
Submitted 15 May 2023
Accepted 2 October 2023
Published 10 November 2023

Corresponding author
Yafang Li, yafangli2014@163.com

Academic editor
Lisu Yu

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1659

Copyright
2023 Feng et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

BiMGCL: rumor detection via bi-
directional multi-level graph contrastive
learning
Weiwei Feng1, Yafang Li2, Bo Li1, Zhibin Jia1 and Zhihua Chu2

1 School of Computer Science and Engineering, Beihang University, Beijing, Beijing, China
2 Faculty of lnformation Technology, Beijing University of Technology, Beijing, Beijing, China

ABSTRACT
The rapid development of large language models has significantly reduced the cost of
producing rumors, which brings a tremendous challenge to the authenticity of content
on social media. Therefore, it has become crucially important to identify and detect
rumors. Existing deep learning methods usually require a large amount of labeled data,
which leads to poor robustness in dealing with different types of rumor events. In
addition, they neglect to fully utilize the structural information of rumors, resulting in
a need to improve their identification and detection performance. In this article, we
propose a new rumor detection framework based on bi-directional multi-level graph
contrastive learning, BiMGCL, which models each rumor propagation structure as bi-
directional graphs and performs self-supervised contrastive learning based on node-
level and graph-level instances. In particular, BiMGCL models the structure of each
rumor event with fine-grained bidirectional graphs that effectively consider the bi-
directional structural characteristics of rumor propagation and dispersion. Moreover,
BiMGCL designs three types of interpretable bi-directional graph data augmentation
strategies and adopts both node-level and graph-level contrastive learning to capture
the propagation characteristics of rumor events. Experimental results on real datasets
demonstrate that our proposed BiMGCL achieves superior detection performance
compared against the state-of-the-art rumor detection methods.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and
Speech, Neural Networks
Keywords Graph mining, Rumor detection, Graph representation learning, Graph contrastive
learning, Graph data augmentation

INTRODUCTION
The increasing use of social media has accelerated the distribution of misleading or
unreliable information on a broad scale, which seriously jeopardizes the stability of the
online environment (Fu & Sui, 2022). False information, particularly malevolent rumors,
can mislead the public, have an impact on individual lives, undermine social order, and
even have broad repercussions on the economy and politics at the federal level. Notably,
the advent of OpenAI’s ChatGPT has significantly lowered the cost of generating rumors,
with News Guard considering it the most powerful tool for spreading false information
in internet history (Jack Brewster, 2023). Consequently, the development of an effective
rumor detection method is of utmost importance.
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Rumor detection has long been an important research area in natural language
processing. Recently, there are various deep learning-based approaches proposed to combat
the ever-changing landscape of rumor information. Thesemethods can be broadly classified
into feature-based detection methods and graph-based detection methods. Feature-based
detection methods, including recurrent neural networks (RNNs) such as long short term
memory (LSTM) and gated recurrent unit (GRU) networks, and their variants, effectively
capture the temporal relationships between posts in rumor propagation chains (Ma et
al., 2016; Wu et al., 2020). Convolutional neural network (CNN)-based methods excel at
learning local spatial feature representations (Rani, Das & Bhardwaj, 2021; Yu et al., 2017),
focusing on detecting rumors by leveraging text content, user features, and propagation
patterns extracted from large datasets. However, these methods study isolated features and
overlook the structural information of rumor propagation, making them susceptible to
evasion by polymorphic rumor variants.

Inspired by recent advances in graph neural networks, methods like Bi-Directional
Graph Convolutional Network (BiGCN) (Bian et al., 2020), Edge-enhanced Bayesian
Graph Convolutional Network (EBGCN) (Wei et al., 2021), propagation path aggregating
(PPA) neural network (Zhang et al., 2021), Graph-aware Co-Attention Networks (GCAN)
(Lu & Li, 2020), Factual News Graph (FANG) (Nguyen et al., 2020), global-local attention
network (GLAN) (Yuan et al., 2019), incorporate propagation structure information
into rumor detection models. These graph-based methods learn more comprehensive
representations and fully exploit the interaction between pieces of rumor information,
revealing the inherent patterns of rumor propagation.

However, existing deep learning-based detectionmodels rely heavily on large amounts of
labeled data for supervision (Liu et al., 2021). To our best knowledge, acquiring high-quality
training data with fine-grained labels, especially for rumor information, is challenging and
time-consuming. Consequently, current deep learning-based detection models struggle to
effectively detect advanced rumor variants.

Rumor propagation has evolved from known rumors to emergent rumors that arise
alongside trending events on social media platforms. These rumor events tend to be sudden
and may emerge from various fields with distinct backgrounds. Neural networks trained
via supervised learning strongly depend on the data distribution of existing datasets,
which makes them less robust when dealing with different rumor events. Moreover, the
bi-directional structure of rumor events is often overlooked. Some existing methods, such
as Rumor Detection on social media with Event Augmentations (RDEA) (He et al., 2021),
rumor detection based on graph attention network (RDGAT) (Lv et al., 2022), Temporal
Incorporating Structure Networks (TISN) (Luo et al., 2022), User-aspect Multi-view
Learning with Attention for Rumor Detection (UMLARD) (Chen et al., 2022), ignore the
simultaneous propagation and dispersion structures in rumor events. Learning solely
from the propagation structure of rumors makes it difficult to obtain comprehensive
and complete high-level structural information. Bi-directional rumor representations can
extract structural information from multiple perspectives and augment the model’s ability
to discriminate rumor events. Lastly, current methods struggle to cope with label-sparse
scenarios. In such situations, it is crucial to maximize the quality of model training with
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limited dataset sizes. This raises the question of how to best utilize limited data and leads
to the innovations presented in our work.

