
Submitted 20 April 2023
Accepted 28 September 2023
Published 31 October 2023

Corresponding author
Jose Llanos,
jose.llanos@correounivalle.edu.co

Academic editor
Stefan Wagner

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.1655

Copyright
2023 Llanos et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Early prediction of student performance
in CS1 programming courses
Jose Llanos1, Víctor A. Bucheli1 and Felipe Restrepo-Calle2

1 School of Systems Engineering and Computing, Universidad del Valle Colombia, Cali, Valle del Cauca,
Colombia

2Department of Systems and Industrial Engineering, Universidad Nacional de Colombia, Bogotá, D.C.,
Colombia

ABSTRACT
There is a high failure rate and low academic performance observed in programming
courses. To address these issues, it is crucial to predict student performance at an
early stage. This allows teachers to provide timely support and interventions to help
students achieve their learning objectives. The prediction of student performance has
gained significant attention, with researchers focusing on machine learning features
and algorithms to improve predictions. This article proposes a model for predicting
student performance in a 16-week CS1 programming course, specifically in weeks 3,
5, and 7. The model utilizes three key factors: grades, delivery time, and the number
of attempts made by students in programming labs and an exam. Eight classification
algorithms were employed to train and evaluate the model, with performance assessed
using metrics such as accuracy, recall, F1 score, and AUC. In week 3, the gradient
boosting classifier (GBC) achieved the best results with an F1 score of 86%, followed
closely by the random forest classifier (RFC) with 83%. These findings demonstrate the
potential of the proposed model in accurately predicting student performance.

Subjects Artificial Intelligence, Computer Education, Programming Languages
Keywords Model prediction, Early prediction, Student performance, Predicting student
performance, Programming course

INTRODUCTION
In programming courses, there is evidence of a high dropout rate, failure, and low academic
performance, as reported in previous studies (Buenaño-Fernández, Gil & Luján-Mora,
2019; ElGamal, 2013). These issues have a negative impact on student engagement and their
attitudes towards learning programming (Lu et al., 2018; Sivasakthi, 2017). To address these
challenges, researchers have emphasized the importance of predicting student performance
(Moreno-Marcos et al., 2020; Pereira et al., 2021). Performance in education refers to the
degree to which students, teachers, or institutions achieve educational objectives, which is
evaluated through continuous assessment of teaching effectiveness (Vilanova et al., 2019).
In CS1 programming courses, various variables have been explored to understand their
influence on student performance. The most significant variables include grades, study
habits, and demographic factors.

Several research papers have focused on gathering data from programming courses
to model and quantify factors related to student performance (Amra & Maghari, 2017;
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Ahadi, Lister & Vihavainen, 2016; Castro-Wunsch, Ahadi & Petersen, 2017; Costa et al.,
2017; Estey & Coady, 2016; Leinonen et al., 2016; Pereira et al., 2019). Scholars argue that
predicting performance is crucial as it enables teachers to identify at-risk students and
provide early interventions (Aguiar & Pereira, 2018; Alamri et al., 2019; Costa et al., 2017;
Hellas et al., 2018; Pereira et al., 2020b; Romero & Ventura, 2019). However, predicting
student performance requires substantial efforts, ranging from student assessment to result
processing.

Topredict performance, Sunday et al. (2020) suggest utilizing variables that can influence
grades. Pereira et al. (2020a) emphasize the importance of early-stage predictions to provide
support to students in their learning journey. Kuehn et al. (2017) recommend making
predictions and implementing corrective measures to ensure that at-risk students attain
desired learning outcomes and grades.

Performance prediction is receiving increasing attention from researchers and educators,
as it enables the analysis of student data and contributes to the educational process (Munson
& Zitovsky, 2018; Pereira et al., 2020b; Romero & Ventura, 2019). The investigation of
machine learning variables, characteristics, and algorithms that yield the best results
in predefined metrics is currently underway (Hellas et al., 2018). In the context of
programming courses, various studies have emerged to predict student performance early
in the semester (Castro-Wunsch, Ahadi & Petersen, 2017; Dwan, Oliveira & Fernandes,
2017; Fwa, 2019; Pereira et al., 2019; Quille & Bergin, 2018; Romero & Ventura, 2019). This
enables teachers to take targeted actions to assist students facing difficulties (Sun, Wu &
Liu, 2020).

This article proposes a model for predicting student performance in weeks 3, 5, and
7 of a 16-week CS1 programming course. The model utilizes features such as grades,
turnaround time, and number of attempts in three programming labs and an exam. The
aim is to identify students with low and medium academic performance early on, who
may be at risk of course failure or require intervention during the training process. The
CRISP-DM methodology is employed, along with eight classification algorithms, and the
model’s performance is evaluated using precision, recall, and F1 score metrics.

