabor transform
The Gabor transform is a mathematical technique used to analyze signals in the time-
frequency domain. It involves convolving a signal with a set of Gabor functions, which are
complex exponential-modulated Gaussian functions. The Gabor transform of a signal can
be obtained by performing a convolution operation in both the time and frequency fields.
The Gabor transform, specifically the Gabor Wavelet Transform, is a valuable tool in signal
processing, including analyzing EEG (Electroencephalogram) signals. One of the primary
advantages of the Gabor transform is its ability to provide time-frequency localization
of signal components. This means it can reveal how the frequency content of a signal
evolves. EEG signals are often non-stationary, meaning their frequency characteristics
change over time. The Gabor transform can capture these changes accurately. The Gabor
transform strikes a good balance between time and frequency resolution, making it suitable
for analyzing signals with both high and low-frequency components. This is important
in EEG analysis, as EEG signals often contain frequencies associated with different brain
activities. While the Gabor transform offers many advantages, other time-frequency
analysis techniques are commonly used for EEG signal analysis, including Short-Time
Fourier Transform (STFT) and Continuous Wavelet Transform (CWT).

The Gabor transform of a continuous-time signal x(t) is specified by the subsequent
equation

X(t ,f )=
∫
∞

−∞

X (τ )g
(
t−τ ,f

)
e−j2π f τdτ (2)

where X(t ,f ) represents the Gabor transform of the signal x(t ) at time t and frequency f .
The function g (t ,f ) represents the Gabor kernel, given by:

g (t ,f )= e
−

t2

2σ2t e j2π ft (3)
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Here, σt represents the standard deviation of the Gaussian window used in the Gabor

transform. The term e
−

t2

2σ2t represents the temporal windowing function, which localizes
the analysis in the time domain. In contrast, e j2π ft represents the complex exponential
modulation that localizes the study in the frequency domain. In practice, the Gabor
transform is often applied to discrete-time signals. The discrete Gabor transform can be
computed using a discrete version of the convolution operation, and theGabor kernel can be
discretized accordingly. TheGabor transform is commonly used in EEG signal processing to
convert raw EEG data into time-frequency representations such as spectrograms. Applying
the Gabor transform to EEG recordings allows the time-varying spectral content of the
signals to be analyzed, enabling the extraction of relevant features for further analysis and
classification tasks.

Densely linked bi directional LSTM (DLBLSTM)
Detecting PD from EEG signals is a challenging task requiring sophisticated machine-
learning models. Dense connected Bi-LSTM (long short-term memory) architecture is one
approach that can be used for this purpose. Combining Bi-LSTM and dense connections
can help capture both temporal dependencies and complex patterns in the EEG data.
RNNs, particularly LSTM networks, have been widely employed in many sophisticated
neural networks for training to categorize, manipulate, and forecast time series because of
their capacity to learn dependence over time recurrently. We will first quickly go through
LSTM and its expansions, then introduce the new DLBLSTM we suggested.

Long short-term memory
LSTM is an RNN architecture intended to process and model sequential data. LSTM
networks excel in collecting long-range relationships in time-series information, making
them a good choice for sequence-based applications like voice recognition, NLP, and
interval forecasting. The critical innovation of LSTM networks is shown in the Fig. 2 lies
in their ability to maintain a memory state over time, allowing them to forget or retain
information from previous time steps selectively. This is achieved through unique gating
mechanisms that control the flow of information within the network.

Cell state (Ct ) acts as the memory of the LSTM and runs along the entire sequence. It
can selectively learn to recall or forget data over time. This continuity of information flow
is what enables LSTMs to maintain long-range dependencies.

Hidden state (ht ) at each time step acts as the LSTM cell’s output and serves as the input
to the next time step. It carries relevant information learned from previous time steps.
Input Gate (i), Forget Gate (f ), and Output Gate (o) are utilized to manage how data enters
and leaves the LSTM cell. There are three gates: the input gate, the forget gate, and the gate
that outputs the result. The input gate supervises the amount of data supplied to the cell
state, the forget gate decides what data is discarded from the cell state, and the output gate
governs how much knowledge leaves and enters the hidden state.

The equations governing the LSTM cell are as follows:

i(t ) = sigmoid(Wi ∗ [ht−1, xt ] + bi) (4)
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Figure 2 Long short-termmemory structure.
Full-size DOI: 10.7717/peerjcs.1663/fig-2

f (t ) = sigmoid(Wf ∗ [ht−1, xt ] + bf ) (5)

o(t ) = sigmoid(Wo ∗ [ht−1, xt ] + bo) (6)

Ĉt = tanh(Wc ∗ [ht−1, xt ] + bc) (7)

Ct = f (t ) ∗ Ct−1 + i(t ) ∗ Ĉt (8)

ht = o(t ) ∗ tanh(Ct ) (9)

In these equations, xt isthe input at time t , and the variables with ‘W ’ and ‘b’ represent
the learnable weights and biases of the LSTM cell. LSTMs have proven very effective in
handling vanishing and exploding gradient problems, which are common issues in training
traditional RNNs on long sequences. Using gating mechanisms, LSTMs can selectively
retain important information and mitigate the vanishing gradient problem, making them
a powerful tool for sequential data processing. Table 1 presents the layered architecture of
the long short-term memory (LSTM) model employed in our research. This architecture
comprises several key layers, each with distinct roles in the model’s overall functioning.

The first layer in our model is an LSTM layer. LSTM units are essential components of
recurrent neural networks, known for their ability to capture long-range dependencies in
sequential data. In this layer, the output shape is specified as (None, 1, 64), indicating that
it generates sequences with a length of 1 and a feature dimension of 64. The parameter
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Table 1 LSTMmodel layered architecture.