In this article, we propose BiMGCL, a new multi-level bi-directional graph contrastive
learning approach for more robust and effective rumor detection. By processing
both top-down and bottom-up rumor structure information, BiMGCL leverages bi-
directional features of rumor propagation and dispersion. Additionally, self-supervised
data augmentation methods are used for model pre-training. Ultimately, the trained model
is used to detect and classify social media rumor events. Specifically, the bi-directional
representation of the rumor event is obtained by composing graphs of the propagation
and dispersion directions of the rumor event, respectively. We then use three effective
data augmentation methods: Responded posts attribute masking, subsampling, and edge
modification, which results in a rich set of sample instances. Next, we construct positive and
negative sample pairs, where original samples and their augmented samples form positive
pairs and different samples form negative pairs. Using a multi-level contrastive learning
approach combined with the bi-directional graphs of rumor events, we pull the positive
sample pairs closer while pushing negative sample pairs apart, ultimately completing the
model pre-training. Additionally, during the convolution process, we concatenate the
original root features in the feature matrix to augment the influence of the rumor root.
Finally, we fine-tune the model using a portion of the rumor data to achieve a more robust
rumor detection method with better generalization performance.

In summary, the contributions of this article are as follows:

• We propose a novel multi-level bi-directional graph contrastive learning framework,
BiMGCL. To the best of our knowledge, this is the first study to introduce multi-level
bi-directional graph contrastive learning into rumor detection tasks. The framework
achieves efficient rumor detection by self-supervisedly identifying advanced rumor
variants through comparing distinguishable patterns among instances of rumor
propagation graphs.
• We design three types of bi-directional graph data augmentation methods, which take
advantage of the causal features of top-down propagation of rumors through relational
chains and the structural features of rumor dispersion within communities obtained
through bottom-up aggregation, for generating complex high-level positive and negative
bi-directional graph pairs, alleviating the inductive bias and improving the effectiveness
of rumor detection.
• We conduct extensive experiments using the Twitter15 and Twitter16 datasets,
demonstrating that BiMGCL outperforms other state-of-the-art (SOTA) methods.

RELATED WORK
Feature-based rumor detection
In recent years, because of the effectiveness of machine learning in handling huge numbers
of labeled samples, feature-based approaches to rumor detection have been widely studied
with the aim of extracting representative features to detect rumor events.
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The most crucial step in traditional rumor detection methods is selecting and extracting
prominent features from the data. Castillo, Mendoza & Poblete (2011) studied Twitter posts
on popular topics and extracted 68 features related to user posting and retweeting, original
post topics, and post text. They then used decision trees for automatic classification. Yang et
al. (2012)were the first to analyze and detect rumors on Chinese microblog. They extracted
two new features, posting location and posting client, from the data and combined them
with information text and propagation structure features, using support vector machine
(SVM) for classification. Kwon et al. (2013) investigated the time, structure, and text
of rumor propagation and proposed a new cyclical time-series model. Ma et al. (2015)
replaced manual feature extraction with a tree kernel method and proposed propagation
tree kernel, a method extracts higher-order features that distinguish different types of
rumors by comparing the similarities between propagation tree structures and then uses
SVM for rumor recognition.

In recent years, many rumor detectionmethods have employed deep learning techniques
for feature extraction and classification of rumors. Ma et al. (2016) were the first to use
deep learning models for rumor detection on microblogs. They utilized the loops formed
by connections between units in recurrent neural networks (RNNs) to capture dynamic
temporal signal features of rumor propagation. Early rumor detection could be achieved
through complex repeating units and additional hidden layers. Similar approaches include
long short-termmemory (LSTM) (Liu & Wu, 2018), gated recurrent units (GRU) (Lu & Li,
2020) andCNN (Yu et al., 2017). Because the temporal structure features can only represent
the sequential propagation of rumors, these methods still have significant shortcomings. A
large number of abundant and important structural features are also hidden by the spread
of rumors, or the forwarding relationships.

However, most of the above-mentioned feature-based techniques overuse isolated
features and are unable to identify the interaction between different rumor messages as
well as the propagation patterns of rumors. To solve these problems, BiMGCL introduces
bi-directional graph to simulate the interactions between different rumors, which can
effectively capture the intrinsic interactions between rumor messages.

Graph-based rumor detection
In contrast to feature-based methods, various graph-based approaches have been put forth
recently. These approaches perform better because they place a greater emphasis on the
structure data of rumor events. In order to capture rich structural information for rumor
detection, the global-local attention network (GLAN) (Yuan et al., 2019) models the global
relationship between all source tweets, retweets, and users as a heterogeneous graph. This
method produces a better integrated representation for each source tweet by co-encoding
local semantic and global structural information and fusing the semantic information of
relevant retweets with attention mechanisms. The Factual News Graph (FANG) (Nguyen
et al., 2020) enhances the quality of the representation by capturing more social structure
and engagement patterns based on the heterogeneous network. To learn the correlation
between the source tweet and retweet propagation as well as the co-influence between the
source tweet and user engagement, A graph-aware co-attention network (GCAN) (Lu &
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Li, 2020) develops a dual co-attention technique based on the graph structure. Rumor2vec
(Tu et al., 2021) proposes the concept of the union graph to merge multiple propagation
trees into a large graph when there are shared nodes and edges.

