
Identification of mobile development
issues using semantic topic modeling of
Stack Overflow posts
Fatih Gurcan

Department of Management Information Systems, Faculty of Economics and Administrative
Sciences, Karadeniz Technical University, Trabzon, Turkey

ABSTRACT
Background: Increasing demands for mobile apps and services have recently led to
an intensification of mobile development activities. With the proliferation of mobile
development, there has been a major transformation in the architectures, paradigms,
knowledge domains and skills of traditional software systems towards mobile
development. Therefore, mobile developers experience a wide spectrum of issues
specific to development processes of mobile apps and services.
Methods: In this article, we conducted a semantic content analysis based on topic
modeling using mobile-related questions on Stack Overflow, a popular Q&A site for
developers. With the aim of providing an understanding of the issues and challenges
faced by mobile developers, we used a semi-automated methodology based on latent
Dirichlet allocation (LDA), a probabilistic and generative approach for topic
modeling.
Results:Our findings revealed that mobile developers’ questions focused on 36 topics
in six main categories, including “Development”, “UI settings”, “Tools”, “Data
Management”, “Multimedia”, and “Mobile APIs”. Besides, we investigated the
temporal trends of the discovered issues and their relationships with mobile
technologies. Our findings also revealed which issues are the most popular and which
issues are the most difficult for mobile development. The methodology and findings
of this study have valuable implications for mobile development stakeholders
including tool builders, developers, researchers, and educators.

Subjects Software Engineering
Keywords Mobile development issues, Mobile app development, Topic modeling, Stack Overflow

INTRODUCTION
In today’s digital world, with the spread of mobile devices and technologies, the demands
for mobile-oriented services and apps in all industrial and social fields are increasing
exponentially day by day. Every day, a large number of mobile apps are presented for users
in the Android Play store and Apple App store (Jabangwe, Edison & Duc, 2018). This
strong increase in demand for mobile services and apps has led to the intensification of
mobile software development activities and the emergence of mobile software engineering
as a contemporary discipline (Ahmad et al., 2018b). The advent of mobile software
engineering has also led to a major transformation in traditional software engineering
architectures, methodologies, knowledge domains, and skills (Dhillon & Mahmoud, 2015;
Nagappan & Shihab, 2016; Ahmad et al., 2018b). For this reason, an increasing number of

How to cite this article Gurcan F. 2023. Identification of mobile development issues using semantic topic modeling of Stack Overflow
posts. PeerJ Comput. Sci. 9:e1658 DOI 10.7717/peerj-cs.1658

Submitted 5 April 2023
Accepted 2 October 2023
Published 24 October 2023

Corresponding author
Fatih Gurcan, fgurcan@ktu.edu.tr

Academic editor
Luca Ardito

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.1658

Copyright
2023 Gurcan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1658
mailto:fgurcan@�ktu.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1658
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

software developers, practitioners and researchers discuss the issues encountered in mobile
app development processes and seek solutions to these problems (Rosen & Shihab, 2016;
Ahmad et al., 2018b). As a natural consequence of this situation, mobile development
issues have become popular topics that have been increasingly discussed recently on
question and answer (Q&A) platforms like Stack Overflow (Stack Overflow, 2023).

Stack Overflow is the most common Q&A platform that manages millions of posts from
developers with different backgrounds in mobile development or different specialties to
share their technical issues and find solutions to them (Ahmad et al., 2018a; Beyer et al.,
2020). Any sub-context of these posts on Stack Overflow provides a comprehensive data
repository that includes important information, such as developers’ problems, solutions,
and perspectives specific to that context (Beyer et al., 2020; Hu et al., 2020). Analysis of the
different sub-contexts of this data repository can provide remarkable insights into
understanding and solving problems focused on by developers in different specialties
(Rosen & Shihab, 2016; Ahmad et al., 2018a). From this point of view, many researchers
have conducted experimental studies to investigate specific sub-contexts in Stack
Overflow, such as testing, security, mobile development, requirements, concurrency
development, chatbot development, and machine learning (Vasilescu, 2014; Ahmad et al.,
2018a; Hu et al., 2020). On the other hand, the number of studies on mobile development
using Stack Overflow data is relatively limited. The previous studies on mobile
development included specific sub-contexts such as Android testing, Android
development, iOS development, and main themes of mobile development (Rosen &
Shihab, 2016; Ahmad et al., 2018a; Jabangwe, Edison & Duc, 2018). The aforementioned
research, which were conducted prior to 2016, do not provide current perspectives on the
challenges encountered by mobile developers due to the significant surge in mobile usage
in recent years, particularly in the aftermath of the COVID-19 pandemic (Gurcan,
Dalveren & Derawi, 2022; Stack Overflow, 2022). With the integration of cutting-edge
technologies such as immersion, artificial intelligence, IoT, blockchain, wearable devices,
and cloud services into mobile apps, mobile development processes and architectures have
been experiencing a dizzying evolution recently (Al-Razgan et al., 2021; Gurcan et al.,
2022b). Considering the rapidly exploding demand for mobile apps and services over the
last few years, we anticipate that analysis of the developer discussions and solution
proposals using Stack Overflow posts will offer significant and up-to-date implications for
researchers and practitioners.

Against this background, this study aimed to reveal in depth the problems, interests, and
trends of mobile developers in the last 5 years between 2017–2021, thus closing this gap in
the literature. From this point of view, Stack Overflow, the most popular online Q&A
platform for developers, was chosen as the data source for this study and Latent Dirichlet
Allocation (LDA) based topic modeling analysis was applied on the mobile-related posts
obtained from it. This proposed systematic methodology included an ordered sequence of
semantic topic modeling processes based on LDA (a probabilistic topic modeling
algorithm used to reveal latent topics). In this way, mobile developers’ topics about their
problems and discussions, their underlying dependencies, and trends over time were

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 2/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

identified. More specifically, the methodology of this study was designed to seek answers to
the following research questions (RQ):

RQ1. What issues are asked about mobile development?
RQ2. What are the most difficult and most popular issues for mobile development?
RQ3. How have the trends of mobile issues changed over time?
RQ4. What are the most asked mobile technologies?
RQ5. How have the trends of mobile technologies changed over time?

BACKGROUND AND RELATED WORK
We base the background of our study on three fundamental pillars and discuss the related
work here under the headings including mobile development, Stack Overflow, and Latent
Dirichlet Allocation.

Mobile development
Mobile developers design, develop, and execute applications for smartphones and other
mobile devices. They usually develop mobile applications on a specific type of operating
system, such as Android, iOS, or on cross-platforms (Nagappan & Shihab, 2016).
Therefore, mobile development contains different paradigms and methodologies from
those in traditional software engineering (Elsayed et al., 2019; Gurcan et al., 2022b). In the
process of developing mobile applications that have become a part of our lives, mobile
developers face a wide spectrum of experiences, issues, and challenges unlike common
developer issues (Ahmad et al., 2018b). From this perspective, the processes, experiences,
and practices of mobile development contain domain-specific issues and challenges faced
by the developers (Nagappan & Shihab, 2016).

Given the issues and challenges of mobile development, we have observed that the
studies so far has focused on issues and challenges in specific contexts of mobile
development such as platform-specific issues including native, cross-platform, or
hybrid development (El-Kassas et al., 2017), mobile cloud computing (Malik et al., 2021),
development process and life-cycle (Jabangwe, Edison & Duc, 2018), testing (Zein, Salleh &
Grundy, 2016), usability and UI design (Taba et al., 2017), app security and privacy
(Gurcan et al., 2022a), tools and frameworks (El-Kassas et al., 2017).

In a more specific outlook, with the aim of identifying mobile development issues, a
number of empirical studies were conducted, partly similar to our current study. In an
empirical study, Rosen & Shihab (2016) analyzed the Stack Overflow data dump using a
topic modeling approach to examine what mobile developers are asking about. They
revealed 40 topics and 32 different category mapping mobile development issues. In a
study with a similar perspective, Linares-Vásquez, Dit & Poshyvanyk (2013) implemented
topic modeling to Stack Overflow data dump to extract the trending topics from mobile
development questions. Beyer & Pinzger (2014) performed a manual categorization of
Android app development issues on Stack Overflow considering problem types. Villanes
et al. (2017) conducted a study using Stack Overflow data in order to analyze and cluster
the main topics on Android testing. Ahmad et al. (2019) identified the topics and trends of
non-functional requirements for development of iOS applications using Stack Overflow

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 3/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

data. Also, Fontão et al. (2018) explored main topics and indicators in the mobile software
ecosystem by analyzing technical questions about mobile platforms on Stack Overflow.

Apart from the aforementioned studies using stack overflow data, in a qualitative study,
mobile challenges were identified through a systematic literature review and then validated
by interviewing practitioners (Ahmad et al., 2018b). Besides, Pandey, Litoriya & Pandey
(2018) identified 14 mobile issues, and using an interpretive structure modeling (ISM)
approach, categorized them into four groups: dependent, driving, linkage and
autonomous.

Furthermore, researchers have so far conducted many empirical studies using Stack
Overflow data in order to shed light on many aspects of software development issues and
challenges (Ahmad et al., 2018a). In particular, some remarkable studies which use Stack
Overflow data have been carried out in order to discover main issues and challenges in
specific sub-domains of software development such as testing (Kochhar, 2016), security
(Yang et al., 2016), mobile development (Linares-Vásquez, Dit & Poshyvanyk, 2013; Rosen
& Shihab, 2016), programming languages (Chakraborty et al., 2021), requirements (Zou
et al., 2017), concurrency development (Ahmed & Bagherzadeh, 2018), IOT development
(Uddin et al., 2021), and machine learning (Alshangiti et al., 2019). Beyond
aforementioned studies, a comprehensive collection of research which uses Stack Overflow
data from 2009 to date is provided in more detail by Vasilescu on Stack Exchange Meta
(Vasilescu, 2014). Also, Ahmad et al. (2018a) conducted a comprehensive literature review
and categorized 166 research articles (from 2008 to June 2016) using Stack Overflow data.
In summary, our current study complements the aforementioned work since our
methodology focuses on in-depth analysis of the mobile-related posts shared on Stack
Overflow in order to identify mobile development issues and their trends.