Layer (type) Output shape Param

lstm (LSTM) (None, 1, 64) 668,928
dropout (Dropout) (None, 1, 64) 0
lstm1 (LSTM ) (None, 32) 12,416
dropout1 (Dropout ) (None, 32) 0
dense (Dense) (None, 2) 99

count for this layer is 668,928, reflecting the weights and biases learned during training.
Following the LSTM layer, we have a dropout layer. Dropout is a regularization technique
that helps prevent overfitting by randomly setting a fraction of input units to zero during
each forward pass. The second LSTM layer, labeled as lstm1, is designed to reduce the
dimensionality of the sequence output. It transforms the sequence with a length of 1 into
a single vector of 32. Like the previous dropoutlayer , dropout1 is applied to the output of
lstm1. It maintains an output shape of (None,32). The final layer in our LSTM model is a
dense layer, which is a fully connected layer. It takes the output of the previous layer and
produces a final prediction. In this case, the output shape is (None,2), which outputs a
vector of length 2.

Bi-directional LSTM
The LSTM has been expanded into the bi-directional LSTM (Bi-LSTM), which can process
requests in both the forward and backward directions. This makes the Bi-LSTM more
efficient in collecting contextual and relationships in historical data, as it can take into
account details from both previous times and the near future.

The equations for a Bi-LSTM cell, as shown in Fig. 3, combine the forward LSTM and
backward LSTM operations. For forwarding LSTM,

Input Gate (if ):

if (t ) = sigmoid(Wif ∗ [hf (t−1), x(t )] + bif ) (10)

Forget Gate (ff ):

ff (t ) = sigmoid(Wff ∗ [hf (t−1), x(t )] + bff ) (11)

Output Gate (of ):

of (t ) = sigmoid(Wof ∗ [hf (t−1), x(t )] + bof ) (12)

Candidate Cell State (Ĉf ):

Ĉf (t ) = tanh(WCf ∗ [hf (t−1), x(t )] + bCf ) (13)

Cell State (Cf ) Update:

Cf (t ) = ff (t ) ∗ Cf (t−1) + if (t ) ∗ Ĉf (t ) (14)

Hidden State (hf ):

hf (t ) = of (t ) ∗ tanh(Cf (t )) (15)

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1663


Figure 3 Bi-directional long short-termmemory structure.
Full-size DOI: 10.7717/peerjcs.1663/fig-3

where hf (t ) is the hidden state of the forward LSTM at time step t , x(t ) is the input at
time t , and the variables with ‘W ’ and ‘b’ represent the learnable weights and biases of the
forward LSTM. For backward LSTM,

Input Gate (ib):

ib(t ) = sigmoid(Wib ∗ [hb(t+1), x(t )] + bib) (16)

Forget Gate (fb):

fb(t ) = sigmoid(Wfb ∗ [hb(t+1), x(t )] + bfb) (17)

Output Gate (o_b):

ob(t ) = sigmoid(Wob ∗ [hb(t+1), x(t )] + bob) (18)

Candidate Cell State (Ĉb):

Ĉb(t ) = tanh(Wcb ∗ [hb(t+1), x(t )] + bcb) (19)

Cell State (Cb) Update:

Cb(t ) = fb(t ) ∗ Cb(t+1) + ib(t ) ∗ Ĉb(t ) (20)

Hidden State (hb):

hb(t ) = ob(t ) ∗ tanh(Cb(t )) (21)

where hb(t ) is the hidden state of the backward LSTM at time step t , x(t ) is the input at
time t , and the variables with ‘W ’ and ‘b’ represent the learnable weights and biases of the
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Table 2 Layered architecture of DLBLSTM.

Layer (type) Output shape Param

inputsl stm (InputLayer) (None, 178, 1) 0
Dense (Dense) (None, 178, 32) 64
Bidirectional (Bidirectional) (None, 256) 1, 64, 864
Dropout (Dropout) (None, 256) 0
batchn ormalization (BatchNo) (None, 256) 1, 024
dense1 (Dense) (None, 64) 16, 448
dropout2 (Dropout ) (None, 64) 0
batchn ormalization1 (BatchNo) (None, 64) 256
dense3 (Dense) (None, 2) 130

backward LSTM. Bi-LSTMs often combine forward and reverse hidden states into a single
output at each time step t:

hbi(t ) = [hf (t ),hb(t )] (22)

The architecture of the neural network model, as shown in Table 2, is delineated
through a series of interconnected layers, each with specific characteristics. The input
layer (inputsl stm) serves as the point of entry, specifying the input data’s expected shape,
consisting of sequences with a length of 178 and a feature dimension of 1. Subsequently,
the dense layer (Dense) applies a linear transformation to the input, generating an output
sequence with sizes (None,178,32). This transformation involves 64 trainable parameters.
The bidirectional layer (Bidirectional) is a pivotal component, enveloping two LSTM layers
to capture bidirectional dependencies within the input data. As a result, it yields an output
vector of dimension 256, embedding 164,864 trainable parameters. To prevent overfitting,
the dropout layer (Dropout ) is employed, randomly setting a portion of input units to
zero during forward passes without any trainable parameters. The batch normalization
layer (batchnormalization) comes into play, normalizing activations to enhance training
stability, with 1,024 trainable parameters for scaling and shifting. Following this, the dense
layer (dense1) further reduces the data’s dimensionality to 64 dimensions, incorporating
16,448 trainable parameters. Subsequently, the dropout layer (dropout2) reprises its
role in regularization, with no trainable parameters, and is succeeded by the batch
normalization layer (batchnormalization1) with 256 trainable parameters for scaling and
shifting. Lastly, the final output is generated by the dense layer (dense3), producing a vector
of length 2, signifying the model’s ultimate prediction. This layer comprises 130 trainable
parameters. These layers constitute a complex neural network architecture designed
to process sequential data, capture bidirectional information, and produce meaningful
predictions while mitigating overfitting through dropout and stabilizing training with
batch normalization.