Graph convolutional networks (GCN) have been designed to enable neural networks to
learn structured data representations. Based onCNNs,GCNs define convolution operations
on graph structures, allowing nodes to integrate features with their neighborhoods. They
are widely used in graph node classification and graph structure classification tasks.
Bi-GCN (Bian et al., 2020) encodes and trains bi-directional rumor structures using graph
convolutional networks, marking the first study to use GCNs for social media rumor
detection. EBGCN (Wei et al., 2021) explore propagation uncertainty for rumor detection,
which adaptively rethinks the reliability of latent relations by adopting a Bayesian approach.
In recent studies, UMLARD (Chen et al., 2022) and TISN (Luo et al., 2022) employ GCN
to learn the patterns of rumor propagation,they models rumor diffusion from multi-view
perspective, using more information about rumors. However, they all relies on a large
amount of labeled data, and supervised training struggles to cope with the real-time changes
in social networks. RDEA (He et al., 2021) addresses this issue by using a self-supervised
training approach, it expands data through various data augmentation methods and trains
the encoding network using contrastive learning methods, ultimately achieving rumor
event detection. However, similar to the issues present in the recent studies of UMLARD
and TISN, they only utilizes the unidirectional propagation structure of rumor events, and
thus, cannot deeply mine the dispersion structure information of rumor samples, resulting
in significant limitations.

METHODOLOGY
Motivated by the successes of contrastive learning in graph representation learning
tasks (Wang et al., 2020; Jin et al., 2021; Yu et al., 2022; Chen & Kou, 2023), we propose
the BiMGCL model as illustrated in Fig. 1 to study the effectiveness of the bi-directional
multi-level graph contrastive learning for rumor detection. Concretely, our model mainly
consists of four components: bi-directional graph construction, multi-strategy graph
augmentation, multi-level contrastive learning-based rumor detection, and fine-tuning.
Given the bi-directional graphs of the rumor samples from diverse rumor events, we
attempt to map them to different clusters using a graphical isomorphic network (GIN)
based contrastive learning method. Therefore, the key issues to be addressed by our
proposed BiMGCL model are as follows.

Issue 1: In rumor detection tasks, how to model the fine-grained and comprehensive
samples (‘Bi-directional graph construction’)? Issue 2: How should the effective positive
and negative sample pairs for bi-directional graphs be constructed (‘Multi-strategy graph
augmentation’)? Issue 3: How can the multi-level representations of the bi-directional
rumor graphs be learned (‘Multi-level contrastive learning-based rumor detection’)?
Issue 4: What are the discrimination rules (‘Discriminator-based rumor detection’)?
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Figure 1 The general framework of BiMGCL. The framework is made up of the following four parts:
(A) Bi-directional graph construction intends to model the propagation and dispersion of rumors using a
bi-directional graph gi to construct a rumor propagation structure with rumor propagation and diffusion
properties. (B) In multi-strategy graph augmentations, three forms of transformations, such as attribute
masking, subsampling, and edge modification, are used to generate positive and negative instance pairs.
(C) Multi-level contrastive learning-based rumor detection aims to evaluate the agreement between the
nonlinear transformed representations of instance pairs by learning graph-level ιgraph and node-level ιnode
comparisons via a contrastive loss. (D) Fine-tuning aims to fine-tune the pre-trained model for contrast
learning and predicting the target rumor event.

Full-size DOI: 10.7717/peerjcs.1659/fig-1

Problem definition
Assume that C ={c1,c2,...,cm} is the dataset for rumor detection, where ci represents the
ith rumor event. ci=

{
ri,ωi

1,ω
i
2,...,ω

i
ni−1,Gi

}
, where ni denotes the number of posts in this

event, ri is the source post, ωi
j is the jth responsive post, and Gi represents the propagation

structure. Specifically, we useGi to denote a graph 〈Vi,Ei〉, whereVi=
{
ri,ωi

1,ω
i
2,...,ω

i
ni−1

}
and Ei =

{
e ist |s,

}
t =0 ,{...,ni−1} denotes the set of edges between responded posts,

retweeted posts, or responsive posts, and ri is the root node (Ma, Gao & Wong, 2018). The
feature matrix is denoted as Xi=

[
x i0,x

i
1,...,x

i
n
]
, where x ij ∈Rd represents the jth element of

Xi and d denotes the dimension of the feature. Let Ai ∈ {0,1}ni×ni be the adjacency matrix
with the initial value as

a=

{
1, if e ist ∈ Ei
0, otherwise

. (1)

Additionally, our goal is to train a classifier f : C→ Y , where C represents the set of
events and Y denotes the fine-grained classes {N ,F ,T ,U } (i.e., Non-rumor, False Rumor,
True Rumor, and Unverified Rumor). Furthermore, during the model training phase, we
generate Ĝ through data augmentation, and subsequently a classifier f (·) is trained together
with the original G.