The structure of this article is as follows. The Related Work section presents the related
work, including the characteristics, algorithms, and metrics used in predicting student
performance in programming courses. The Methods section describes the CRISP-DM
methodology. The Results section presents the experimental results. The Discussion
and Conclusions section discusses the findings and provides conclusions. Finally, The
Limitations of the Work section outlines the limitations of the research.

RELATED WORK
Data sources used to predict student performance
The most commonly used data sources in predicting student performance are learning
management systems or platforms (such as Moodle or edX) and automated source
code evaluation tools like CodeWork and CodeBench, which allow for the collection of
student-generated data and automated assessment of their submissions. Table 1 presents
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Table 1 Data sources used to predict student performance.

# Data source Tool Number of
students

Reference

1 Learning management
platform

edX - Moreno-Marcos et al. (2020)

Moodle 102 Lu et al. (2018)
Moodle 104 Xin & Singh (2021)
Moodle 336 Villagrá-Arnedo et al. (2017)
Moodle 32,593 Adnan et al. (2021)
Moodle 32,593 Waheed et al. (2020)
DARA 21,314 Sandoval et al. (2018)
Moodle 4,989 Conijn et al. (2016)

2 Automated source
code evaluation
tools

CodeBench 2,058 Pereira et al. (2019)

CodeBench 2,056 Pereira et al. (2021)
CodeWork 86 Munson & Zitovsky (2018)

the type of data source, the specific tool used, the number of students, and the literature
reference identified in the literature review, which are used to predict student performance
in programming courses.

Several articles related to student performance in programming courses were identified
in learning management platforms. InMoreno-Marcos et al. (2020), two Java programming
MOOCs hosted on edX were used. The first one was from Carlos III University of Madrid
(10 weeks), and the second one was fromHong Kong University of Science and Technology
(5 weeks). These courses involved programming tasks with peer review and automatically
graded laboratories. Additionally, in Lu et al. (2018), data from a MOOC with 102 first-
year students taking a Python programming course at a university in Taiwan were utilized.
Tests were conducted with an experimental group of 48 students and a control group of
54 students. In Xin & Singh (2021), grades recorded in Moodle from 104 students enrolled
in a distance learning course on Computer Engineering at the Open University of Madrid
(UDIMA) were used for the development of a student attrition prevention system.

In Villagrá-Arnedo et al. (2017), data from the subject ‘‘Computational Logic’’ (336
students) in the Computer Engineering program were used. The data was collected
from a website that stored information about the learning process and student-teacher
interactions. Students downloaded exercise statements, uploaded their solutions, obtained
exercise scores, and accessed their learning progress. Meanwhile, the teacher uploaded new
exercise statements and monitored student progress.

In Adnan et al. (2021), a Learning Analytics dataset was used, which contained student
information related to demographics and their interaction with the virtual learning
environment (assessments, daily activities, number of clicks). The data was collected for
seven courses and 32,593 registered students between the years 2013 and 2014. Similarly, in
Waheed et al. (2020), the same dataset was used for the years 2014 and 2015 to analyze the
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resulting grades of students, categorizing them as distinction (3,024 records), pass (12,361
records), fail (7,052 records), and withdrawn (10,156 records).

In Sandoval et al. (2018), DARA is described as a system that stores demographic
information of students at the time of enrollment, as well as their past and current
academic status, including grades and enrolled courses. A total of 386,573 records were
analyzed. This systemwas combinedwith the official SAKAY LearningManagement System
(LMS) of the university, which produces student activity logs. In total, information was
collected from 21,314 university students over three semesters, from the second period of
2013 to the second period of 2014.

In Conijn et al. (2016), data on students’ online behavior was collected from different
courses developed in Moodle and taught during the first semesters of 2014 and 2015 at
Eindhoven University of Technology. The final sample included 4,989 students from 17
courses, with data covering eight weeks of course work and two weeks of final exams.

Regarding the automated source code evaluation tools used as data sources, the data
related to student grading has been collected and utilized (Pereira et al., 2019). At the
Federal University of Amazonas, data stored in the CodeBench tool from six introduction
to programming courses were analyzed, involving a total of 2,058 students. This tool enables
the automatic evaluation of exercises by validating the output of the code submitted by the
student against the expected output provided by the instructor (Pereira et al., 2020a).