Densely linked Bi-LSTM
We present an early version of the densely-connected LSTM network here, which is based
on the idea of densely linked networks. Incorporating skip connections into the densely
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Figure 4 Densely-linked bidirectional LSTM (DLBLSTM) networks.
Full-size DOI: 10.7717/peerjcs.1663/fig-4

linked network nodes is fundamental to our method. Figure 4 depicts this architecture,
with dlt standing for the densely linked hidden unit of the l th layer at the t th time step. In
this research, the strongly interconnected layers show the skip-connections between them.
Connecting and integrating data between the many tiers of a network is what these lines
are for. In contrast to the element-wise additive operation used by the residual learning
framework, the concatenation operation is used here. This replacement counteracts the
performance drop that might occur with direct gradient backpropagation. Densely-
Linked Bidirectional LSTM (DLBLSTM) networks are an innovative method for modeling
temporal patterns that benefit fromdensely linked construction and bi-directional temporal
features.

The DLBLSTM architecture is unique in deep learning in that it features connections
between neighboring layers and levels that are physically separated from one another.
Because of its one-of-a-kind topology, the network’s many groups may exchange data
and communicate more efficiently. Multiple disciplines of study have documented and
investigated information transmission phenomena in both directions simultaneously. The
possible ramifications of this quality, bidirectional information flow, have garnered
much interest. Authors have studied the mechanics and characteristics of two-way
communication. The two-way transmission of information has been investigated through
experiments and theoretical models. It has been shown that DBLSTM’s architecture
eliminates gradient vanishing, boosts feature transmission, promotes the reuse of features,
and significantly lowers the number of variables. It improves the representation of spatial
and short-term temporal features. Two LSTM networks are used to create the DB-LSTM
model’s two-layer architecture. Densely interwoven skip-connections link together these
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LSTM networks. LSTM connections, one running forward and one running reversed, can
simulate the long-term temporal trends in operations. All of the results from each iteration
are merged into one final result. Each DB-LSTM unit is definite as follows:

←→
dt =

[
←−
dt ,
−→
dt
]

(23)

where
←→
dt is the t -th result from DB-LSTM. When LSTM networks are paired with dense

skip-connections, the forward and backward directional outputs at the t th time step are
denoted by

−→
dt and

←−
dt , correspondingly. Concatenation is represented by the letter [,]. The

directions← and→ of the output d are indicative of the forward and backward directions
of the input patterns. The following defines the influence of preceding layers on the output
of the lth layer of the LSTM block d lt at the t th time step:

d lt =
[
hlt
( [

d0t ,d
2
t ,......d

l−1
t
])
,xt
]

(24)

where
[
d0t ,d

2
t ,......d

l−1
t
]
is the sum of the characteristics retrieved from the preceding

levels.
The LSTM layer’s input is X , and it receives features from the previous t time steps.[

hlt
( [

d0t ,d
2
t ,......d

l−1
t
])
, xt

]
represents the output of the previous LSTM layer plus the input feature xt at the t th time
step. The lth LSTM layer, during the tenth time step, is denoted by hlt . The cross-entropy
formula is used to determine the amount of damage.

ψ
(
y,ϕ

)
=−

N∑
k=1

yi

(
ϕi− log

N∑
k=1

exp ϕi

)
(25)

where N is the total number of categories and yi is the ith video’s label. The fusion layer
now includes the scores generated by long-term temporal modeling. A multi-scale sliding
window combines the scores at the end of each time step.

wq=
1

(T−p)p

N−p∑
n=1

n+p∑
m=n

Ebi
t (26)

where T is the total number of time steps (also known as segments), and n is the initial time
step at which the sliding window will begin to operate. The typical synthesis of multi-scale
sliding windows addresses the issue of events occurring at various times.

Table 3 is mentioned about the layered architecture of Bi-LSTM. The architectural
composition of the DLBLSTM model is delineated through a sequence of interconnected
layers, each serving a specific purpose within the neural network’s framework. The initial
layer, the input layer (inputsl stm), acts as the point of entry for themodel, anticipating input
data structured as sequences with a length of 178 and a feature dimension of 1. Following
this, the dense layer (dense) undertakes a linear transformation of the input data, resulting in
an output shape of (None,178,32) and contributing 64 trainable parameters to the model.
The subsequent bidirectional layer is the centerpiece of the architecture, encapsulating two
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Table 3 Layered architecture of Bi-LSTM.

Layer (type) Output shape Param

inputsl stm (InputLayer) (None, 178, 1) 0
Dense (Dense) (None, 178, 32) 64
Bidirectional (Bidirectional) (None, 178, 64) 16640
Dropout (Dropout) (None, 178, 64) 0
dense1 (Dense) (None, 178, 32) 2080
bidirectional1 (Bidirectional) (None, 178, 64) 16640
dropout1 (Dropout ) (None, 178, 64) 0
batchn ormalization (BatchNorm) (None, 178, 64) 256
dense2 (Dense) (None, 178, 2) 130

LSTM layers that process input sequences bidirectionally. This operation yields an output
shape of (None,178,64) and encompasses 16,640 trainable parameters.

The dropout layer (dropout) promotes model generalization, randomly deactivating
a fraction of input units during each forward pass. Importantly, it introduces no
trainable parameters. The ensuing dense layer (dense1) reduces feature dimensionality to
(None,178,32) while incorporating 2,080 trainable parameters. The second bidirectional
layer (bidirectional1)mirrors the operation of its predecessor, processing data bidirectionally
and yielding an output shape of (None,178,64). This layer adds another 16,640 trainable
parameters to the model.

A second dropout layer (dropout1) follows, enhancing regularization without
introducing trainable parameters. To stabilize training and facilitate convergence, the batch
normalization layer (batchnormalization) is incorporated, normalizing activations from the
prior layer and enhancing training stability by introducing 256 trainable parameters for
scaling and shifting.

Lastly, the final dense layer (dense2) generates the model’s output, producing a sequence
of length 178 with two features, denoted as (None,178,2). This layer encompasses
130 trainable parameters. This DLBLSTM architecture is meticulously designed to
effectively process sequential data, capturing past and future context through bidirectional
LSTM layers while maintaining regularization and stability through dropout and batch
normalization layers, ultimately leading to meaningful predictions based on input
sequences.