Bi-directional graph construction
This article particularly focuses on global features based on the overall structure of rumour
propagation direction, which is an important cue for rumour detection. The depth
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propagation features and breadth propagation features of rumours play an important
role in rumour detection. Unfortunately, traditional temporal structure features and
single rumour spread features ignore the overall structural features of rumour events,
and the inability to exploit these meaningful interactions of information from different
propagation directions leads to a degradation in the performance of these methods.
Obviously, bi-directional graphs are a powerful tool for modelling complex interactions
between information and relationships in different directions. Therefore, to settle Issue1,
using bipartite graphs to model the deep spread of rumours in relational chains and the
wide spread of rumours in social groups is an elegant choice for the rumour detection task.

We construct two different directions for each sample gi: a top-down direction of
propagation and a bottom-up direction of dispersion, i.e., for the direction of rumor
propagation, if ωi

2 has a response to ω
i
1, there will be an directed edge ωi

1→ωi
2, while for

the direction of dispersion, there will be an directed edge ωi
2→ωi

1. We use gTDi and gBUi to
represent these two cases, where the adjacency matrix ATD

i in gTDi contains the top-down
part of Ai and the adjacency matrix ABU

i in gBUi contains the bottom-up part of Ai. Also
the same feature matrix Xi is used for both directions, i.e., XTD

i =XBU
i =Xi.

Finally, as shown in Fig. 1A, we get the fine-grained bi-directional graphs of rumor
samples, which are represented as adjacency matrices ATD

i , ABU
i , and attribute matrix Xi.

Multi-strategy graph augmentation
Recent research has shown that the performance of contrast learning is directly influenced
by the samples of positive and negative instance pairs (Yin et al., 2022; Miao et al., 2022;
Hassani & Khasahmadi, 2020). BiMGCL differs from existing contrastive learning methods
(Li et al., 2022; Zhu et al., 2021; Qiu et al., 2020; You et al., 2020) which only deals with
geometric information in graphs or pure dependencies in a single isomorphic graph, it
aims to produce realistic rumor propagation augmented instances using both top-down and
bottom-up types. Therefore, to resolve issue 2, we take into account both the bi-directional
graph’s structure and attribute information to generate augmented positive and negative
instances. By imposing structural prior or semantic prior, we focused on two directions of
rumor propagation graph data augmentation methods. As illustrated in Fig. 1, responded
posts attribute masking, which merely modifies the attribute matrix, is a semantic level
augmentation method. On the contrary, subsampling and edge modification belong to
structure-level augmentation, and they transform the adjacency matrix.

Responded posts attribute masking
As shown in Fig. 1B, we extend the node attribute masking in adaptive graph augmentation
(AGA) (Wang et al., 2023) and graph contrastive learning (GraphCL) (You et al., 2020)
to transform the attribute matrix of rumor sample trees. Malicious users intentionally
spread rumors during rumor propagation, usually motivated by financial or non-financial
benefits (such as power and fame), while gullible users are vulnerable, everyday users
who unintentionally contribute to the spread of false rumors because they mistake the
false rumors for the truth. Therefore, placing too much faith on those who spread rumor
information could have negative consequences. To solve this problem, we mask the
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propagation tree’s node features at random throughout each training stage, with the
exception of the root node. For a given rumor instance graph gi in the Twitter datasets with
its Xi and Ai, denoted as (Ai,Xi), we formulate the transformation function 0mask as:

0mask(Ai,Xi)= (Ai,0
mask(Xi)). (2)

Formally, we use 0mask to randomly mask a node attribute vector Xi:

0mask(Xi)=Xi ∗ (1−Mi)+V ∗Mi (3)

where Mi ∈ {0,1} indicates whether the node attribute is masked, generated with a certain
probability. V ∼N (µ,σ 2) refers to the masking Gaussian noise, which is used to randomly
mask the attributes of certain responded posts nodes for a given node feature matrix.

Subsampling
Research has found that considering the entire lifecycle of a rumor is crucial for accurately
understanding user behavior and responses. However, the early stages of a rumor’s lifecycle
may exhibit different characteristics. Users’ initial reactions to rumors seem to lean more
towards supporting the rumor, regardless of whether it is true or false. This highlights a
potential challenge for models in detecting rumors at early stages. If the model has too
much information about the entire lifecycle of the event, it may struggle to detect rumors
early on, as users’ behaviors and reactions change over time.

Inspired by the successes of subgraph sampling (You et al., 2020) or uniform sampling
(Xie et al., 2022), we propose a custom random sampling approach for rumor trees that
naturally picks up on the more distinct patterns of various responded posts.

Specifically, given a graph gi, we start a random walk from its root node, moving to its
neighbors with a certain probability pmove and iteratingmultiple times, ultimately obtaining
the sampled subgraph gi_sampling .

Edge modification
Research suggests that when rumors reappear repeatedly, they may become increasingly
real in people’s perception, as a message that is widely circulated and repeatedly reinforced
is regarded as reliable information. To address this issue, we employ edge modification
(EM) (Hu et al., 2020; You et al., 2020; Zhu, Du & Yan, 2020; Jin et al., 2021; Zhang et al.,
2020; Zeng & Xie, 2021), which changes the graph structure by randomly deleting and
inserting a portion of edges, partially perturbing the given graph’s adjacency, resulting
in changes in the propagation path and node correlation of rumors in the network, thus
effectively avoiding the recurrence of information.