In Pereira et al. (2021), registration data from 2,056 students in a CS1 course (during
the first two weeks) were used to track student progress and support blended learning
methodology. Students solved programming problems using Python in assignments or
exams, and a total of 150,314 code snippets were used for analysis.

InMunson & Zitovsky (2018), CodeWork, an automated evaluation tool, was utilized to
gather student scores in programming tasks, exams, and the final course grades. A total of
61,684 compilation records from 86 students were analyzed.

Features used to predict student performance
In the literature review, several features that have been utilized for predicting student
performance in programming courses were identified. This work defines four types
of features: demographic data, grades, study habits, and programming. Demographic
variables, such as age, gender, marital status, nationality, and income, have been employed
in studies such as Costa et al. (2017), ElGamal (2013), Salinas, Williams & King (2019),
Sivasakthi (2017) andVilanova et al. (2019), as they are related to the student’s background.
Additionally, other variables such as the number of credits passed, previous studies, and
the semester have emerged in recent years as relevant factors in this type of research.

Although demographic features have been utilized in various research studies, Brooks,
Thompson & Teasley (2015) states that gender, age, and race have limited predictive power
for student performance. Furthermore, Alturki, Hulpus & Stuckenschmidt (2022) highlights
that while demographic features are commonly used for performance prediction, their
actual usefulness remains unclear. For instance, gender is often employed as a characteristic
(Daud et al., 2017; Garg, 2018; Sultana, Khan & Abbas, 2017), yet some researchers have
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found that it does not significantly impact overall prediction accuracy (Ramesh, Parkavi &
Ramar, 2013).

The grades category of features has been employed to consider various aspects, such as the
student’s cumulative grades, grades from the previous year, and grades from the current
semester, with the average grade point average (GPA) being the most commonly used
metric (Quille & Bergin, 2019). Additionally, first-semester grades, completed assignments,
lab grades, and final grades have also been utilized (Moreno-Marcos et al., 2020; Munson
& Zitovsky, 2018; Pereira et al., 2019; Yoshino et al., 2020). In de la Peña et al. (2017), it is
mentioned that this type of variable is significant for predicting student performance, as it
enables the generation of tutorials and guidance throughout the academic process. Other
authors indicate that grades serve as a key indicator of student performance, as they have
yielded positive results in prediction models (Marbouti, Diefes-Dux & Madhavan, 2016;
Zeineddine, Braendle & Farah, 2021).

Study habits represent another category of features utilized for predicting student
performance in programming courses. These features encompass various aspects such as
student forum engagement, clickstream data, class attendance, and video playback (Kuehn
et al., 2017; Lu et al., 2018; Moreno-Marcos et al., 2018; Moreno-Marcos et al., 2020; Pereira
et al., 2019; Sunday et al., 2020; Vilanova et al., 2019; Yoshino et al., 2020). They contribute
to addressing issues of poor academic performance, low levels of student participation, and
unsatisfactory grades obtained in the curriculum. Moreover, they aid in enhancing student
aptitude for programming and fostering higher levels of engagement in collaborative
programming courses (Abdulwahhab & Abdulwahab, 2017; Lu et al., 2018; Munson &
Zitovsky, 2018; Salinas, Williams & King, 2019).

Finally, the programming category of variables has gained significant attention in
recent years, enabling the analysis of factors that can influence programming learning
(Lu et al., 2018; Sivasakthi, 2017). Within this category, variables related to mathematical
background, problem-solving abilities, and prior programming experience have been
explored (ElGamal, 2013). Additionally, the analysis of source code testing, executions, and
keystrokes has provided valuable insights (Pereira et al., 2021). Furthermore, variables such
as the number of attempts, average number of delivery attempts due to issues, number
of accepted solutions, number of exercises completed, and results of submissions have
been evaluated (Castro-Wunsch, Ahadi & Petersen, 2017; Costa et al., 2017; Leinonen et al.,
2016; Moreno-Marcos et al., 2020; Munson & Zitovsky, 2018; Pereira et al., 2021; Pereira et
al., 2020a; Pereira et al., 2019; Salinas, Williams & King, 2019; Sunday et al., 2020; Villagrá-
Arnedo et al., 2017).

Table 2 illustrates the features and corresponding references of the research articles that
were examined in the literature review and have contributed to the prediction of student
performance in programming courses. The articles were categorized based on the types of
features analyzed: demographic, grades, study habits, and scheduling.

During the literature review, research articles were identified that predict student
performance in the early stages of programming courses. The most commonly utilized
features include demographics, grades, study habits, and programming behaviors.
According to studies such as Alamri et al. (2019), Hellas et al. (2018), Pereira et al.
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Table 2 Features used in predicting student performance.