In Table 4, each hyperparameter is listed. The ‘‘Values to Try’’ column specifies the
different values or options you can experiment with during hyperparameter tuning.
The ‘‘Best Value’’ column indicates the best-performing value or setting for each
hyperparameter based on your validation results.

RESULT AND DISCUSSION
Implementing a densely linked bidirectional long short-term memory (DLBLSTM) model
in Python typically involves deep learning libraries such as TensorFlow or PyTorch.

The train-test-validation split of a dataset, commonly referred to as an 80-10-10 split,
is used approach in this research for partitioning data into three distinct subsets. In this
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Table 4 Hyper parameter tuning.

Hyperparameter Values to try Best value

Number of LSTM layers 1, 2, 3 2
LSTM Units 32, 64, 128 64
Bidirectional True, False True
Dropout rate 0.2, 0.4, 0.6 0.4
Learning rate 0.001, 0.01, 0.1 0.001
Batch size 32, 64, 128 64
Epochs 10, 20, 30 20
Activation function ‘relu’, ‘tanh’, ‘sigmoid’ ‘relu’
Loss function ‘categoricalc rossentropy ’, ‘MSE ’ ‘categoricalc rossentropy ’

setup, 80% of the data is allocated to the training set, 10% to the test set, and another
10% to the validation set. The training set, comprising the largest portion of the data,
plays a pivotal role in training the machine learning model. During the training phase,
the model learns patterns, features, and relationships within the data, which enables it to
make predictions or classifications. It is essentially the foundation upon which the model
is built. The test set, representing 10% of the data, is reserved for evaluating the model’s
performance after training. It serves as an independent dataset that the model has never
seen during its training phase. By assessing the model’s accuracy, precision, recall, or other
relevant metrics on the test set, we gain insights into how well the model generalizes to
new, unseen data. This step is crucial for assessing the model’s real-world applicability and
detecting potential overfitting. The validation set, also consisting of 10% of the data, acts as
an intermediary between training and testing. It helps in tuning hyperparameters, such as
learning rates or regularization strengths, without contaminating the test set. By evaluating
the model’s performance on the validation set during training, adjustments can be made
to optimize the model’s architecture and parameters, leading to better generalization on
the test set and, ultimately, improved model performance.

To assess the performance of PD detection using the DLBLSTMmodel, several standard
evaluation metrics can be used. These measures reveal how well the model distinguishes
between Parkinson’s and other diseases. Precision is the ratio of accurately forecast remarks
to the total number of examples, and it is an indication of how well the model performs
when making forecasts.

Regularization methods constrain the model’s optimization process, discouraging it
from fitting the training data too closely. L1 and L2 regularization techniques add a penalty
term to the loss function based on the model’s weights’ absolute (L1) or squared (L2)
values. They encourage weight values to be small. Dropout randomly deactivates a fraction
of neurons during each training batch. It prevents the model from relying too heavily on
specific neurons and promotes generalization. They are implementing early stopping by
monitoring the model’s performance on a validation dataset during training. If the routine
begins to degrade (e.g., validation loss increases), stop training to prevent overfitting.
Accuracy is the ratio of correct Parkinson’s disease identifications (positive forecasts)
to the total number of positive forecasts. When a model has high precision, it means it
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Table 5 Performance result of the proposed model DLBLSTM.

Performance metrics Normal PD

Accuracy 0.99 1.00
Sensitivity/Recall 0.99 0.99
Specificity 0.99 1.00
Precision 1.00 0.99
F1-Score 0.99 0.99

produces a few erroneous predictions.

Accuracy(A)=
Tpt +Tnt

Tpt +Tnt +Fpt +Fnt
(27)

Known also as ‘‘sensitivity’’ or ‘‘true positive rate’’, recall enumerates the rate at which
positive instances of Parkinson’s disease are correctly forecast qualified to the total number
of positive samples.

Precision(P)=
Tpt

Tpt +Fpt
(28)

Recall(R)=
Tpt

Tpt +Fnt
(29)

The F1-score is the arithmetic mean of recall and accuracy. In the case of unbalanced
datasets, it offers a fair assessment metric.

F1− score(F1)= 2×
P×R
P+R

. (30)

The performance evaluation results for the proposed DLBLSTM model in PD detection
are exposed in Table 5. For the ‘‘Normal’’ class (representing individuals without
Parkinson’s disease), the model demonstrates highly accurate and reliable predictions.
The accuracy is 0.99 (99%), meaning that 99% of the instances in the ‘‘Normal’’ class were
correctly classified. Sensitivity (also known as Recall) is also 0.99 (99%), indicating that
the model correctly identified 99% of the individuals without Parkinson’s disease from the
total number of actual ‘‘Normal’’ class instances. Specificity, which represents the capability
of the model to identify negative instances correctly, is also 0.99 (99%), implying that the
model appropriately recognized 99% of the individuals without Parkinson’s disease out
of all the actual negative instances. The precision for the ‘‘Normal’’ class is 1.00 (100%),
indicating that all the instances classified as ‘‘Normal’’ by the model were indeed true
‘‘Normal’’ class instances. The F1-score is the average of the recall and accuracy scores, is
0.99 (99%), reflecting the balanced performance of the model in the ‘‘Normal’’ class.

For the ‘‘PD’’ class (representing individuals with Parkinson’s disease), the DLBLSTM
model achieves exceptional performance. The accuracy is 1.00 (100%), indicating that all
instances in the ‘‘PD’’ class were correctly classified. The sensitivity/recall for the ‘‘PD’’
class is 0.99 (99%), showing that the model correctly identified 99% of the individuals with
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Parkinson’s disease from the total number of actual ‘‘PD’’ class instances. The specificity is
1.00 (100%), signifying that themodel correctly identified all negative instances (individuals
without Parkinson’s disease) from the total number of negative examples. The precision
for the ‘‘PD’’ class is 0.99 (99%), indicating that 99% of the instances classified as ‘‘PD’’ by
the model were indeed true ‘‘PD’’ class instances. The F1-score for the ‘‘PD’’ class is 0.99
(99%), confirming the balanced performance of the model in detecting individuals with
Parkinson’s disease.