Specifically, in the structure of rumor trees, in addition to deleting some edges in the
adjacency matrix, we also add edges so that the number of edges deleted and added is equal.
The advantage of doing this is that the graph can become more complex by adding extra
edges while preserving the original feature attributes. For example, given a modification
ratio p, randomly delete p/2 of the edges in the original adjacency matrix A and randomly
add the same proportion of new edges, making the number of edges deleted and added
equal. The edge deletions and additions in this process are performed independently and
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identically distributed. In particular, given a rumor graph (Ai,Xi), the transformations
function 0EM as:

0EM (Ai,Xi)= (0EM (Ai),Xi) (4)

We define this process as follows, in which ◦ denotes Hadamard product:

0EM (Ai)=Mdrop ◦Ai+Minsert ◦ (1−Ai) (5)

By generating Mdrop and Minsert according to whether the values in Ai and 1−Ai are
equal to 1, randomly masking a portion of the elements with the same probability pmod , we
obtain the masking matrices representing discarded edges and added edges, respectively.
Ultimately, some edges are deleted and added with the same probability.

Figure 1B shows three augmented methods. Given the original instance gi and the
augmented instance aug (gi), the set of graphs obtained after augmentation is defined
as AGi = gi,aug (gi). BiMGCL forms positive instance pairs by combining each original
instance and its corresponding augmented instance, (gi,aug (gi))+. In addition, randomly
selected instances from other samples are used as negative instance pairs, forming
(AGi,AGj)−. Rumor trees adopt both top-down and bottom-up directions. Therefore,
when performing data augmentation, both directions of rumor trees should be augmented
simultaneously to ensure consistency between the data.

Multi-level contrastive learning-based rumor detection
To address issue 3, we use a graph encoder to learn graph-level low-dimensional
representations of different rumor propagation instances. We utilize the Graph
Isomorphism Network (GIN) (Xu et al., 2018), a powerful graph neural network, as
the graph encoder in BiMGCL. GIN has been proven to outperform other GNNs, such as
GCN (Kipf & Welling, 2016) and GraphSAGE (Hamilton, Ying & Leskovec, 2017).

After the original rumor tree samples have undergone the three types of augmentations,
a rich set of sample instances has been generated. We use the GIN network to learn the
hidden structures and semantic information in these tree structures, with the detailed
architecture shown in Fig. 1C. In this process, we place great emphasis on the root node’s
features, as the source posts of rumor events often contain rich information. By making
full use of this, the neural network can learn more accurate abstract semantics of rumor
propagation.

In Fig. 1C, for the ith rumor graph sample gi= (Ai,Xi), where Ai includes both ATD
i and

ABU
i (TD and BU represent the two directions of the rumor tree: Propagation (Top-Down)

andDispersion (Bottom-Up), as shown in Fig. 1A), we adopt the same encoder architecture
for the bi-directional structure. First, we encode the ith sample as follows:

L1,i= LeakyReLU (W T
1 (Ai Xi)+b1) (6)

L̃1,i=CONCAT (L1,i, X root
i ). (7)

In this process, L1,i represents the hidden layer features of the sample after the first layer
of graph convolution, and W T

1 and b1 are parameters of the neural network. LeakyReLU
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is used here as the activation function. The feature vector of each node after encoding
is subsequently concatenated with the feature vector Ri ∈Rd×1 of the root node of the
sample before encoding, which is used to augment the features of the original post of the
rumor event. X root

i = [Ri,Ri,...,Ri]
T , X root

i ∈Rn×d serves as the root node feature matrix
to be concatenated for the ith sample, d is the node feature dimension. Afterward, L̃1,i is
convolved multiple times to extract sample information, similar to the aforementioned
process:

L2,i= LeakyReLU (W T
2 (Ai L̃1,i)+b2) (8)

L̃2,i=CONCAT (L2,i, Lroot1,i ) (9)

L3,i= LeakyReLU (W T
3 (Ai L̃2,i)+b3) (10)

Lgi = L̃3,i=CONCAT (L3,i, Lroot2,i ). (11)

After passing the ith sample gi through the same encoder L, we can obtain the bi-
directional graph encoding representation of gi as Lgi = (LTDgi ,L

BU
gi ). A multi-level contrast

is then performed, taking into account both the property augmentation of the local
structure and the global topological high-level information.

For the node-level contrastive loss, we consider each direction of the bi-directional graph
separately, following the steps below. For sample gi, we construct positive instance pairs
using the encoded original graph Lgi and its augmented graph Laug (gi) as: (Lgi,Laug (gi))

+.
Any distinct samples form negative instance pairs: (LAGi,LAGj )

−. We use ιnode to denote the
node-level contrastive loss. The contrastive loss for the positive instance pair of gi is defined
as ιposnode(gi), and the contrastive loss for the negative instance pair is defined as ιnegnode(gi).
Here, sim(·,·) represents the similarity between different sets of sample encodings, which is
measured by constructing the Cartesian product of the two sets and using cosine similarity
to measure the distance between each pair. The sum of the resulting values represents the
similarity between the two sets.

ι
pos
node(gi)=−log (

exp(sim(Lgi,Laug (gi))/τ )∑n
j=1exp(sim(LAGi,LAGj )/τ )

) (12)

ι
neg
node(gi)=

∑n
i6=j,j=1exp(sim(Lgi,LAGj )/τ )∑n
j=1exp(sim(LAGi,LAGj )/τ )

. (13)

Inspired by infoNCE (Oord, Li & Vinyals, 2018), each contrast loss can be divided into
upper and lower parts. The goal of ιposnode(gi) is to increase the similarity between Lgi and
Laug (gi), while decreasing the similarity between different graphs LAGi and LAGj . The τ is
a temperature parameter that is often used to modulate the sharpness of the probability
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distribution obtained from the similarity scores. Also, ιnegnode(gi) denotes a more exclusive
encoding between gi and AGj in the context of decreasing the similarity between different
graphs LAGi and LAGj .