Latent Dirichlet allocation
Topic modeling encompasses a set of methods, procedures, and tools that enable the
discovery of hidden semantic structures, called topics, in large collections of textual
information (Blei, 2012). In text mining and natural language processing implementations,
topic modeling approaches widely used for semantic context analysis of the document
collections. In topic modeling algorithms, latent Dirichlet allocation (LDA) is a generative
probabilistic approach widely used for topic modeling of document collections (Blei, Ng &
Jordan, 2003). The intuitive idea behind LDA is based on the assumption that each
document is characterized by more than one topic, and each topic is characterized by the
distribution of words in an empirical corpus. LDA treats the words and documents
observed in a corpus as being created by an underlying topic structure.

It is a difficult process to obtain the posterior distribution by computation in extracting
the hidden topic structure of the documents. Therefore, various techniques have been
developed for approximate inference, including Gibbs sampling (Griffiths & Steyvers,
2004) and variational Bayes approximation (Blei, Ng & Jordan, 2003). Each of the
mentioned inference techniques possesses distinct advantages and disadvantages that are
traded off in terms of their speed, complexity, accuracy, and simplicity (Vayansky &
Kumar, 2020; Gurcan, 2023).

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 4/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Since the LDA model is based on unsupervised machine learning, it enables the
discovery of semantic topics in a short time without the need for any training process (Blei
& Lafferty, 2007; Gurcan & Cagiltay, 2022). Beyond textual data, the LDA model can be
effectively applied to different types of data, such as genetic data, software codes, images,
videos, forums, blogs, and social networks (Blei, 2012; Silva, Galster & Gilson, 2021).
Because of these supportive features, the LDAmodel is considered by many authorities as a
robust and efficient approach for semantic content analysis that automates the detection of
latent topics in the textual contents of a huge corpus (Blei, 2012; Gurcan et al., 2022b).

From its emergence to the present, the LDA model is also often used in software
engineering research to analyze structured or unstructured data in software repositories,
such as natural language texts, web archives, log files, source codes, mailing list archives,
bug reports, Git repositories, Q&A posts, and requirements documents (Silva, Galster &
Gilson, 2021; Gurcan et al., 2022a; Gurcan, 2023). Considering the studies specific to
mobile development, a number of studies used to the LDA model to investigate mobile
development issues asked on Stack Overflow (Linares-Vásquez, Dit & Poshyvanyk, 2013;
Rosen & Shihab, 2016; Villanes et al., 2017; Fontão et al., 2018; Ahmad et al., 2019); to
analyze users’ feedback, reviews and ratings for mobile apps (McIlroy et al., 2016; Hu et al.,
2019; Noei et al., 2019); to extract features from mobile app descriptions and recommend
new features for the similar apps (Jiang et al., 2019); to detect permission reauthorization
vulnerabilities in Android apps (Demissie, Ceccato & Shar, 2020); and to reveal the usage of
common interface elements in Android apps (Taba et al., 2017); and to distinguish
malicious Android apps (Yang et al., 2017).

As seen from the aforementioned studies, the LDA-based topic modeling approach is
widely used in software engineering research. Considering this background, Silva, Galster
& Gilson (2021) conducted a comprehensive literature review study which revealed the
usage of topic modeling in software engineering research. From a similar point of view,
Chen, Thomas & Hassan (2016) performed a survey on the use of topic models when
mining software repositories. Apart from these studies, it is possible to talk about the
existence of a large number of the studies based on LDA. As a result, the effectiveness and
suitability of this topic model approach for software engineering research further increases
our motivation to use the LDA model for investigating mobile development issues.

METHOD
Data collection and extraction
With the intention of achieving an objective methodology, we used the Stack Overflow
data dump, which is publicly available as XML files (Internet Archive, 2023). In the first
step, we downloaded the SO data dump in XML format (posts.xml, last updated March 21,
2022) and parsed it into a PostgreSQL database. This parsed data file contained a total of
55,027,254 (22,100,401 questions and 32,926,853 answers) posts from July 2008 to March
2022. Each post in the data dump contains various metadata elements such as title, body,
tags, and so on. The datasets generated during and analyzed during the current study are
publicly available in the Internet Archive repository (Internet Archive, 2023), as a data
dump including XML files.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 5/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Identification of mobile-related posts
Posts on Stack Overflow cover a wide range of expertise, experience, and knowledge-
domains for developers. Considering that the posts recorded in the database may be related
to any specific subject, in this study, we are only interested in mobile related posts and we
aim to extract posts within this scope. From this perspective, we have endeavored to put
forward an effective and methodological approach to detect only mobile development
related posts in a systematic way. From this perspective, we aimed to present an effective
and objective approach to identify only mobile-related posts. To achieve this, we created
the first draft list containing the keywords related to mobile development and presented
them in Table A1.

At this stage, we identified the primary mobile keywords, taking into account previous
studies (Linares-Vásquez, Dit & Poshyvanyk, 2013; Rosen & Shihab, 2016) and Stack
Overflow’s annual developer surveys (Stack Overflow, 2022). Although the list in Table A1
does not include all mobile-related keywords, as a first draft, these keywords consist of
fundamental components of mobile development such as operating systems, hardware,
development platforms and SDKs. Namely, beyond the mobile-related posts obtained
using these initial keywords, we envisaged that mobile-related tags include a wider range
and there may be many mobile tags that are not included in Table A1. Therefore, we
performed a number of sequential procedures to identify additional mobile-related tags in
a systematic way. Initially, we identified all Stack Overflow posts that contain any of the
first keyword listed in Table A1. Then, we extracted the tags for each of these posts. The
tags represent keywords that users associate with their questions. Thus, we extracted all the
tags for these mobile posts and obtained a larger set of tags. This approach we used allowed
us to discover new tags and thus get a richer set of mobile posts. On the other hand, the
drawback of this approach was that it could also include a large number of posts not related
to mobile in the dataset. For example, let’s consider a post with tags “android”, “testing”,
“unit-testing”, and specify three tags from that post. Let us say we then include all posts
that contain any of these three tags. In such a case, some posts may be related to the testing
process of any desktop or web application, even though they have the “testing” tag.

In another example, although Java is a common language for Android apps, posts with
the tag “java” may not always be mobile related. Because Java is used in many other types
of applications other than mobile. Because, Java is also used for many platforms other than
mobile. Therefore, many of the posts with the “java” tag may be related to many other
development issues besides mobile. In such cases, adding all posts having a “java” tag
would cause unrelated posts with mobile to be included in the dataset. Accordingly, this
process would lead to a significant noise in the dataset.

In order to overcome this problem, we employed a set of procedures based on
quantitative approaches. In the first step, we extract all the tags of the posts containing the
keywords in Table A1 and define these tags as candidate tags (Ct). In this stage, we aimed
to identify mobile-related ones among these candidate tags and to obtain more tags. In
order to identify only mobile-related ones among the candidate tags, and to calculate how
relevant they are to mobile, we defined three variables VarA, VarB, and VarC for each (Ct)

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 6/28

http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

candidate tag. Specifically, VarA indicates the number of posts that contain both the
candidate tag (Ct) and at least one of the mobile keywords in Table A1 within their tags.
VarB indicates the number of posts that contain the candidate tag (Ct) in their tags among
all posts. Considering VarA and VarB, we defined a tag relevance score (TRSt) for each
candidate tag (Ct) as follows:

TRSt ¼ VarA

VarB

TRSt indicates how relevant the candidate tag (Ct) is to mobile. The value of TRSt ranges
from 0 to 1. The greater the value of TRSt, the more relevant the candidate tag (Ct) is to
mobile. The case where the value of TRSt is equal to 1 indicates that the candidate tag (Ct)
tag appears only with the mobile tags in Table A1. With this in mind, we performed a
number of experiments with different TRSt values. We manually evaluated the tags listed
as the output of each experiment and concluded that using the TRSt value of 53% produced
optimal results without being too restrictive. After excluding irrelevant tags using TRSt, we
detected very low-importance tags that were related to a very rare issue that only appeared
in one or two posts. The value of TRSt is 1 for a candidate tag (Ct) that only appears on a
post (e.g., “android-iconics”, “android-content-capture” or “android-device-controls”). In
this case, the inclusion of such low frequency tags will lead to an increase in the amount of
unimportant data in the dataset. In order to solve this problem, we set another threshold
value called tag significance score (TSSt) for each candidate tag (Ct) and calculated as
follows:

TSSt ¼ VarA

VarC

In this formula, VarC is the number of mobile posts containing the most popular mobile
tag. In the corpus of our study, the tag “android” was the most common, contained within
465,178 posts (from 2017 to 2021). We tried different TSSt values and evaluated the tags
listed as the outputs of each experiment. After that, we concluded that the inclusion of
candidate tags (Ct) with TSSt values of 0.5% and above gives optimal results. Finally, the list
of 66 identified tags, and their TRSt and TSSt values are given in Table A2. The tags in
Table A2 are sorted by TSSt in descending order. Similar approaches to the one we used to
identify mobile-related tags have also been used in previous studies for investigation of
different sub-contexts of Stack Overflow (Rosen & Shihab, 2016; Yang et al., 2016; Uddin
et al., 2021).