The accuracy and recall sum metric (AUC-ROC) measures how well a model performs
across a range of cutoffs. The area under the receiver operating characteristic (AUC-ROC)
curve has a greater value if the true positive rate is higher than the false positive rate. The
confusion matrix breaks down the model’s predictions in great depth. Predictions are
displayed as either true positives (Tpt ), true negatives (Tnt ), false positives (Fpt ), or false
negatives (Fnt ). To visualize the model’s performance, we may plot the true positive rate
vs. the false positive rate at various classification levels to create an ROC curve.

Figure 5 refers to a visual representation of the performance evaluation results for the
Parkinson’s disease detection model named ‘‘DLBLSTM’’. The reported accuracy values
indicate how well the model performs on the training and testing datasets. The training
accuracy of 100% suggests that the DLBLSTM model achieved perfect accuracy on the
data it was trained on. This means that during the training process, the model could
appropriately predict the labels of all the training samples, leaving no errors in the training
set. The testing accuracy of 99.6% indicates the performance of the DLBLSTM model on
an unseen or ‘‘out-of-sample’’ dataset, which is used to assess the model’s generalization
ability. The model achieved an accuracy of 99.6% on this separate testing dataset, meaning
it correctly predicted the labels of approximately 99.6% of the samples in the test set. It is
significant to communicate that while the training accuracy of 100%might suggest that the
model is performing perfectly, it is essential to interpret this cautiously. A training accuracy
of 100% can indicate potential overfitting, where the model has memorized the training
data without generalizing well to new, unseen data. This is why the testing accuracy is
crucial, as it provides a more realistic assessment of the model’s performance on new data.

Rendering to the findings, a low training loss value, specifically 0.02, indicates that the
model is effectively learning from the training data, as shown in Fig. 6. This implies that
the model can generate precise predictions based on the information it has been exposed.
To assess the model’s generalization capability, it is crucial to evaluate the testing loss,
which in this particular instance is recorded as 0.03. This evaluation determines whether
the model is prone to overfitting, a phenomenon that should be avoided. Overfitting
is a phenomenon observed in machine learning models where the model achieves high
performance on the training data but fails to generalize well to new, unnoticed data. This
is typically indicated by a higher testing loss, which measures the model’s presentation of
the unseen data, compared to the training loss, which procedures the model’s performance
on the training data.

Using a confusion matrix is a common practice in measuring the effectiveness of a
classification model. It involves the construction of a table that facilitates the evaluation
process. The present analysis provides a complete overview of the model’s predictive
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Figure 5 Accuracy on DLBLSTMmodel on Parkinson’s disease detection.
Full-size DOI: 10.7717/peerjcs.1663/fig-5

Figure 6 Loss on DLBLSTMmodel on Parkinson’s disease detection.
Full-size DOI: 10.7717/peerjcs.1663/fig-6
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Figure 7 Confusionmatrix on DLBLSTMmodel on Parkinson’s disease detection.
Full-size DOI: 10.7717/peerjcs.1663/fig-7

performance about the actual ground truth across various classes. Figure 7 presents
a graphical representation or chart showcasing the evaluation metrics associated with
the DLBLSTM model for the recognition of PD. In machine learning and classification
tasks, a confusion matrix is a pivotal assessment tool, thoughtfully structured as a table
housing four distinct values. These values are the true positives (TP), which signify the
instances where the model accurately forecasts the positive class; the true negatives (TN),
representative of instances correctly predicted as the negative class; and the false positives
(FP), denoting those unfortunate occasions when the model erroneously predicts the
positive class, constituting a Type I error. The false negatives (FN) are equally significant,
capturing instances where the model incorrectly anticipates the negative class, embodying
a Type II error. This structured matrix offers a comprehensive view of a classification
model’s performance, enabling the evaluation of its efficacy in distinguishing between
different classes or labels in binary or multiclass classification scenarios. Normalization is
achieved by dividing the counts in the confusion matrix by various factors, typically the
sum of counts in a row or column.

The true negative rate, known as the specificity, is reported to be 0.99 in the DLBLSTM
model. This indicates that the model accurately classified 99% of the instances belonging
to the control class as control. The true positive rate, also known as sensitivity or recall, is
a performance metric used to evaluate the DLBLSTM model’s capacity to accurately label
cases as PD when they correspond to the PD class. In this case, the true positive rate is
1.00, indicating that the model achieved a perfect accuracy of 100% in correctly identifying
all instances from the Parkinson’s disease class as PD. The true positive rate, also referred
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Figure 8 Receiver operating characteristic (ROC) curve.
Full-size DOI: 10.7717/peerjcs.1663/fig-8

to as sensitivity or recall, of 1.00 for PD suggests that the model accurately identified all
instances of PD within the test dataset.

The computation of the ROC curve is a common technique used to assess the
performance of a network. This curve is calculated for both classes to provide a
comprehensive evaluation. The calculation of the area under the curve (AUC) yielded
a value of 0.996, as determined from the ROC curve depicted in Fig. 8. The trained model
demonstrates satisfactory performance, as indicated by the ROC curve’s ability to classify
each class effectively.

To emphasize the performance of the DBLSTM, the proposed method’s results are
contrasted with those of baseline models run on the same dataset.

Table 6 evaluates and compares the performance of several models in the context of
a classification task, with a primary emphasis on accuracy. The accuracy results for each
model are as follows: the convolutional neural network (CNN) achieved an accuracy rate
of 93.6%, suggesting its aptitude for feature extraction, particularly applicable to image
or sequential data. The long short-term memory (LSTM) model achieved an accuracy
of 95.8%, showcasing its suitability for modeling sequential data, commonly employed
in tasks such as natural language processing and time series analysis. The bidirectional
long short-term memory (BI-LSTM) model reached an accuracy of 96.2%, harnessing the
advantages of considering both past and future context, which can be advantageous for
capturing dependencies in sequential data. Impressively, the DLBLSTM model excelled
with a remarkable accuracy of 99.6%, signifying its proficiency in combining bidirectional
LSTM with dense connections, likely tailored to capture intricate temporal dependencies
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Table 6 Proposed model comparison against the base model.