By summing the contrastive losses of all samples, we obtain the final node-level
contrastive loss ιnode . The smaller this loss, the closer the distance between the encodings
of sample gi before and after augmentation, and the farther the distance between the
encodings of gi and other distinct samples:

ιnode =
1
2N

n∑
i=1

(ιposnode(gi)+ ι
neg
node(gi)). (14)

For the graph-level contrastive loss, given the bi-directional graph encoding
representation of gi as Lgi = (LTDgi ,L

BU
gi ), we use the mean pooling operator to aggregate

information from both sets of encoding representations:

Sgi =CONCAT (MEAN (LTDgi ),MEAN (LBUgi )). (15)

Similar to the node-level contrastive loss, to pool the augmented samples, we obtain
Saug (gi). The goal is to minimize the distance between Sgi and Saug (gi), while maximizing the
distance between different samples and their augmented graphs. We define the contrastive
loss for the positive instance pairs as ιposgraph(gi), and for the negative instance pairs as
ι
neg
graph(gi):

ι
pos
graph(gi)=−log (

exp(sim(Sgi,Saug (gi))/τ )∑n
j=1exp(sim(SAGi,SAGj )/τ )

) (16)

ι
neg
graph(gi)=

∑n
i6=j,j=1exp(sim(Sgi,SAGj )/τ )∑n
j=1exp(sim(SAGi,SAGj )/τ )

(17)

we can compute ιgraph:

ιgraph=
1
2N

n∑
i=1

(ιposgraph(gi)+ ι
neg
graph(gi)). (18)

Finally, by combining the node-level contrastive loss ιnode with the graph-level contrastive
loss ιgraph, our multi-level contrastive loss can be represented as:

ι= ιnode+λιgraph (19)

where λ is a parameter to be adjusted in order to balance the importance of ιnode and ιgraph.

Discriminator-based rumor detection
After multiple rounds of pre-training to minimize the multi-level contrastive loss, we
obtain a high-performance encoder. This encoder can be used to encode a rumor event,
which is represented as:

Lgi =CONCAT (LTDgi ,L
BU
gi ). (20)
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We employ a multi-layer perceptron (MLP) for rumor detection classification. In
addition to using the encoding Lgi obtained from the model, we also utilize the root feature
of the rumor event X root

i and the graph-level representation MEAN (gi) of the original
rumor tree as additional information. Ultimately, we use these three parts as inputs and
employ the MLP and softmax to perform classification.

Ii=CONCAT (Lgi,X
root
i ,MEAN (gi)) (21)

ŷi= softmax(MLP(Ii)). (22)

Then, we use the cross-entropy loss function to measure the distance between the
predictions ŷ and the ground truth y for all rumor events:

L(y,ŷ)=−
N∑
i=1

yilog (ŷi)+λ||2||22. (23)

In the loss function, ||2||22 represents the L2 regularization term for the model
parameters, and λ is a balancing factor.

EXPERIMENTS
Experimental settings
Datasets
To evaluate the spread of rumors, we utilized two publicly available Twitter datasets,
Twitter15 and Twitter16 (Ma, Gao & Wong, 2017). The nodes in these datasets represent
users, and the edges represent forwarding or response relationships. Features were extracted
from the top 5,000 words based on their TF-IDF values. The statistics are presented in
Table 1. Twitter15 and Twitter16 contain 1,490 and 818 claims, respectively, each labeled
as Nonrumor (NR), False Rumor (F), True Rumor (T), or Unverified Rumor (U). ’# of
postings’ is the number of all posts in the dataset, and ’# of users’ is the number of all users
who participated in the posting. According to the veracity tag (Ma, Gao & Wong, 2017) of
the associated item on rumor-dispelling websites like snopes.com and Emergent.info, the
labels of each event in Twitter15 and Twitter16 were annotated. In other words, the label of
these events was determined by the veracity tag of the article on the debunking websites.

Experimental setup
We make comparisons with the following state-of-the-art baselines:

• Decision tree classification (DTC) (Castillo, Mendoza & Poblete, 2011): A decision tree
model that combines various news features.
• Support Vector Machine based on Time Series (SVM-TS) (Ma et al., 2015): A linear
SVM classifier that builds a time-series model using custom features.
• BU-RVNN (Ma, Gao & Wong, 2018): The structural recursive neural model based
bottom-up tree neural network (with GRU unit) is used by the rumor detection method
to learn about rumor information.
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Table 1 Statistics of the datasets.