Creation of empirical corpus of mobile posts
In this study, we aimed to reveal the landscape of themes and trends in mobile
development in more detail, especially in recent years, so we included the posts covering
the last 5 years from January 1, 2017 to January 1, 2022 in our experimental dataset. To this
end, we tried to extract mobile-related posts shared in the last 5 years using the final set of
mobile tags given in Table A2. Initially, we identified all question posts containing the tags
in Table A2 within the tags assigned to each question post. Next, we extracted the answers

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 7/28

http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658/supp-2
http://dx.doi.org/10.7717/peerj-cs.1658/supp-3
http://dx.doi.org/10.7717/peerj-cs.1658/supp-3
http://dx.doi.org/10.7717/peerj-cs.1658/supp-3
http://dx.doi.org/10.7717/peerj-cs.1658/supp-3
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

and descriptive indicators (title, body, creation date, favorite count, comment count, view
count, score, answer count, etc.) of these questions. These extracted question and answer
posts constitute our final empirical dataset that we will use in our experiments. In total, our
empirical corpus contains 2,242,504 posts including 1,036,682 questions and 1,205,822
answers. The monthly distribution of the number of Stack Overflow posts over the last
5 years is given in Fig. A1. According to Fig. A1, it is observed that the number of questions
and answers has been decreasing over time and since the end of 2020, the number of
answers has decreased below the number of questions. During this period, mobile-related
post counts compared to all posts ranged from 8% to 14% per month, as shown in Fig. A2.
The significant decrease in the quantity of posts observed in the latter period of 2020 can be
attributed to the onset of the COVID-19 pandemic, as evidenced by Figs. A1 and A2.

Topic modeling using LDA
At this stage, we conducted a semantic content analysis on SO mobile posts using Latent
Dirichlet Allocation (LDA), a probabilistic approach for topic modeling, in order to reveal
the most common issues faced by mobile developers. In text mining and natural language
processing research, topic modeling provides a systematic methodology to discover the
latent semantic structure of a document collection. In this respect, a number of topic
modeling approaches are available such as Latent Dirichlet Allocation (LDA), Latent
Semantic Indexing (LSI), Hierarchical Dirichlet Process (HDP), Non-Negative Matrix
Factorization (NMF), and Dirichlet Multinomial Regression (DMR) (Gurcan & Cagiltay,
2022). Among the topic modeling approaches, LDA is a generative model, whose capability
and efficiency is widely accepted for research based on semantic text mining, and therefore
it is extensively preferred in software engineering research (Silva, Galster & Gilson, 2021;
Gurcan et al., 2022b). In addition, a remarkable body of work used LDA to implement
topic modeling on a number of sub-contexts of Stack Overflow (Silva, Galster & Gilson,
2021). LDA discovers the topics by combining words that tend to coexist commonly in text
documents within the experimental corpus and that together form a semantic integrity
(Blei, 2012). It uses the frequencies of words in documents and the co-occurrence of
frequencies in order to create a topic model of related words. The LDAmodel also provides
a number of well-organized methods for estimating the optimal number of topics,
calculating the coherence score of discovered topics, and optimizing the topic-term
distribution (Blei, Ng & Jordan, 2003).

Therefore, the LDA model was used in this study for the topic modeling analysis of our
experimental corpus containing a very large number of mobile-related posts on Stack
Overflow. In the following, we describe how the LDAmodel was fitted and implemented to
our corpus. Initially, the preprocessing steps necessary to increase the success of the topic
modeling analysis were implemented to the corpus (Gurcan, 2023). In the first step, we
included only the title of the question posts in our corpus for topic modeling analysis by
disregarding other metadata other than the title (Rosen & Shihab, 2016). Because, the titles
are the part that best demonstrate the focal points and concepts of the issue emphasized in
the posts. On the other hand, the body of the questions may contain extra information that
is irrelevant to the main idea of the question (the questioner’s previous experiences and

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 8/28

http://dx.doi.org/10.7717/peerj-cs.1658/supp-4
http://dx.doi.org/10.7717/peerj-cs.1658/supp-4
http://dx.doi.org/10.7717/peerj-cs.1658/supp-5
http://dx.doi.org/10.7717/peerj-cs.1658/supp-4
http://dx.doi.org/10.7717/peerj-cs.1658/supp-5
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

comments with the problem, previously tried methods and code snippets, other factors
that triggered the problem, and so on) (Rosen & Shihab, 2016). This extra information
creates noise in the empirical data. Consequently, as we focused on what issues developers
were asking about, we excluded the body of the questions as well as the answer posts, and
created a corpus containing only the title of the question posts for the topic modeling
analysis (Rosen & Shihab, 2016). In the second step, tokenization, lowercase conversion,
deleting numbers and punctuation, deleting stop words, and lemmatization were
implemented on this corpus using Gensim (Řehůřek & Sojka, 2011), a pure Python library.
Thus, data preprocessing has been completed and the empirical corpus has been adapted to
the appropriate form essential for LDA-based topic modeling analysis (Řehůřek & Sojka,
2011; Gurcan et al., 2023).

In the topic modeling stage, we used the Gensim (Řehůřek & Sojka, 2011), a pure
Python library developed for text preprocessing and topic modeling, to implement the
LDA-based topic model to our corpus. Firstly, the values of the prior parameters (α, β, and
K) were specified to fit and optimize the LDAmodel to the empirical corpus. The value of α
parameter, which indicates the distribution of topics in documents, was used as α = 0.1,
and the value of β parameter, which indicates the distribution of words in the topics, was
used as β = 0.01, considering previous work on the topic modeling of short texts (Zuo et al.,
2016; Vayansky & Kumar, 2020; Gurcan & Cagiltay, 2022). The other parameter used to
obtain the ideal model was the K parameter, which indicates the number of topics. The
higher the K value, the more fine-grained topics are obtained, while the lower the K value,
the more coarse-grained topics are obtained. With the aim of choosing the ideal number of
topics, the LDA model was implemented with various K values in the range of K ∈ {10, 11,
12,…, 50}. Concurrently with this process, a coherence score (CV) was calculated for each
topic model implemented for each K value (Řehůřek & Sojka, 2011). As a result, a
maximum coherence score (CV = 0.4189) was obtained for the number of topics K = 36
(see Fig. A3), which reveals the optimal topic-word allocations for each document.

CASE STUDY AND RESULTS
RQ1: what issues are asked about mobile development?
As a result of the LDA-based analysis, 36 topics were discovered, in which each topic was
described by 15 descriptive keywords. After examining the consistency of the topics, each
topic was named taking into account the descriptive keywords of the topics. Then, we
calculated the percentages of each topic in the entire corpus, considering the dominant
topic to which each document was assigned. For example, if a topic has a 5% rate, 5% of all
question posts are assigned to that topic.

The 36 topics discovered by LDA-based topic modeling, with their names, descriptive
keywords, and rates are presented in Table 1. The topics in Table 1 illustrate main issues
specific to mobile development, so the terms topic and issue are used interchangeably
throughout this article. As seen in Table 1, the topics (issues) are listed in descending order
by their percentages. Accordingly, “Android Studio”, “Kotlin”, and “Arrays” emerged as
the top three most frequently asked topics, respectively. On the other hand, “Xamarin”,
“Dialog Alerts”, and “Testing” were the least asked topics.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 9/28

http://dx.doi.org/10.7717/peerj-cs.1658/supp-6
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

The discovered topics indicated that mobile developers faced a wide range of issues,
from app development tools to debugging, database services to UI settings, casting to
threading. With the aim of understanding the main knowledge domains of mobile

Table 1 The 36 topics discovered by LDA.

Topic name Top LDA keywords (%)

Android studio Android studio library project java gradle fail task dependency support import kotlin version module add 4.95

Kotlin Class kotlin variable type property swift parameter function object pass extension access generic define protocol 4.45

Arrays Value swift array specific element get number object key filter check base index contain dictionary 4.42

Error handling Error find try get fix name give exception throw undefined module symbol solve duplicate resolve 3.93

Authentication User app google firebase store login play facebook apple android log authentication sign get account 3.79

View controller View scroll swiftui controller animation swift position prevent move viewcontroller present visible scrollview transition 3.74

Web view Ionic open app webview url link web mobile cordova android page native load browser javascript 3.57

Imaging Image load android loading imageview draw bitmap upload effect part cache rotate gallery drawable background 3.45

API requests JSON datum request server api get response parse post fetch send retrofit swift object model 3.34

Flutter Flutter widget camera take dart photo provider picture contact add package container get inside future 3.34

Project building Build xcode fail error apk project version generate install framework release code target see package 3.28

List view Item list recyclerview listview view select adapter add android inside spinner get card recycler click 3.07

Emulator Android run application app studio emulator permission window mac install command macos process visual start 2.98

Button actions Button screen click back action keyboard go disable press appear android tap compose open jetpack 2.97

Text settings Text display different textview input edittext field android font label attribute character focus edit tag 2.92

Casting String return type null convert value swift format expect empty date int cast get object 2.81

Layout settings Layout size content height dynamic set constraint width uiview inside programmatically swift add auto uicollectionview 2.80

React-native Reactnative component react render expo navigation child parent flatlist pass redux prop inside textinput hook 2.80

Style-theme Change set color background default android date picker language programmatically apply style icon theme day 2.78

Event issues IOS issue event swift detect iphone trigger simulator touch ipad fire face rotation spritekit safari 2.77

App crash App crash problem possible android keep close difference launch setting force simple try provide stick 2.69

Connection Device android connect phone app bluetooth connection mode enable network available mobile get ble check 2.62

File settings File access android reference path download folder read storage local directory get pdf write object 2.48

Fragment activity Create activity fragment android intent start pass replace viewpager context inside main unable trouble get 2.43

Navigation bar Bar remove navigation tab bottom icon menu add hide search top space right status title 2.31

Database tasks Update cell table sqlite row database delete tableview datum room swift exist column realm insert 2.16

Map API API map google location android get current place memory marker point level performance delay coordinate 2.12

Notifications Notification push send message receive app firebase android fcm local cloud background unexpected token broadcast 2.10

Firebase Datum firebase save database share retrieve get store android child node realtime storage information read 2.07

Media streaming Video service android play audio stream record background player slow media sound live youtube restart 2.06

Functions Call method function objectivec execute swift callback async get outside block delegate implementation inside handler 1.83

Threading Handle cause thread android kotlin client server wait main complete rxjava socket coroutine asynctask spring 1.79

Cloud firestore Multiple time firestore result id get loop single query document arraylist avoid group combine cloud 1.42

Xamarin Xamarin form page c# switch binding stack navigation drawer control xamarinform previous refresh navigator reset 1.39

Dialog alerts Show custom android dialog ad admob listener alert unity checkbox design onclick box preview add 1.24

Testing Code test line ui xml android system source unit allow specify break output testing write 1.13

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 10/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

development, we categorized the discovered topics and found that the topics fall under the
following six categories: “Development”, “UI Settings”, “Tools”, “Data Management”,
“Multimedia”, and “Mobile APIs” (see Table 2).