Model Accuracy

CNN 93.6%
LSTM 95.8%
BI-LSTM 96.2%
DLBLSTM 99.6%

within the dataset effectively. These results highlight the varying capabilities of each model,
providing valuable insights into their performance on the classification task.

CONCLUSION AND FUTURE WORK
The current study introduces a novel deep-learning model called densely linked
bidirectional long short-term memory (DLBLSTM) for automated identification of
Parkinson’s disease (PD). Utilizing the Gabor transform in the model facilitates the
conversion of unprocessed EEG data into spectrograms, enabling a more convenient and
manageable representation of the data. The DLBLSTMmodel is based on the bidirectional
LSTM architecture, an RNN type. In this architecture, each network layer incorporates its
hidden state and the hidden states from all the layers above it. This representation is then
recursively propagated to all the layers below it. The spectrogramswere utilized as input data
for training the planned model. The study’s experimental results showcased the remarkable
performance of the scheduled DLBLSTM model in detecting Parkinson’s disease. By
implementing a rigorous sixfold cross-validation technique, the model demonstrated
exceptional performance with a classification accuracy of 99.6%. The outcomes of this
study establish the model’s capacity to accurately and reliably detect Parkinson’s disease
through automated means. While the proposed DLBLSTM model has shown promising
results, several avenues exist for future research and improvement in PD detection.
Expanding the dataset with a more extensive and diverse range of EEG recordings can
enhance the model’s generalizability and real-world applicability. Investigating methods
to make the deep learning model more interpretable will aid clinicians and researchers in
understanding the model’s decision-making process and identifying crucial biomarkers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by the Deanship of Scientific Research at King Khalid University
through large group Research Project under grant number (RGP2/117/44), Princess
Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R203), Princess Nourah bint Abdulrahman University, Riyadh, Saudi
Arabia. Research Supporting Project number(RSPD2023R787), King Saud University,
Riyadh, Saudi Arabia, Prince Sattam bin Abdulaziz University project number
(PSAU/2023/R/1444), and by the Future University in Egypt (FUE). The funders had

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 24/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1663


no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Deanship of Scientific Research at King Khalid University: RGP2/117/44.
Princess Nourah bint Abdulrahman University Researchers: PNURSP2023R203.
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia: RSPD2023R787.
Prince Sattam bin Abdulaziz University: PSAU/2023/R/1444.
The Future University in Egypt (FUE).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Marwa Obayya conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.
• Muhammad Kashif Saeed conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, and approved the final draft.
• Mashael Maashi conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, and approved the final draft.
• Saud S. Alotaibi performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.
• Ahmed S. Salama performed the experiments, performed the computation work,
authored or reviewed drafts of the article, and approved the final draft.
• Manar Ahmed Hamza performed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at OpenNeuro, ds002778, https://openneuro.org/datasets/ds002778/
versions/1.0.2, doi: 10.18112/openneuro.ds002778.v1.0.2.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1663#supplemental-information.

REFERENCES
Cecere C, Corrado C, Polikar R. 2014. Diagnostic utility of EEG based biomarkers

for Alzheimer’s disease. In: 2014 40th annual northeast bioengineering conference
(NEBEC). Piscataway: IEEE, 1–2.

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 25/29

https://peerj.com
https://openneuro.org/datasets/ds002778/versions/1.0.2
https://openneuro.org/datasets/ds002778/versions/1.0.2
http://dx.doi.org/10.18112/openneuro.ds002778.v1.0.2
http://dx.doi.org/10.7717/peerj-cs.1663#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1663#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1663


Cheng B, Zhu D, Zhao S, Chen J. 2016. Situation-aware IoT service coordination
using the event-driven SOA paradigm. IEEE Transactions on Network and Service
Management 13(2):349–361 DOI 10.1109/TNSM.2016.2541171.

Delfan N, Shahsavari M, Hussain S, Damaševičius R, Acharya UR. 2023. A hybrid
deep spatio-temporal attention-based model for Parkinson’s disease diagnosis using
resting state EEG signals. ArXiv preprint. arXiv:2308.07436.

Department Human Services, National Health. 2001. Stem cells: scientific progress and
future research directions. CreateSpace Independent Publishing Platform.

Gao C, Sun H,Wang T, TangM, Bohnen NI, Müller ML, Herman T, Giladi N, Kalinin
A, Spino C. 2018.Model-based and model-free machine learning techniques for
diagnostic prediction and classification of clinical outcomes in Parkinson’s disease.
Scientific Reports 8(1):7129 DOI 10.1038/s41598-018-24783-4.

Hu F, Shi X,Wang H, Nan N,Wang K,Wei S, Li Z, Jiang S, Hu H, Zhao S. 2021. Is
health contagious?—based on empirical evidence from China family panel studies’
data. Frontiers in Public Health 9:691746 DOI 10.3389/fpubh.2021.691746.

Huang H, Zhang B, Zhong J, Han G, Zhang J, Zhou H, Mao T, Liu Y. 2023. The
behavior between fluid and structure from coupling system of bile, bile duct, and
polydioxanone biliary stent: a numerical method.Medical Engineering & Physics
113:103966 DOI 10.1016/j.medengphy.2023.103966.

Kaur S, Aggarwal H, Rani R. 2020.Hyper-parameter optimization of deep learning
model for prediction of Parkinson’s disease.Machine Vision and Applications
31:1–15 DOI 10.1007/s00138-020-01078-1.

KochM, Geraedts V,Wang H, Tannemaat M, Bäck T. 2019. Automated machine
learning for EEG-based classification of Parkinson’s disease patients. In: 2019 IEEE
international conference on big data (Big Data). Piscataway: IEEE, 4845–4852.