Dataset Twitter15 Twitterl6

# of events 1,490 818
# of false rumors 370 205
# of true rumors 372 205
# of unverified rumors 374 203
# of non-rumors 374 205
# of postings 331,612 204,820
# of users 276,663 173,487

• TD-RVNN (Ma, Gao & Wong, 2018): The structural recursive neural model based
top-down tree neural network (with GRU unit) is used by the rumor detection method
to learn about rumor information.
• Graph-aware Co-Attention Networks (Lu & Li, 2020): The rumor detection method
proposes a GCN-based model that can characterize the rumor propagation mode and
use the dual co-attention mechanism to capture the interaction between source text,
user attributes, and propagation path.
• BiGCN (Bian et al., 2020): The rumor detection approach uses a GCN-based model
to represent the overall structure of the rumor tree by utilizing its two primary
characteristics, rumor propagation and dispersion.
• RDEA (He et al., 2021): A GNN model based on contrastive learning, which uses data
augmentation to enable the model to do better at learning rumor propagation patterns.
• UMLARD (Chen et al., 2022): A multi-view learning rumor detection model proposed
with a distinguishable feature fusion mechanism, acquiring user-aspect features, and
incorporate them with content features.
• TISN (Luo et al., 2022): A rumor detection method considers time information and
propagation structure, which Transformer encoder is used to extract text information,
and GCN is used to learn the patterns of rumor propagation.

To provide a fair comparison, we randomly divided the datasets into five sections and
performed 5-fold cross-validation to achieve robust results. We assess the accuracy (Acc.)
over the two categories and the F1 measure (F1) for each class for the two Twitter datasets.

In the experiment, BiMGCL uses the Adam optimizer (Kingma & Ba, 2014). The
feature length of each node in the feature matrix, drop rate in edge modification, and
dropout rate are set to 64, 0.4, and 0.5, respectively. The epoch of self-supervised training
is set to 25, while the supervised fne-tuning process is iterated upon 100 epochs, and
early stopping (Yao, Rosasco & Caponnetto, 2007) is applied when the validation loss
stops decreasing by 10 epochs. The software versions we use are Python-3.7, PyTorch-
1.8.1 (CPU), pytorch_geometric-1.7.0. In the graph construction phase we use the APIs
provided by pytorch_geometric. In the data augmentation phase, both the topology and
node attributes of the graph are augmented to produce richer samples. The code for our
implementation can be found in https://github.com/vivian-166/BiMGCL/and we provide a
link to raw data: https://github.com/vivian-166/BiMGCL/tree/main/data.
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Table 2 Experimental results on the Twitter15.

Twitter15

Method ACC F1

NR FR TR UR

DTC 0.454 0.733 0.355 0.317 0.415
SVM-TS 0.544 0.796 0.472 0.404 0.484
BU-RVNN 0.708 0.695 0.728 0.759 0.653
TD-RVNN 0.723 0.682 0.758 0.821 0.654
GCAN 0.808 0.866 0.759 0.812 0.690
BiGCN 0.836 0.791 0.842 0.887 0.802
RDEA 0.853 0.828 0.856 0.902 0.816
UMLARD 0.857 0.840 0.848 0.906 0.835
TISN 0.865 0.867 0.871 0.847 0.791
BiMGCL 0.882 0.868 0.885 0.918 0.850

Notes.
Bold indicates the best performance.

Table 3 Experimental results on the Twitter16.

Twitter16

Method ACC F1

NR FR TR UR

DTC 0.465 0.643 0.393 0.419 0.403
SVM-TS 0.574 0.755 0.420 0.571 0.526
BU-RVNN 0.718 0.723 0.712 0.779 0.659
TD-RVNN 0.737 0.662 0.743 0.835 0.708
GCAN 0.765 0.799 0.754 0.678 0.784
BiGCN 0.864 0.788 0.859 0.932 0.864
RDEA 0.877 0.817 0.872 0.932 0.876
UMLARD 0.878 0.826 0.834 0.936 0.801
TISN 0.870 0.827 0.786 0.792 0.820
BiMGCL 0.890 0.829 0.884 0.942 0.894

Notes.
Bold indicates the best performance.

Results and analysis
In this section, we evaluate the performance of the proposed framework for rumor detection
by comparing it with the baseline methods. According to Tables 2 and 3, which display the
experimental findings, our proposed BiMGCL beats all baseline approaches in terms of all
assessment measures. In actuality, the following characteristics are what led to BiMGCL’s
improvement.

First, our proposed BiMGCL not only models various rumor post objects and their
comments as graph structures to obtain information about the contextual structure of
their propagation patterns, but also considers propagation and dispersion as two crucial
characteristics of rumors, which facilitates the learning of more fine-grained propagation
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patterns. This is in contrast to feature-based supervised learning rumor detection methods
such as SVM-TS and DTC. In other words, these structural and semantic characteristics,
which were discovered from the bi-directional graph of rumors, aid in enhancing the
discriminability of rumor events, which results in the desired performance of BiMGCL. It
is worth noting that our proposed BiMGCL improves 1.2%–42.8% over the feature-based
supervised learning approach in terms of accuracy.

Second, to train themodel in a supervisedmanner, most existing graph-based supervised
learning rumor detection algorithms rely on a large corpus of labeled data (Sun et al.,
2022; Wei et al., 2023). However, due to weak generalization for new target classes, such
techniques fall short of detecting out-of-sample rumor events. In particular, GCAN,
BiGCN, UMLARD and TISN employing graph neural networks to learn low-dimensional
representations from rumor propagation trees, which typically pose a serious detection
performance when the availability of training samples or labeling information is limited.
Although UMLARD and TISN combined more information about rumors, they did not
consider the relationship between different rumor events. Our proposed BiMGCL, in
contrast to existing approaches, shifts the emphasis from labeling information to learning
more sophisticated and discriminative patterns of rumor information propagation using
multi-level contrastive learning. As a result, BiMGCL demonstrates improved rumor
detection capabilities.