Table 2 Taxonomy of the topics.

Category Topics Topic rate Total rate

Development Arrays 4.42 36.14

Error handling 3.93

Authentication 3.79

Project building 3.28

Emulator 2.98

Casting 2.81

Event issues 2.77

App crash 2.69

Connection 2.62

Notifications 2.10

Functions 1.83

Threading 1.79

Testing 1.13

UI settings View controller 3.74 27.84

Web view 3.57

List view 3.07

Button actions 2.97

Text settings 2.92

Layout settings 2.80

Style-theme 2.78

Fragment activity 2.43

Navigation bar 2.31

Dialog alerts 1.24

Tools Android studio 4.95 16.92

Kotlin 4.45

Flutter 3.34

React-native 2.80

Xamarin 1.39

Data management File settings 2.48 8.13

Database tasks 2.16

Firebase 2.07

Cloud firestore 1.42

Multimedia Imaging 3.45 5.51

Media streaming 2.06

Mobile APIs API requests 3.34 5.46

Map API 2.12

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 11/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

RQ2: what are the most difficult and most popular issues for mobile
development?
A question post on Stack Overflow has descriptive indicators such as the view count,
answer count, accepted answer count, score, favorite count, and comment count.
Leveraging these indicators, we performed a set of computational analysis to identify the
difficulty and popularity of each topic. Firstly, for each topic, we identified the questions in
which a topic was dominant and calculated the question count related to each topic. We
then calculated the average view count for each topic (dividing the total number of views
by the total number of questions). In this way, we revealed the popularity of the topics.
From a similar perspective, total question count, average view count, average favorite
count, average voting score, average answer count, and average accepted answer count
were computed and presented in Table 3. The topics in this table are sorted in descending
order by their percentages.

With the aim of revealing a more understandable landscape of the difficulty and
popularity of the topics, we summarized some indicators given in Table 3. Following, we
depicted the first five and last five topics in Fig. 1, taking into account the average view
count (for popularity). According to Fig. 1, the top five most viewed (most popular) topics
are “Flutter”, “Project Building” and “Error Handling”, “Android Studio”, and “React-
Native”, respectively. On the other hand, the least viewed (least popular) topic is
“Firebase”, followed by “App Crash” and “Dialog Alerts”.

In addition, in order to reveal the difficulty level of the topics, we showed the first five
and the last five topics in Fig. 2, considering the average number of accepted answers. As
seen in Fig. 2, the “Connection” topic, which has the lowest rate (0.27) according to the
accepted answer count, emerges as the most difficult topic. This is followed by “Media
Streaming”, “Notifications”, “Web View”, and “Emulator”, respectively. According to the
average answer count (see Table 3), the three most difficult topics are “Notifications”,
“Connection”, and “Media Streaming”, which are similar to the accepted answer count.
Furthermore, in order to reveal other dimensions of developers’ interest in topics, we
presented the voting score and favorite count for each topic in Table 3.

RQ3: how have the trends of mobile issues changed over time?
At this stage, we will try to analyze how mobile issues have changed in the last 5 years. To
achieve this, we consider the distribution of the number of questions for each topic in these
years. Namely, we calculated the percentage rate of the number of questions pertaining to
each topic in each year. Then, we subtracted the percentages of the topics in the previous
period from the percentages in the current period. Accordingly, we calculated how much
the topics changed in the current year compared to the previous year. Finally, we calculated
the total temporal trend of the topics at the end of these 5 years by summing the percentage
changes for each topic in each period. Overall trends and annual percentages of the topics
are presented in Table 4. The topics in this table are given in descending order according to
their overall trend values in the last column. Among the topics, it was observed that 11
topics had an increasing trend, seven topics had a constant trend (i.e., trend values between
−0.2 and 0.2), and 18 topics had a decreasing trend. As seen in Table 4, “Flutter”, “React-

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 12/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Native”, “Kotlin”, “Error Handling” and “Project Building” are the top five topics with the
most increasing trend, while topics “Layout Settings”, “Fragment Activity”, “Event Issues”,
“Map API”, and “Database Tasks” have the most decreasing trend.

Table 3 Descriptive indicators of the topics.

Topic name Rate (%) Question count View count Favorite count Voting score Answer count Accepted answer count

Android studio 4.95 51,325 1,565 0.35 1.80 1.19 0.35

Kotlin 4.45 46,101 1,175 0.30 1.68 1.30 0.52

Arrays 4.42 45,872 817 0.20 0.70 1.34 0.52

Error handling 3.93 40,745 1,575 0.26 1.52 1.23 0.37

Authentication 3.79 39,299 995 0.32 1.36 1.03 0.32

View controller 3.74 38,803 892 0.31 1.19 1.19 0.42

Web view 3.57 37,005 993 0.24 1.03 0.99 0.30

Imaging 3.45 35,748 963 0.30 1.07 1.10 0.38

API requests 3.34 34,644 865 0.20 0.65 1.15 0.41

Flutter 3.34 34,608 1,949 0.40 1.91 1.24 0.42

Project building 3.28 34,002 1,711 0.40 2.13 1.16 0.33

List view 3.07 31,870 819 0.20 0.69 1.23 0.42

Emulator 2.98 30,936 1,417 0.33 1.47 1.08 0.31

Button actions 2.97 30,783 948 0.25 1.03 1.28 0.40

Text settings 2.92 30,280 931 0.22 0.99 1.28 0.42

Casting 2.81 29,172 1,276 0.21 0.97 1.35 0.51

Layout settings 2.80 29,071 1,139 0.27 1.16 1.31 0.46

React-native 2.80 28,990 1,445 0.25 1.35 1.18 0.40

Style-theme 2.78 28,824 1,238 0.28 1.31 1.28 0.43

Event issues 2.77 28,677 877 0.33 1.34 1.03 0.35

App crash 2.69 27,894 744 0.25 1.00 1.08 0.35

Connection 2.62 27,131 971 0.29 1.16 0.92 0.27

File settings 2.48 25,665 1,143 0.25 1.07 1.01 0.34

Fragment activity 2.43 25,202 846 0.22 0.88 1.29 0.40

Navigation bar 2.31 23,939 1,324 0.34 1.39 1.32 0.42

Database tasks 2.16 22,409 839 0.25 0.97 1.19 0.45

Map API 2.12 21,973 1,066 0.32 1.26 1.02 0.33

Notifications 2.10 21,740 1,045 0.29 1.16 0.98 0.30

Firebase 2.07 21,490 665 0.19 0.58 1.09 0.42

Media streaming 2.06 21,353 795 0.30 1.15 0.86 0.28

Functions 1.83 18,948 988 0.23 1.13 1.19 0.45

Threading 1.79 18,576 1,281 0.41 1.76 1.08 0.41

Cloud firestore 1.42 14,721 972 0.25 1.07 1.15 0.45

Xamarin 1.39 14,414 976 0.24 1.07 1.10 0.43

Dialog alerts 1.24 12,810 784 0.22 0.86 1.16 0.38

Testing 1.13 11,665 956 0.27 1.43 1.05 0.36

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 13/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

RQ4: what are the most asked mobile technologies?
Each question post shared on Stack Overflow contains specific tags that reflect the context
of the issue mentioned in that question. These tags are added to that question by the user
asking the question. The tags are descriptive keywords that reveal the main themes,
technologies, and tools that users associate with their questions. In order to reveal the tags
related to mobile issues, we initially separated the tags of each post into singular tags and
calculated the frequencies of the tags for all posts. Then, we identified the top 20 tags with
the highest frequency among them. Following this, we calculated the distribution of the
tags of the posts according to the topics and identified the top ten tags for each topic.

By analyzing the tags of all the posts in the corpus, we found that mobile developers have
used 22,868 different unique tags in the last 5 years. The total number of occurrences of
these unique tags was found to be 3,411,771. The average number of different unique tags
used for each year was found to be 7,684. Considering the frequencies of the tags in the
corpus, the top 20 tags with the highest frequency were identified and given in Fig. 3 in
descending order by their percentages. As seen in Fig. 3, mobile technologies indicated by
the tags include a wide spectrum of modules such as platforms, programming languages,
development tools, and database services. Android and iOS, the two main mobile
platforms, are in the first and second places, respectively. They are followed by Swift and

Figure 1 Top five and last five topics by view count. Full-size DOI: 10.7717/peerj-cs.1658/fig-1

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 14/28

http://dx.doi.org/10.7717/peerj-cs.1658/fig-1
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Java programming languages. As the cross-platform mobile development tools, Flutter
ranks fifth and React-Native sixth.

In the next step, with the aim of revealing the mobile technologies related to each topic,
we further expanded our analysis and identified the top ten tags for each topic and
presented them in Table 5. The topics are listed in descending order by their percentage in
this table, where likewise the top ten tags for each topic are in descending order. In this
way, we revealed a number of mobile technologies (i.e., platforms, programming
languages, app development tools, data services, etc.). As seen in Table 5, Android is
featured as the first tag in 29 of 36 topics. In other words, it is seen that the Android
platform is dominant in mobile problems. Although Android and iOS are seen together in
many topics, iOS is in first place in only two topics (“Layout Settings” and “Event Issues”).