# Feature type Characteristics Reference

1 Demographic Identification of the student, gender, age, marital status,
previous studies, nationality, city, semester, number of
credits passed, income.

Costa et al., 2017; ElGamal, 2013; Salinas, Williams & King,
2019; Sivasakthi, 2017; Vilanova et al. (2019)

2 Grades Intermediate grades of the tasks, final grade, grade of the
first semester, completed assignment, laboratory work in
class, qualification introductory programming test, final
grade, exams of the period.

Buenaño-Fernández, Gil & Luján-Mora, 2019; de la Peña
et al., 2017;Moreno-Marcos et al., 2020;Munson & Zitovsky,
2018; Pereira et al., 2020b; Sivasakthi, 2017; Sunday et al.
(2020)

3 Study habits Participation in forums, clickstreams, class attendance,
video playback, persistence in the development of activities,
number of times you took a test, number of exam attempts
per subject, numbers of logins.

Kuehn et al., 2017; Lu et al., 2018;Moreno-Marcos et al.,
2018;Moreno-Marcos et al., 2020; Pereira et al., 2019;
Sunday et al., 2020; Vilanova et al., 2019; Yoshino et al.
(2020)

4 Programming Math background, problem-solving ability, previous
programming experience, number of attempts, average
attempts of submission by problems, number of accepted
solutions, individual coding aptitude of the student,
number of exercises performed, number of correct
exercises, tests in the source code, results of submission,
time to solve exercises, keystroke.

Castro-Wunsch, Ahadi & Petersen, 2017; Costa et al., 2017;
Leinonen et al., 2016;Moreno-Marcos et al., 2020;Munson
& Zitovsky, 2018; Pereira et al., 2021; Pereira et al., 2020a;
Pereira et al., 2019; Salinas, Williams & King, 2019; Sunday
et al., 2020; Villagrá-Arnedo et al. (2017)

(2020b) and Romero & Ventura (2019), these types of variables are crucial for predicting
performance as they enable the identification of at-risk students. However, it is essential to
employ automatic source code evaluation tools that facilitate the collection and analysis of
variables related to attempts and delivery times in order to enable early student intervention
(Pereira et al., 2020b).

Early performance prediction is receiving increasing attention, as it provides
opportunities for improving educational outcomes through early interventions (Munson
& Zitovsky, 2018; Romero & Ventura, 2019). Recent studies Castro-Wunsch, Ahadi &
Petersen (2017), Dwan, Oliveira & Fernandes (2017), Fwa (2019) and Quille & Bergin
(2018) propose methods to predict student performance in programming courses from
the beginning, allowing teachers to take specific actions to assist students facing difficulties
(Sun, Wu & Liu, 2020). Researchers in this field generally seek features that can be used in
machine learning algorithms to generate more accurate predictions (Hellas et al., 2018).

Algorithms and metrics used in predicting student performance
Classification algorithms are machine learning techniques used to define features and
classes based on different data. Their main objective is to classify new instances based on
unknown data. In the process, features are used as input data, a model is trained using
previously labeled examples, and a binary or multiclass class is predicted (Gama & Brazdil,
1995).

Regression algorithms are techniques used to predict numerical or continuous
values based on input variables. In these types of algorithms, the relationships between
independent (predictor) variables and the dependent (target) variable are analyzed, and a
model is constructed to make predictions on new data. The goal of these algorithms is to
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find a mathematical function or relationship that best fits the training data. This function is
then used to predict numerical values in new data instances (Massaron & Boschetti, 2016).

There are various classification and regression algorithms. Some examples of
classification algorithms include k-nearest neighbors (KNN), decision tree (DT), support
vector machine (SVM), and random forest (RF). Regression algorithms include linear
regression, k-nearest neighbors regression (KNN regression), decision tree regression
(DT regression), and random forest regression (RF regression). Each algorithm has its
own characteristics, approaches, advantages, and disadvantages. However, the choice of
algorithm depends on the specific problem and the type of available data (Singh, Thakur &
Sharma, 2016).

This section discusses themachine learning algorithms andmetrics commonly employed
in predicting student performance in programming courses. The literature review revealed
that classification algorithms are widely used due to their favorable predictive results.
In recent years, the multilayer perceptron has gained prominence in certain research
studies (Pereira et al., 2021; Pereira et al., 2020a). According to Buenaño-Fernández, Gil
& Luján-Mora (2019), the outcomes obtained from these predictions demonstrate the
effectiveness of machine learning techniques in forecasting student performance.