Third, BiMGCL has two advantages over the most relevant self-supervised work RDEA.
On the one hand, RDEA investigates oversimplified data augmentation for node-to-node
comparison learning, which applies to undirected graphs because they ignore nonlinear
and hierarchical dependencies between rumor propagation patterns, leading to poor
performance in out-sample rumor detection. In contrast, BiMGCL designs three insightful
bi-directional graph data augmentation methods to identify more advanced rumor
information, leveraging the rumor propagation and diffusion discriminant patterns,
combining semantic and structural priors to increase the efficiency of rumor detection.
Besides, compared to the node-to-node comparison learning approach in RDEA, we
design a more expressive multi-level comparison approach to help graph encoders extract
rumor knowledge from historical representations, which not only provide a stronger
regularization to our bootstrapping objective but also enrich the self-supervision signals
during the optimization.

Furthermore, the originating post of a rumor event often contains a wealth of detailed
information and can wield substantial influence. However, UMLARD and TISN tend to
overlook the crucial value embedded in the initial post’s informationduring the propagation
process. Conversely, BiMGCL stands out for its adeptness at harnessing the data present
in the source post. This enables BiMGCL to thoroughly excavate the structural nuances
within rumor trees, thereby significantly enhancing the efficacy of rumor detection.

Ablation experiments
We further conducted ablation experiments to analyze the effect of each variant of BiMGCL,
investigating the effect of each module in the pretraining encoder.
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Figure 2 The results of model method ablation experiments.
Full-size DOI: 10.7717/peerjcs.1659/fig-2

The empirical results are summarized in Fig. 2. -O, -R, -B, -G, and -N represent our
model without concatenating the original graph, without concatenating the root feature,
without using bi-directional graph, without graph-level contrastive loss, and without
node-level contrastive loss, respectively. We make the following three observations. First,
the performance of BiMGCL decreases if any of these four components are missing,
indicating that they are all crucial for BiMGCL. Second, the performance drop is the
largest for -R, suggesting that root features are indispensable, and the source post plays
an essential role in rumor detection. At the same time, the -B performance decreases
significantly, which implies the importance of considering both top-down representation
and bottom-up representation.

In addition to the ablation experiments on the methods used in the comparative
learning model, we further conduct experiments on the data augmentation methods to
explore their effectiveness. The results of the experiments are shown in Fig. 3, where ‘NO
AUG’ represents that no data augmentation method is used, ‘AM’, ‘SS’, and ‘EM’ represent
attribute masking, subsampling, and edge modification, respectively, which are the three
data augmentation methods described in the above article, and ‘ALL AUG’ indicates
that the three methods are used at the same time. It can be observed that when no data
augmentation methods are used, the lack of training samples and insufficient data features
have a greater impact on model training and fail to achieve better accuracy. This problem
is partially alleviated when using these methods alone, and better results can be achieved
by using all three augmentation methods together. This is because the data augmentation
methods, on the one hand, expand the existing data and produce a large amount of data
from the original graph, which enables the comparative learning discriminator to better
distinguish the features between similar and different rumor graphs; on the other hand,
these three data augmentation methods augment the data in terms of the graph features,
graph localization information, and graph structure, respectively, and produce rumor
graph samples that contain various semantics, which provides important supports for
model training.
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Figure 3 The results of graph augmentation ablation experiments.
Full-size DOI: 10.7717/peerjcs.1659/fig-3

Figure 4 Result of rumor early detection on Twitter15 (A) and Twitter16 (B).
Full-size DOI: 10.7717/peerjcs.1659/fig-4

Early rumor detection
A crucial method of assessing the model is early rumor detection, which aims to identify
rumors before they become widespread and have negative social effects. To build the early
detection task, we set a series of detection deadlines and only use posts that were published
before the deadlines to assess the accuracy of the proposed and baseline methods and
confirm whether the model can accurately identify rumors based on the scant information
carried by the current early moments.

The early rumor detection task is illustrated in Fig. 4 using the results of our BiMGCL
method and several benchmarks. The BiMGCL method described in this research achieves
a high level of accuracy very quickly after the source post-original broadcast. BiMGCL
performs significantly better than the other models at each deadline, indicating that our
method is not only beneficial for long-term rumor detection, but also more beneficial for
early detection of rumors. Notably, our BiMGCL model outperforms other benchmark
tests and is outstanding and consistent at all times, demonstrating the effectiveness of the
combination of a bi-directional graph model and multi-level contrast learning for robust
and accurate identification.
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CONCLUSION
In this article, we propose BiMGCL, a rumor detection framework based on bi-directional
graph multi-level comparative learning, to achieve the goal of rumor detection for well-
designed rumors. BiMGCL employs bi-directional graphs to simulate the propagation
and diffusion patterns among rumor messages and captures distinct rumor properties
through multi-level self-supervised comparative learning. We thoroughly assess BiMGCL’s
efficacy and efficiency, and the experimental findings validate that our proposed BiMGCL
is superior at identifying rumors.

Although we have achieved encouraging results, with the development of multimedia
technology, rumors in current social networks often contain information in multiple
modalities, which calls for further research. In our future work, we plan to incorporate
multimodal information into our graph neural network models, paying more attention
to external factors influencing rumor propagation and the interpretability of model
decisions.
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