RQ5: how have the trends of mobile technologies changed over time?
In this trend analysis, taking into account the top 20 tags we calculated how each tag
changed in that period compared to the previous period. In this way, we found the amount
of increase or decrease of the tags for each year. Finally, by summing up the change
amounts for each year, we found the overall trend of each tag for the last 5 years.

Figure 2 Top five and last five topics by accepted answer count.
Full-size DOI: 10.7717/peerj-cs.1658/fig-2

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 15/28

http://dx.doi.org/10.7717/peerj-cs.1658/fig-2
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Our findings on trends in mobile technologies include annual percentages of the top 20
mobile technologies and their trend values, which are presented in Table 6. In this table,
the mobile technologies are sorted by the trend values in descending order. Android and
iOS, the two main mobile platforms with the highest rates, stand out as the ones with the

Table 4 Yearly trends of the topics.

Topic name 2017 2018 2019 2020 2021 Trend

Flutter 0.78 1.68 3.36 5.61 6.58 5.88 \

React-native 1.64 2.54 2.95 3.73 3.65 2.47 \

Kotlin 3.92 4.37 4.68 4.83 4.68 1.12 \

Error handling 3.51 3.87 4.33 3.88 4.27 1.03 \

Project building 3.2 3.32 3.37 3.08 3.51 0.78 \

Button actions 2.98 2.8 2.93 2.84 3.34 0.61 \

Cloud firestore 1.02 1.36 1.49 1.74 1.65 0.56 \

Authentication 3.74 3.56 3.82 3.76 4.12 0.41 \

Android studio 5.03 5.28 4.86 4.56 4.98 0.38 \

Threading 1.61 1.86 1.91 1.82 1.83 0.36 \

Casting 2.73 2.69 2.74 2.89 3.08 0.22 \

Testing 1.11 1.12 1.17 1.05 1.19 0.16 \

Emulator 3.09 2.87 2.79 2.93 3.21 0.16 \

File settings 2.43 2.47 2.46 2.46 2.59 0.14 \

Navigation bar 2.33 2.29 2.29 2.35 2.27 0.01 \

App crash 2.73 2.64 2.71 2.7 2.67 0.00 \

Xamarin 1.45 1.39 1.39 1.49 1.21 −0.02 Z

Style-theme 2.76 2.72 2.83 2.85 2.77 −0.03 Z

Connection 2.90 2.69 2.51 2.34 2.53 −0.26 Z

Firebase 2.15 2.19 1.98 2.04 1.93 −0.27 Z

Media streaming 2.22 2.11 1.93 1.91 2.05 −0.34 Z

Dialog alerts 1.37 1.28 1.18 1.14 1.14 −0.36 Z

Functions 1.90 1.84 1.84 1.90 1.62 −0.49 Z

Text settings 3.11 3.02 2.98 2.76 2.63 −0.50 Z

Notifications 2.33 2.24 1.99 1.87 1.92 −0.72 Z

Web view 3.98 3.68 3.55 3.15 3.31 −0.72 Z

View controller 3.93 3.64 3.72 3.96 3.37 −0.79 Z

API requests 3.49 3.49 3.40 3.26 2.96 −0.89 Z

Imaging 3.82 3.65 3.37 3.17 3.02 −0.96 Z

List view 3.35 3.29 3.10 2.90 2.57 −1.00 Z

Arrays 4.67 4.63 4.40 4.40 3.87 −1.01 Z

Database tasks 2.50 2.42 2.16 1.91 1.62 −1.05 Z

Map API 2.57 2.29 2.10 1.73 1.69 −1.06 Z

Event issues 3.46 2.89 2.49 2.39 2.31 −1.18 Z

Fragment activity 2.86 2.63 2.39 2.19 1.86 −1.25 Z

Layout settings 3.31 3.2 2.81 2.41 2.01 −1.41 Z

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 16/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

most decreasing trend. It is clearly seen in Table 6 that trends of cross-platform
development tools (e.g., Flutter, Dart, Kotlin, React-native) tend to increase significantly,
while native development tools (e.g., Swift, Objective-C) tend to decline.

DISCUSSION
The wide spectrum of principal issues in domain-specific contexts
Mobile software engineering has highly dynamic and competitive working environments
where paradigms, tools, technologies, skills, and experiences are constantly changing and
evolving (Rosen & Shihab, 2016). Our analysis revealed the issues and challenges most
discussed by mobile developers as 36 separate topics. The findings of our analysis clearly
showed that mobile development encompasses a wide spectrum of principal issues and
challenges in six domain-specific contexts including “Development”, “UI settings”,
“Tools”, “Data Management”, “Multimedia”, and “Mobile APIs”. In order to compare the
topics from our analysis with those from other studies (Linares-Vásquez, Dit &
Poshyvanyk, 2013; Beyer & Pinzger, 2014; Rosen & Shihab, 2016; Fontão et al., 2018), we
presented a comparative list of topics revealed by these studies, in Table 7.

Considering the results in Table 7, we found that the topics of “Layout Settings”,
“Database Tasks”, “Media Streaming”, “Error Handling”, “View Controller”, “Web View”,
“API Requests”, “Casting”, and “Fragment Activity” were discussed in at least three
studies. In this way, these nine topics were featured as the most focused mobile issues. On

Figure 3 Top 20 most discussed mobile technologies. Full-size DOI: 10.7717/peerj-cs.1658/fig-3

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 17/28

http://dx.doi.org/10.7717/peerj-cs.1658/fig-3
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

the other hand, topics “Arrays”, “Emulator”, “Button Actions”, “Text Settings”, “Style-
Theme”, “Event Issues”, “File Settings”, “Firebase”, “Threading”, and “Dialog Alerts” were
covered in only one of these four studies. Unlike other studies, topics “Android Studio”,
“Kotlin”, “Flutter”, “React-Native”, “Functions”, “Cloud Firestore”, “Xamarin”, and

Table 5 Related tags of the topics.

Topic name Related tags

Android studio Android android-studio java gradle kotlin android-gradle-plugin flutter react-native ios firebase

Kotlin Android swift kotlin ios java flutter dart generics react-native xcode

Arrays Swift android ios arrays java react-native flutter firebase kotlin javascript

Error handling Android react-native ios java flutter swift android-studio firebase xcode javascript

Authentication Android ios firebase swift firebase-authentication flutter react-native java google-play in-app-purchase

View controller Swift ios android swiftui xcode react-native java animation uiviewcontroller uitableview

Web view Android ionic-framework ios javascript cordova angular webview html react-native swift

Imaging Android ios swift java flutter react-native image bitmap kotlin xcode

API requests Android swift json ios java flutter react-native retrofit2 retrofit kotlin

Flutter Flutter dart android flutter-layout ios firebase camera swift google-cloud-firestore flutter-dependencies

Project building Android ios xcode swift react-native flutter android-studio cocoapods cordova gradle

List view Android android-recyclerview java listview kotlin flutter firebase c# react-native dart

Emulator Android android-studio java ios flutter react-native android-emulator macos swift xamarin

Button actions Android ios swift java react-native flutter kotlin android-jetpack-compose android-studio dart

Text settings Android ios swift java react-native flutter android-edittext textview android-layout xcode

Casting Android swift ios flutter java dart kotlin firebase json react-native

Layout settings IOS swift android uitableview android-layout uicollectionview xcode autolayout flutter java

React-native React-native reactjs javascript react-navigation android expo redux react-redux ios react-native-android

Style-theme Android ios swift java react-native flutter kotlin android-layout android-studio xcode

Event issues IOS swift android xcode iphone react-native objective-c sprite-kit javascript flutter

App crash Android ios java swift react-native flutter firebase xcode android-studio kotlin

Connection Android ios bluetooth java bluetooth-lowenergy swift react-native flutter android-studio kotlin

File settings Android java ios swift flutter android-studio kotlin react-native firebase file

Fragment activity Android java android-fragments kotlin android-activity android-intent android-studio android-viewpager fragment

Navigation bar Android ios swift flutter react-native java android-layout dart xcode kotlin

Database tasks Android swift ios uitableview sqlite android-room java android-sqlite realm kotlin

Map API Android google-maps ios swift java flutter react-native kotlin android-studio location

Notifications Android firebase ios push-notification firebase-cloud-messaging swift notifications java react-native flutter

Firebase Android firebase firebase-realtime-database java swift ios flutter google-cloud-firestore react-native dart

Media streaming Android ios swift java audio flutter video react-native avfoundation android-mediaplayer

Functions Android swift ios java flutter objective-c react-native kotlin dart firebase

Threading Android kotlin java swift ios kotlin-coroutines rx-java rx-java2 multithreading spring-boot

Cloud firestore Android google-cloud-firestore firebase flutter swift java ios dart kotlin react-native

Xamarin Xamarin xamarin.forms c# android xamarin.android ios xamarin.ios react-native xaml flutter

Dialog alerts Android java admob ios swift flutter android-studio kotlin unity3d android-alertdialog

Testing Android java ios kotlin unit-testing swift flutter react-native android-studio android-espresso

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 18/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

“Testing” are only featured in our current study. Therefore, these eight topics can be seen
as relatively new emerging issues and challenges of mobile development in recent years.
These eight topics are important justifications that clearly demonstrate the widespread
tendency towards cross-platform development, mobile development IDEs, and cloud-
based data services.