Lee S, Hussein R, McKeownMJ. 2019. A deep convolutional-recurrent neural network
architecture for Parkinson’s disease EEG classification. In: 2019 IEEE global confer-
ence on signal and information processing (GlobalSIP). Piscataway: IEEE, 1–4.

Leung KH, Rowe SP, PomperMG, Du Y. 2021. A three-stage, deep learning, ensemble
approach for prognosis in patients with Parkinson’s disease. EJNMMI Research
11(1):1–14 DOI 10.1186/s13550-021-00795-6.

Liu Y, Huang Y-X, Zhang X, QiW, Guo J, Hu Y, Zhang L, Su H. 2020. Deep C-LSTM
neural network for epileptic seizure and tumor detection using high-dimension EEG
signals. IEEE Access 8:37495–37504 DOI 10.1109/ACCESS.2020.2976156.

LiuM, Zhang X, Yang B, Yin Z, Liu S, Yin L, ZhengW. 2023. Three-dimensional model-
ing of heart soft tissue motion. Applied Sciences 13(4):2493 DOI 10.3390/app13042493.

Lu S, Liu S, Hou P, Yang B, LiuM, Yin L, ZhengW. 2023a. Soft tissue feature tracking
based on deepmatching network. CMES-Computer Modeling in Engineering &
Sciences 136(1).

Lu S, Yang B, Xiao Y, Liu S, LiuM, Yin L, ZhengW. 2023b. Iterative reconstruction of
low-dose CT based on differential sparse. Biomedical Signal Processing and Control
79:104204 DOI 10.1016/j.bspc.2022.104204.

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 26/29

https://peerj.com
http://dx.doi.org/10.1109/TNSM.2016.2541171
http://arXiv.org/abs/2308.07436
http://dx.doi.org/10.1038/s41598-018-24783-4
http://dx.doi.org/10.3389/fpubh.2021.691746
http://dx.doi.org/10.1016/j.medengphy.2023.103966
http://dx.doi.org/10.1007/s00138-020-01078-1
http://dx.doi.org/10.1186/s13550-021-00795-6
http://dx.doi.org/10.1109/ACCESS.2020.2976156
http://dx.doi.org/10.3390/app13042493
http://dx.doi.org/10.1016/j.bspc.2022.104204
http://dx.doi.org/10.7717/peerj-cs.1663


Mei J, Desrosiers C, Frasnelli J. 2021.Machine learning for the diagnosis of Parkin-
son’s disease: a review of literature. Frontiers in Aging Neuroscience 13:633752
DOI 10.3389/fnagi.2021.633752.

Michel CM, Brunet D. 2019. EEG source imaging: a practical review of the analysis steps.
Frontiers in Neurology 10:325 DOI 10.3389/fneur.2019.00325.

Mostafa SA, Mustapha A, MohammedMA, Hamed RI, Arunkumar N, Abd Ghani
MK, Jaber MM, Khaleefah SH. 2019. Examining multiple feature evaluation and
classification methods for improving the diagnosis of Parkinson’s disease. Cognitive
Systems Research 54:90–99 DOI 10.1016/j.cogsys.2018.12.004.

Okuma Y, de Lima ALS, Fukae J, Bloem BR, Snijders AH. 2018. A prospective study of
falls in relation to freezing of gait and response fluctuations in Parkinson’s disease.
Parkinsonism & Related Disorders 46:30–35 DOI 10.1016/j.parkreldis.2017.10.013.

Parajuli M, Amara AW, ShabanM. 2023. Deep-learning detection of mild cognitive
impairment from sleep electroencephalography for patients with Parkinson’s disease.
PLOS ONE 18(8):e0286506 DOI 10.1371/journal.pone.0286506.

PoeweW, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E,
Lang AE. 2017. Parkinson disease. Nature Reviews Disease Primers 3(1):1–21.

Quan C, Ren K, Luo Z. 2021. A deep learning based method for Parkinson’s dis-
ease detection using dynamic features of speech. IEEE Access 9:10239–10252
DOI 10.1109/ACCESS.2021.3051432.

Raval S, Balar R, Patel V. 2020. A comparative study of early detection of parkinson’s
disease using machine learning techniques. In: 2020 4th international conference on
trends in electronics and informatics (ICOEI)(48184). Piscataway: IEEE, 509–516.

Rockhill AP, Jackson N, George J, Aron A, Swann NC. 2020.UC San Diego resting
state EEG data from patients with Parkinson’s disease. OpenNeuro. [Dataset].
DOI 10.18112/openneuro.ds002778.v1.0.4.

ShabanM. 2021. Automated screening of parkinson’s disease using deep learning based
electroencephalography. In: 2021 10th international IEEE/EMBS conference on neural
engineering (NER). Piscataway: IEEE, 158–161.

ShabanM, Amara AW. 2022. Resting-state electroencephalography based deep-
learning for the detection of Parkinson’s disease. PLOS ONE 17(2):e0263159
DOI 10.1371/journal.pone.0263159.

Shan Y,Wang H, Yang Y,Wang J, ZhaoW, Huang Y,Wang H, Han B, Pan N, Jin X.
2023. Evidence of a large current of transcranial alternating current stimulation
directly to deep brain regions.Molecular Psychiatry 1–9.

Shen Y, Ding N, Zheng H-T, Li Y, YangM. 2020.Modeling relation paths for knowl-
edge graph completion. IEEE Transactions on Knowledge and Data Engineering
33(11):3607–3617.

Shen X, Du S-C, Sun Y-N, Sun PZ, Law R,Wu EQ. 2023. Advance scheduling for chronic
care under online or offline revisit uncertainty. IEEE Transactions on Automation
Science and Engineering.