Insight into the use of mobile platforms, tools, and technologies
Mobile developers effectively use a wide-ranging collection of platforms, tools, and
technologies covering programming languages, SDKs, IDEs, frameworks, APIs, databases,
data services, and cloud-based resources in order to develop mobile apps in a more
proficient way (Jabangwe, Edison & Duc, 2018). Our findings provide notable implications
for time-dependent trends in mobile development issues, tools, and technologies (see
Tables 4 and 6). Mobile development is a dynamic area where the technologies and tools
used are constantly updated. Therefore, some paradigms, tools, and technologies used by
the developers remain up-to-date over the years, while others become outdated in a very
short time. As can be understood from our findings, while we have witnessed the
dominance of Android and iOS among mobile platforms in the last 5 years, we have
experienced the withdrawal of other platforms such as Windows-Phone. When evaluating
our analysis and interpreting the results, it is necessary to take into account the fact that

Table 6 Temporal trends of the top 20 mobile technologies.

Mobile tools 2017 2018 2019 2020 2021 Trend

Flutter 0.09 1.05 3.19 5.59 7.23 7.53 \

Dart 0.05 0.57 1.57 2.51 3.17 3.36 \

Kotlin 0.60 1.45 2.25 2.65 3.09 3.25 \

React-native 1.55 2.56 3.39 3.65 3.97 3.01 \

Reactjs 0.43 0.77 0.88 1.30 1.33 1.01 \

Android-studio 1.04 1.53 1.25 1.81 1.98 0.61 \

Javascript 0.96 1.07 1.19 1.36 1.41 0.52 \

Firebase 1.37 1.73 1.56 1.80 1.76 0.37 \

Android-recyclerview 0.51 0.65 0.65 0.57 0.49 −0.06 Z

Xcode 1.43 1.33 1.33 1.49 1.23 −0.25 Z

Json 0.65 0.57 0.51 0.48 0.43 −0.25 Z

C# 0.71 0.65 0.65 0.53 0.42 −0.26 Z

Firebase-realtime-database 0.67 0.67 0.52 0.44 0.39 −0.29 Z

Ionic-framework 0.96 1.00 0.92 0.66 0.60 −0.30 Z

Xamarin 1.04 0.99 0.89 0.78 0.57 −0.40 Z

Java 3.67 3.78 3.79 3.27 2.83 −0.91 Z

Objective-c 1.48 0.82 0.54 0.45 0.32 −1.49 Z

Swift 5.53 5.78 5.67 5.15 4.16 −1.77 Z

iOS 7.54 6.35 5.36 4.64 3.95 −3.85 Z

Android 15.53 15.23 13.96 11.53 10.99 −4.81 Z

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 19/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

fewer new questions are asked about combined technologies or general framework topics,
as answers to many previously asked questions are already available on Stack Overflow.
Considering the top increasing and decreasing trends, our findings make it clear that
certain topics and tags have reached saturation. For example, although Android and iOS

Table 7 Common issues in the current study and previous studies.

Current study Fontão et al. (2018) Rosen & Shihab (2016) Beyer & Pinzger (2014) Linares-Vásquez, Dit & Poshyvanyk (2013)

Android studio

Kotlin

Arrays ✓

Error handling ✓ ✓ ✓

Authentication ✓ ✓

View controller ✓ ✓ ✓

Web view ✓ ✓ ✓

Imaging ✓ ✓

API requests ✓ ✓ ✓

Flutter

Project building ✓ ✓

List view ✓ ✓

Emulator ✓

Button actions ✓

Text settings ✓

Casting ✓ ✓ ✓

Layout settings ✓ ✓ ✓ ✓

React-native

Style-theme ✓

Event issues ✓

App crash ✓ ✓

Connection ✓ ✓

File settings ✓

Fragment activity ✓ ✓ ✓

Navigation bar ✓ ✓

Database tasks ✓ ✓ ✓ ✓

Map API ✓ ✓

Notifications ✓ ✓

Firebase ✓

Media streaming ✓ ✓ ✓ ✓

Functions

Threading ✓

Cloud firestore

Xamarin

Dialog alerts ✓

Testing

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 20/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

have the highest percentages (see Fig. 3), they have the most decreasing trends (see
Table 6). In fact, fewer new questions can be asked on older topics. This inference is not
because the topics have diminished in importance, but because many of the questions on
older topics have already been answered, and repetition of questions that already exist on
Stack Overflow is not allowed. Consistent with this inference, it seems that more questions
are asked on topics related to newer technologies (e.g., “Flutter”, “React-Native”, “Kotlin”,
and “Android Studio”, see Tables 4 and 6), as they are new and most of the questions have
not been asked before (Biørn-Hansen et al., 2020). Many of the increasingly trending topics
presented in Tables 4 and 6 are fairly new technologies that became popular after 2015.

Our findings also indicated that Flutter, React-Native, Xamarin, Ionic, and Cordova are
the most used cross-platform development tools for mobile apps (see Fig. 3). The findings
reveal a remarkable progress from native app development to cross-platform development.
The strongest proof of this insight is that the top two topics with the highest increasing
trend are “Flutter” and “React-Native”, respectively (see Table 4). Because, “Flutter” and
“React-Native” are considered as the two most effective tools for cross-platform
development. Contrasting other studies (Linares-Vásquez, Dit & Poshyvanyk, 2013; Beyer
& Pinzger, 2014; Rosen & Shihab, 2016; Fontão et al., 2018), topics such as “Flutter”,
“React-Native”, “Xamarin” first appeared in our current study (see Table 7). As a result,
these empirical findings make it clear that today’s mobile developers are increasingly
embracing cross-platform development over time. Android Studio, Xcode, and Xamarin
are the most preferred mobile IDEs (see Fig. 3). Swift, Java, Kotlin, Dart, Javascript,
Objective-C, and C# are the most popular programming languages for mobile
development (see Fig. 3).

Another remarkable finding of our analysis is the transition from traditional databases
to cloud-based data services. Mobile developers are increasingly utilizing Firebase and its
extensions, such as Google-Cloud-Firestore and Firebase-Realtime-Database (Ozyurt et al.,
2022). As indicated by our findings, the topics of “Firebase” and “Cloud Firestore” (see
Table 1) are closely related to cloud-based data services. Also, it was seen that firebase-
realtime-database tag is among the top 20 most used tags (see Fig. 3). One of the important
findings of our study is that mobile developers faced wide-ranging issues based on UI
design, development, and its usability. In line with this background, we identified ten
topics under the “UI Settings” category. The broad scope of these UI-related topics
highlighted the importance of UI design, development, and optimization for mobile apps,
which has also been discussed in a number of previous studies (Punchoojit &
Hongwarittorrn, 2017; Taba et al., 2017). In particular, the topic of “Layout Settings” was
emphasized in all of the studies compared in Table 7. These studies also indicated the
necessity of “View Controller”, “Web View”, and “Fragment Activity” topics for UI
settings. Our extensive findings, supported by other studies, potentially indicated that UI
design and development is a common issue for mobile developers across various platforms
(Punchoojit & Hongwarittorrn, 2017; Al-Razgan et al., 2021). In our analysis, “API
Requests” and “Map API” emerged as the two main topics that revealed mobile API issues.
Besides, a number of studies strongly highlighted the problems of mobile developers
regarding the topic of “API Requests” (see Table 7). With regard to imaging and streaming

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 21/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

issues, we identified two topics including “Imaging” and “Media Streaming”. In particular,
the topic of “Media Streaming” was also specifically discussed in all of the studies we
compared in Table 7. Among the topics discovered, “Media Streaming” has emerged as the
second most difficult topic since the number of accepted answers on this topic is very low.
Based on this finding, we can say that the topic of “Media Streaming” contains relatively
difficult problems for mobile developers to solve compared to other problems.

Implications for researchers and practitioners
Insights and implications from the analysis of posting data shared on Stack Overflow and
similar Q&A websites can provide motivation for researchers and practitioners to create
solutions for the prominent problems of mobile development. The empirical background,
methodology, and findings of this study can serve as a guide for mobile development
communities with diverse profiles, such as developers, researchers, practitioners,
educators, and enthusiasts, to understand and contribute to the field. Revealing the wide
range of development challenges faced by mobile developers, our findings provide
important insights for researchers into potential research gaps that could address these
issues. Each of the 36 topics discovered can be prioritized by the researchers according to
the rate at which they are asked, viewed, and answered and can be considered a sub-
research topic in its own context. For example, an experimental study focusing on the
problems of mobile developers only in the context of UI development, taking into account
the topics about UI settings (e.g., “View Controller”, “Web View”, “List View”, “Button
Actions”, “Text Settings,” and so on), can be carried out using Stack Overflow data.
Although each of the mobile development issues discovered deals with a different problem
in its own right, we conclude from our findings that field researchers should prioritize,
especially the most viewed and priority issues awaiting solutions. Research aimed at
solving the prominent problems of mobile development can take into account the most
viewed (e.g., “Flutter”, “Project Building”, and “Error Handling”) or most difficult issues
(e.g., “Connection”, “Media Streaming”, and “Notifications”) raised by our findings. One
potential approach to tracking the evolution and progression of mobile development
trends in the future is doing periodic iterations of the present study at more frequent
intervals. The methodology we have developed can also be utilized by researchers for doing
experimental analysis on various textual settings.

Practitioners can contribute to the development and innovation of the field by creating
useful tools and applications to solve the dominant problems of mobile development
revealed by our findings. Mobile developer candidates who are new to the field can pursue
a career in these areas by considering which areas have talent gaps and which topics and
tools are popular. For example, “Flutter”, “Android Studio”, and “React-Native”, which are
in the top five of the most popular (most viewed) topics, offer an important perspective for
practitioners on which development tools they should focus on. It can create more
supportive libraries, frameworks, or guidelines for such development tools that
practitioners commonly use. The “Firebase” and “Cloud Firestore” topics, which are
closely related to cloud data services, highlight the need for practitioners to focus on cloud-
based data services rather than traditional databases to develop data-driven mobile apps

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 22/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

and services. Another of our implications for practitioners that needs to be highlighted is
that the top two trending topics, “Flutter” and “React-Native”, point to remarkable
progress from native app development to cross-platform development. Furthermore, tool
developers can use our findings to fine-tune existing problematic development tools and
provide more effective support and documentation. For example, the fact that “Android
Studio” is the first among the discovered topics reveals the need for tool support for
Android developers. In this context, it emerges as an important requirement for
practitioners to prepare new helpful tools and guiding documentation for Android
developers on problematic matters.