Shi X,Wang T,Wang L, Liu H, Yan N. 2019.Hybrid convolutional recurrent neural
networks outperform CNN and RNN in task-state EEG detection for Parkinson’s

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 27/29

https://peerj.com
http://dx.doi.org/10.3389/fnagi.2021.633752
http://dx.doi.org/10.3389/fneur.2019.00325
http://dx.doi.org/10.1016/j.cogsys.2018.12.004
http://dx.doi.org/10.1016/j.parkreldis.2017.10.013
http://dx.doi.org/10.1371/journal.pone.0286506
http://dx.doi.org/10.1109/ACCESS.2021.3051432
http://dx.doi.org/10.18112/openneuro.ds002778.v1.0.4
http://dx.doi.org/10.1371/journal.pone.0263159
http://dx.doi.org/10.7717/peerj-cs.1663


disease. In: 2019 Asia-Pacific signal and information processing association annual
summit and conference (APSIPA ASC). Piscataway: IEEE, 939–944.

Sigcha L, Costa N, Pavón I, Costa S, Arezes P, López JM, De Arcas G. 2020. Deep
learning approaches for detecting freezing of gait in Parkinson’s disease patients
through on-body acceleration sensors. Sensors 20(7):1895 DOI 10.3390/s20071895.

Sivaranjini S, Sujatha C. 2020. Deep learning based diagnosis of Parkinson’s dis-
ease using convolutional neural network.Multimedia Tools and Applications
79:15467–15479 DOI 10.1007/s11042-019-7469-8.

Sun L, ZhangM,Wang B, Tiwari P. 2023. Few-shot class-incremental learning for
medical time series classification. IEEE Journal of Biomedical and Health Informatics.

Wagh N, Varatharajah Y. 2020. Eeg-gcnn: augmenting electroencephalogram-based
neurological disease diagnosis using a domain-guided graph convolutional neural
network. In:Machine Learning for Health. PMLR, 367–378.

Wang F,Wang H, Zhou X, Fu R. 2022a. A driving fatigue feature detection method
based on multifractal theory. IEEE Sensors Journal 22(19):19046–19059
DOI 10.1109/JSEN.2022.3201015.

Wang H,Wang K, Xue Q, PengM, Yin L, Gu X, Leng H, Lu J, Liu H,Wang D. 2022b.
Transcranial alternating current stimulation for treating depression: a randomized
controlled trial. Brain 145(1):83–91 DOI 10.1093/brain/awab252.

Xu Y, Zhang F, ZhaiW, Cheng S, Li J, Wang Y. 2022. Unraveling of advances in 3D-
printed polymer-based bone scaffolds. Polymers 14(3):566
DOI 10.3390/polym14030566.

Zeng Q, Bie B, Guo Q, Yuan Y, Han Q, Han X, ChenM, Zhang X, Yang Y, LiuM.
2020.Hyperpolarized Xe NMR signal advancement by metal-organic framework
entrapment in aqueous solution. Proceedings of the National Academy of Sciences of
the United States of America 117(30):17558–17563.

Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, ElsonMJ, Spear KL,
Glidden AM, Little MA, Terzis A, Dorsey ER, Saria S. 2018. Using smartphones
and machine learning to quantify parkinson disease severity: the mobile parkinson
disease score. JAMA Neurology 75(7):876–880 DOI 10.1001/jamaneurol.2018.0809.

Zhang Y. 2017. Can a smartphone diagnose parkinson disease? A deep neural network
method and telediagnosis system implementation. Parkinson’S Disease 2017.

Zhang X, Huang D, Li H, Zhang Y, Xia Y, Liu J. 2023. Self-training maximum classifier
discrepancy for EEG emotion recognition. CAAI Transactions on Intelligence
Technology.

Zhang J, Shen Q, Ma Y, Liu L, JiaW, Chen L, Xie J. 2022a. Calcium Homeosta-
sis in Parkinson’s disease: from pathology to treatment. Neuroscience Bulletin
38(10):1267–1270 DOI 10.1007/s12264-022-00899-6.

Zhang Z,Wang L, ZhengW, Yin L, Hu R, Yang B. 2022c. Endoscope image mosaic
based on pyramid ORB. Biomedical Signal Processing and Control 71:103261
DOI 10.1016/j.bspc.2021.103261.

Zhang K, Yang Y, Ge H,Wang J, Lei X, Chen X,Wan F, Feng H, Tan L. 2022b.
Neurogenesis and proliferation of neural stem/progenitor cells conferred by

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 28/29

https://peerj.com
http://dx.doi.org/10.3390/s20071895
http://dx.doi.org/10.1007/s11042-019-7469-8
http://dx.doi.org/10.1109/JSEN.2022.3201015
http://dx.doi.org/10.1093/brain/awab252
http://dx.doi.org/10.3390/polym14030566
http://dx.doi.org/10.1001/jamaneurol.2018.0809
http://dx.doi.org/10.1007/s12264-022-00899-6
http://dx.doi.org/10.1016/j.bspc.2021.103261
http://dx.doi.org/10.7717/peerj-cs.1663


artesunate via FOXO3a/p27Kip1 axis in mouse stroke model.Molecular Neurobiology
59(8):4718–4729 DOI 10.1007/s12035-021-02710-5.

Zhu Y, Huang R,Wu Z, Song S, Cheng L, Zhu R. 2021. Deep learning-based predictive
identification of neural stem cell differentiation. Nature Communications 12(1):2614
DOI 10.1038/s41467-021-22758-0.

Zhuang Y, Chen S, Jiang N, HuH. 2022. An effective WSSENet-based similarity
retrieval method of large lung CT image databases. KSII Transactions on Internet &
Information Systems 16(7).

Zhuang Y, Jiang N, Xu Y. 2022. Progressive distributed and parallel similarity retrieval
of large CT image sequences in mobile telemedicine networks.Wireless Communica-
tions and Mobile Computing 2022:1–13.

Obayya et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1663 29/29

https://peerj.com
http://dx.doi.org/10.1007/s12035-021-02710-5
http://dx.doi.org/10.1038/s41467-021-22758-0
http://dx.doi.org/10.7717/peerj-cs.1663