As a final word, educators can use our findings for developing curricula and training
strategies that are in line with current mobile development trends. Enthusiasts and general
readers within the mobile development ecosystem can refer to our findings to follow
emerging developments and trends in the mobile development industry and communities.
Stack Overflow and other Q&A platforms can also leverage our analysis to better
categorize and tag user posts based on a more structured taxonomy. We hope that our
work will guide future additive research in this area.

CONCLUSIONS
In this study, we analyzed mobile-related posts shared on Stack Overflow using semantic
text mining and LDA-based topic modeling to identify the most common issues and
challenges for mobile development. In addition, we investigated the most popular mobile
technologies and their temporal tendencies. The findings of our study revealed that mobile
developers most frequently asked questions related to six main categories, which included
“Development”, “UI settings”, “Tools”, “Data Management”, “Multimedia”, and “Mobile
APIs”. The topics of “Flutter”, “Project Building” and “Error Handling” emerged as the
most popular topics. On the other hand, the most difficult topics were “Connection”,
“Media Streaming”, and “Notifications”. Our study also found that Android and iOS are
the most used two platforms for mobile development. One of the key findings of our
analysis was the observation of a strong transition from native app development to cross-
platform development. Another notable finding was the rapid movement from traditional
databases to cloud-based data services. Our analysis provides many insights into the up-to-
date perspectives, issues, and needs of mobile developers. Our findings can help
researchers, practitioners, and educators by revealing a wide spectrum of issues faced by
mobile developers over time.

Like all studies, this one has some limitations. Initially, our research was limited to the
Stack Overflow dataset. Although Stack Overflow is one of the most widely used Q&A
sharing web sites among developers, it should be highlighted that focusing on a single data
source may limit the scope of outcomes. Second, our analysis includes post-data provided
between 2017 and 2021, and the results of our trend analysis are exclusively based on the
timeline of the Stack Overflow dataset we’re working with. Another limitation of our study
is that, as in other clustering techniques, the process of identifying the topic labels is subject
to the authors’ perspective and interpretation of the results. Fourth, the topic estimation
parameters for the LDA topic modeling approach used in this study may vary depending

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 23/28

http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

on the data type and context used. Finally, because our study incorporates inductive and
probabilistic exploratory procedures, future confirmatory research is required to test and
enhance our findings.

Future work can extend this study in many avenues. Researchers can leverage our
methodology to analyze trending topics and movements specific to the different research
contexts they are interested in. The methodology employed in this study can be extended
to encompass further developer Q&A web sites, such as Kaggle, Reddit, GitHub, and
Quora. Our methodology can be applied to other data resources such as web portals, social
networks, developer blogs and forums, and compare our findings for compatibility with
those in these environments. Different data processing methods, preprocessing stages, and
semantic text mining approaches can be joined to develop new hybrid models. The present
methodology can be enhanced with new supportive approaches for topic discovery in
different domains. Studies planned for the future will extend our methodology using
different topic modeling approaches such as Hierarchical Latent Dirichlet Allocation
(HLDA), Hierarchical Dirichlet Process (HDP), Non-Negative Matrix Factorization
(NMF), and Dirichlet Multinomial Regression (DMR).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Fatih Gurcan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Stack Overflow Post Repository is available at: https://archive.org/download/
stackexchange.

A processed sample of the experimental data is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1658#supplemental-information.

REFERENCES
Ahmad A, Feng C, Ge S, Yousif A. 2018a. A survey on mining Stack Overflow: question and

answering (Q&A) community. Data Technologies and Applications 52(2):190–247
DOI 10.1108/DTA-07-2017-0054.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 24/28

https://archive.org/download/stackexchange
https://archive.org/download/stackexchange
http://dx.doi.org/10.7717/peerj-cs.1658#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1658#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1658#supplemental-information
http://dx.doi.org/10.1108/DTA-07-2017-0054
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Ahmad A, Feng C, Li K, Asim SM, Sun T. 2019. Toward empirically investigating non-functional
requirements of iOS developers on Stack Overflow. IEEE Access 7:61145–61169
DOI 10.1109/ACCESS.2019.2914429.

Ahmad A, Li K, Feng C, Asim SM, Yousif A, Ge S. 2018b. An empirical study of investigating
mobile applications development challenges. IEEE Access 6:17711–17728
DOI 10.1109/ACCESS.2018.2818724.

Ahmed S, Bagherzadeh M. 2018. What do concurrency developers ask about?: a large-scale study
using Stack Overflow. In: International Symposium on Empirical Software Engineering and
Measurement. New York: ACM.

Al-Razgan M, Almoaiqel S, Alrajhi N, Alhumegani A, Alshehri A, Alnefaie B, AlKhamiss R,
Rushdi S. 2021. A systematic literature review on the usability of mobile applications for visually
impaired users. PeerJ Computer Science 7:e771 DOI 10.7717/PEERJ-CS.771.

Alshangiti M, Sapkota H, Murukannaiah PK, Liu X, Yu Q. 2019. Why is developing machine
learning applications challenging? A study on Stack Overflow posts. In: International
Symposium on Empirical Software Engineering and Measurement. Piscataway: IEEE.

Beyer S, Macho C, Di Penta M, Pinzger M. 2020. What kind of questions do developers ask on
Stack Overflow? A comparison of automated approaches to classify posts into question
categories. Empirical Software Engineering 25(3):2258–2301 DOI 10.1007/s10664-019-09758-x.

Beyer S, Pinzger M. 2014. A manual categorization of android app development issues on Stack
Overflow. In: Proceedings—30th International Conference on Software Maintenance and
Evolution, ICSME 2014. Piscataway: IEEE, 531–535.

Biørn-Hansen A, Rieger C, Grønli TM, Majchrzak TA, Ghinea G. 2020. An empirical
investigation of performance overhead in cross-platform mobile development frameworks.
Empirical Software Engineering 25(4):2997–3040 DOI 10.1007/s10664-020-09827-6.

Blei DM. 2012. Probabilistic topic models. Communications of the ACM 55(4):77–84
DOI 10.1145/2133806.2133826.

Blei DM, Lafferty JD. 2007. Correction: a correlated topic model of Science. The Annals of Applied
Statistics 1(2):634 DOI 10.1214/07-AOAS136.

Blei DM, Ng AY, Jordan MI. 2003. Latent Dirichlet allocation. Journal of Machine Learning
Research 3:993–1022 DOI 10.1017/9781009218245.012.

Chakraborty P, Shahriyar R, Iqbal A, Uddin G. 2021. How do developers discuss and support
new programming languages in technical Q&A site? An empirical study of Go, Swift, and Rust in
Stack Overflow. Information and Software Technology 137(4):106603
DOI 10.1016/j.infsof.2021.106603.

Chen TH, Thomas SW, Hassan AE. 2016. A survey on the use of topic models when mining
software repositories. Empirical Software Engineering 21(5):1843–1919
DOI 10.1007/s10664-015-9402-8.

Demissie BF, Ceccato M, Shar LK. 2020. Security analysis of permission re-delegation
vulnerabilities in Android apps. Empirical Software Engineering 25(6):5084–5136
DOI 10.1007/s10664-020-09879-8.

Dhillon S, Mahmoud QH. 2015. An evaluation framework for cross-platform mobile application
development tools. Software: Practice and Experience 45(10):1331–1357 DOI 10.1002/spe.2286.

El-Kassas WS, Abdullah BA, Yousef AH, Wahba AM. 2017. Taxonomy of cross-platform mobile
applications development approaches. Ain Shams Engineering Journal 8(2):163–190
DOI 10.1016/j.asej.2015.08.004.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 25/28

http://dx.doi.org/10.1109/ACCESS.2019.2914429
http://dx.doi.org/10.1109/ACCESS.2018.2818724
http://dx.doi.org/10.7717/PEERJ-CS.771
http://dx.doi.org/10.1007/s10664-019-09758-x
http://dx.doi.org/10.1007/s10664-020-09827-6
http://dx.doi.org/10.1145/2133806.2133826
http://dx.doi.org/10.1214/07-AOAS136
http://dx.doi.org/10.1017/9781009218245.012
http://dx.doi.org/10.1016/j.infsof.2021.106603
http://dx.doi.org/10.1007/s10664-015-9402-8
http://dx.doi.org/10.1007/s10664-020-09879-8
http://dx.doi.org/10.1002/spe.2286
http://dx.doi.org/10.1016/j.asej.2015.08.004
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Elsayed EK, ElDahshan KA, El-Sharawy EE, Ghannam NE. 2019. Reverse engineering approach
for improving the quality of mobile applications. PeerJ Computer Science 5:e212
DOI 10.7717/peerj-cs.212.

Fontão A, Ábia B, Wiese I, Estácio B, Quinta M, dos Santos RP, Dias-Neto AC. 2018.
Supporting governance of mobile application developers from mining and analyzing technical
questions in Stack Overflow. Journal of Software Engineering Research and Development
6(1):190 DOI 10.1186/s40411-018-0052-6.

Griffiths TL, Steyvers M. 2004. Finding scientific topics. Proceedings of the National Academy of
Sciences of the United States of America 101(suppl_1):5228–5235
DOI 10.1073/pnas.0307752101.

Gurcan F. 2023.What issues are data scientists talking about? Identification of current data science
issues using semantic content analysis of Q&A communities. PeerJ Computer Science 9(2):e1361
DOI 10.7717/peerj-cs.1361.

Gurcan F, Boztas GD, Dalveren GGM, Derawi M. 2023. Digital transformation strategies,
practices, and trends: a large-scale retrospective study based on machine learning. Sustainability
15(9):7496 DOI 10.3390/su15097496.

Gurcan F, Cagiltay NE. 2022. Exploratory analysis of topic interests and their evolution in
bioinformatics research using semantic text mining and probabilistic topic modeling. IEEE
Access 10:31480–31493 DOI 10.1109/ACCESS.2022.3160795.

Gurcan F, Dalveren GGM, Cagiltay NE, Roman D, Soylu A. 2022a. Evolution of software testing
strategies and trends: semantic content analysis of software research corpus of the last 40 years.
IEEE Access 10:106093–106109 DOI 10.1109/ACCESS.2022.3211949.

Gurcan F, Dalveren GGM, Cagiltay NE, Soylu A. 2022b. Detecting latent topics and trends in
software engineering research since 1980 using probabilistic topic modeling. IEEE Access
10:74638–74654 DOI 10.1109/ACCESS.2022.3190632.

Gurcan F, Dalveren GGM, Derawi M. 2022. Covid-19 and E-learning: an exploratory analysis of
research topics and interests in E-learning during the pandemic. IEEE Access 10:123349–123357
DOI 10.1109/ACCESS.2022.3224034.

Hu G, Peng M, Zhang Y, Xie Q, Gao W, Yuan M. 2020. Unsupervised software repositories
mining and its application to code search. Software: Practice and Experience 50(3):299–322
DOI 10.1002/spe.2760.

Hu H, Wang S, Bezemer CP, Hassan AE. 2019. Studying the consistency of star ratings and
reviews of popular free hybrid Android and iOS apps. Empirical Software Engineering 24(1):7–
32 DOI 10.1007/s10664-018-9617-6.

Internet Archive. 2023. Stackexchange directory listing. Available at https://archive.org/download/
stackexchange (accessed 18 May 2023).

Jabangwe R, Edison H, Duc AN. 2018. Software engineering process models for mobile app
development: a systematic literature review. Journal of Systems and Software 145(4):98–111
DOI 10.1016/j.jss.2018.08.028.

Jiang H, Zhang J, Li X, Ren Z, Lo D, Wu X, Luo Z. 2019. Recommending new features from
mobile app descriptions. ACM Transactions on Software Engineering and Methodology
28(4):1–29 DOI 10.1145/3344158.

Kochhar PS. 2016. Mining testing questions on Stack Overflow. In: SoftwareMining 2016—
Proceedings of the 5th International Workshop on Software Mining, Co-located with ASE 2016.
New York: ACM, 32–38.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 26/28

http://dx.doi.org/10.7717/peerj-cs.212
http://dx.doi.org/10.1186/s40411-018-0052-6
http://dx.doi.org/10.1073/pnas.0307752101
http://dx.doi.org/10.7717/peerj-cs.1361
http://dx.doi.org/10.3390/su15097496
http://dx.doi.org/10.1109/ACCESS.2022.3160795
http://dx.doi.org/10.1109/ACCESS.2022.3211949
http://dx.doi.org/10.1109/ACCESS.2022.3190632
http://dx.doi.org/10.1109/ACCESS.2022.3224034
http://dx.doi.org/10.1002/spe.2760
http://dx.doi.org/10.1007/s10664-018-9617-6
https://archive.org/download/stackexchange
https://archive.org/download/stackexchange
http://dx.doi.org/10.1016/j.jss.2018.08.028
http://dx.doi.org/10.1145/3344158
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Linares-Vásquez M, Dit B, Poshyvanyk D. 2013. An exploratory analysis of mobile development
issues using Stack Overflow. In: IEEE International Working Conference on Mining Software
Repositories. Piscataway: IEEE, 93–96.

Malik SUR, AkramH, Gill SS, Pervaiz H, Malik H. 2021. EFFORT: energy efficient framework for
offload communication in mobile cloud computing. Software: Practice and Experience
51(9):1896–1909 DOI 10.1002/spe.2850.

McIlroy S, Ali N, Khalid H, Hassan AE. 2016. Analyzing and automatically labelling the types of
user issues that are raised in mobile app reviews. Empirical Software Engineering 21(3):1067–
1106 DOI 10.1007/s10664-015-9375-7.

Nagappan M, Shihab E. 2016. Future trends in software engineering research for mobile apps. In:
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2016. Piscataway: IEEE.

Noei E, Zhang F, Wang S, Zou Y. 2019. Towards prioritizing user-related issue reports of mobile
applications. Empirical Software Engineering 24(4):1964–1996
DOI 10.1007/s10664-019-09684-y.

Ozyurt O, Gurcan F, Dalveren GGM, Derawi M. 2022. Career in cloud computing: exploratory
analysis of in-demand competency areas and skill sets. Applied Sciences 12(19):9787
DOI 10.3390/app12199787.

Pandey M, Litoriya R, Pandey P. 2018. An ISM approach for modeling the issues and factors of
mobile app development. International Journal of Software Engineering and Knowledge
Engineering 28(7):937–953 DOI 10.1142/S0218194018400119.

Punchoojit L, Hongwarittorrn N. 2017. Usability studies on mobile user interface design patterns:
a systematic literature review. Advances in Human-Computer Interaction 2017(16):1–22
DOI 10.1155/2017/6787504.

Řehůřek R, Sojka P. 2011. Gensim—statistical semantics in Python. Available at https://
radimrehurek.com/gensim/ (accessed 22 June 2023).

Rosen C, Shihab E. 2016.What are mobile developers asking about? A large scale study using Stack
Overflow. Empirical Software Engineering 21(3):1192–1223 DOI 10.1007/s10664-015-9379-3.

Silva CC, Galster M, Gilson F. 2021. Topic modeling in software engineering research. Empirical
Software Engineering 26(6):44 DOI 10.1007/s10664-021-10026-0.

Stack Overflow. 2022. Stack Overflow developer survey 2022. Available at https://survey.
stackoverflow.co/2022 (accessed 18 June 2023).

Stack Overflow. 2023. Stack Overflow—where developers learn, share, & build careers. Available at
http://stackoverflow.com/ (accessed 18 June 2023).

Taba SES, Keivanloo I, Zou Y, Wang S. 2017. An exploratory study on the usage of common
interface elements in android applications. Journal of Systems and Software 131(5):491–504
DOI 10.1016/j.jss.2016.07.010.

Uddin G, Sabir F, Guéhéneuc YG, Alam O, Khomh F. 2021. An empirical study of IoT topics in
IoT developer discussions on Stack Overflow. Empirical Software Engineering 26(6):74
DOI 10.1007/s10664-021-10021-5.

Vasilescu B. 2014. Academic papers using stack exchange data. Available at https://meta.
stackexchange.com/questions/134495/ (accessed 26 July 2022).

Vayansky I, Kumar SAP. 2020. A review of topic modeling methods. Information Systems
94(4):101582 DOI 10.1016/j.is.2020.101582.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 27/28

http://dx.doi.org/10.1002/spe.2850
http://dx.doi.org/10.1007/s10664-015-9375-7
http://dx.doi.org/10.1007/s10664-019-09684-y
http://dx.doi.org/10.3390/app12199787
http://dx.doi.org/10.1142/S0218194018400119
http://dx.doi.org/10.1155/2017/6787504
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
http://dx.doi.org/10.1007/s10664-015-9379-3
http://dx.doi.org/10.1007/s10664-021-10026-0
https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
http://stackoverflow.com/
http://dx.doi.org/10.1016/j.jss.2016.07.010
http://dx.doi.org/10.1007/s10664-021-10021-5
https://meta.stackexchange.com/questions/134495/
https://meta.stackexchange.com/questions/134495/
http://dx.doi.org/10.1016/j.is.2020.101582
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

Villanes IK, Ascate SM, Gomes J, Dias-Neto AC. 2017.What are software engineers asking about
Android testing on Stack Overflow? In: ACM International Conference Proceeding Series.
New York: ACM.

Yang X, Lo D, Li L, Xia X, Bissyandé TF, Klein J. 2017. Characterizing malicious Android apps by
mining topic-specific data flow signatures. Information and Software Technology 90(6):27–39
DOI 10.1016/j.infsof.2017.04.007.

Yang XL, Lo D, Xia X, Wan ZY, Sun JL. 2016. What security questions do developers ask? A
large-scale study of Stack Overflow posts. Journal of Computer Science and Technology
31(5):910–924 DOI 10.1007/s11390-016-1672-0.

Zein S, Salleh N, Grundy J. 2016. A systematic mapping study of mobile application testing
techniques. Journal of Systems and Software 117:334–356 DOI 10.1016/j.jss.2016.03.065.

Zou J, Xu L, Yang M, Zhang X, Yang D. 2017. Towards comprehending the non-functional
requirements through Developers’ eyes: an exploration of Stack Overflow using topic analysis.
Information and Software Technology 84(9):19–32 DOI 10.1016/j.infsof.2016.12.003.

Zuo Y, Wu J, Zhang H, Lin H, Wang F, Xu K, Xiong H. 2016. Topic modeling of short texts: a
pseudo-document view. In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York: ACM, 2105–2114.

Gurcan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1658 28/28

http://dx.doi.org/10.1016/j.infsof.2017.04.007
http://dx.doi.org/10.1007/s11390-016-1672-0
http://dx.doi.org/10.1016/j.jss.2016.03.065
http://dx.doi.org/10.1016/j.infsof.2016.12.003
http://dx.doi.org/10.7717/peerj-cs.1658
https://peerj.com/computer-science/

	Identification of mobile development issues using semantic topic modeling of Stack Overflow posts
	Introduction
	Background and related work
	Method
	Case study and results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