Classification algorithms have made significant contributions to research in this field.
For instance, in Moreno-Marcos et al. (2020), these algorithms are utilized to predict
student performance by considering intermediate assignment grades and the final course
grade, with the aim of improving academic performance and reducing high dropout
rates. Additionally, these algorithms have been combined with data mining techniques to
assess and enhance student performance in programming courses (Sunday et al., 2020).
Furthermore, they have been instrumental in predicting final grades based on historical
grade performance, with the goal of reducing dropout rates and enhancing educational
quality at universities (Buenaño-Fernández, Gil & Luján-Mora, 2019).

Other contributions of classification algorithms focus on predicting the academic
performance of students in introductory programming courses, aiming to address poor
performance (Sivasakthi, 2017). They have also been used to predict students’ performance
based on weekly evaluations of programming exercises, indicating whether or not they will
pass the course. This approach aims to tackle the high failure rate among programming
students in the early stages (Yoshino et al., 2020). Similarly, in Pereira et al. (2019),
classification algorithms were employed to predict the performance of programming
students at the beginning of the course. Moreover, in Costa et al. (2017), this type of
algorithm is used to predict early on which students will fail introductory programming
courses, as a high rate of academic failure was identified.

In Pereira et al. (2021), classification algorithms are used to predict early behaviors that
are related to the success or failure of programming students. This approach helps in
generating effective interventions and improving ineffective behaviors that students exhibit
while programming. On the other hand, in Abdulwahhab & Abdulwahab (2017), a model
is developed to predict student behavior based on their grades. The aim is to support
students who are achieving low grades in their coursework. In de la Peña et al. (2017), a
real-time prediction model is created to identify whether a student is likely to drop out
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Table 3 Algorithms andmetrics used in predicting student performance.

# Type of
algorithm

Algorithms Metric Reference

1 Classification Naive Bayes (NB), Support Vec-
tor Machine (SVM), Support Vec-
tor Classification (SVC), Decision
Trees (DT), K Neighbors Classi-
fier (KNN), Multilayer Perceptron
(MLP), and Random Forest (RF)

Area under the curve (AUC), vali-
dation cross, Spearman correlation,
Pearson correlation, accuracy, pre-
cision, recall, and F1 score

Abdulwahhab & Abdulwahab
(2017), Buenaño-Fernández, Gil
& Luján-Mora (2019), Costa et al.
(2017),Moreno-Marcos et al.
(2020), Pereira et al. (2021), Pereira
et al. (2019), Sivasakthi (2017),
Sunday et al. (2020), Villagrá-
Arnedo et al. (2017), Yoshino et al.
(2020)

2 Regression Linear regression (LR), and logistic
regression

Mean square error (RMSE), ab-
solute error medium (MAE), R
square (R2)

de la Peña et al. (2017),Moreno-
Marcos et al. (2020),Munson & Zi-
tovsky (2018), Pereira et al. (2019),
Yoshino et al. (2020)

of a course based on historical grade data. The goal is to address the high dropout rate in
programming courses.

Regression algorithms have made various contributions to the field of student
performance prediction. For instance, prediction models have been developed to address
poor academic performance, reduce high dropout rates, and mitigate the high failure
rates observed among programming students. These models aim to enhance academic
performance and enable teachers to provide timely interventions (de la Peña et al., 2017;
Moreno-Marcos et al., 2020; Munson & Zitovsky, 2018; Pereira et al., 2019; Yoshino et al.,
2020). Table 3 presents the algorithms, machine learning metrics, and references of
the articles identified in the literature review that have been used in predicting student
performance in programming courses.

The proposedmodel utilizes the classification algorithms listed inTable 3, as the literature
review revealed that they achieved results above 75% in predicting student performance
in the early weeks of the course. These algorithms have also incorporated features related
to grades and programming, making them suitable for predicting performance in CS1
programming courses. Additionally, the model evaluates its performance using metrics
such as accuracy, recall, and F1 score, which are employed in this research.

Early prediction in programming courses
Several research studies have contributed to early prediction in programming courses.
For example, in Costa et al. (2017), a prediction model was developed to identify, starting
from week 4, which students would drop out or continue in the course. The study utilized
demographic data (age, gender, marital status, among others) and academic data (number
of exercises completed by the student, performance in programming activities and weekly
exams) from different introductory programming courses delivered both in-person and
online. The classification algorithms used in the process included NB, DT, MPL, SVM, and
the precision, recall, and F1 score metrics, achieving an 83% accuracy in the mentioned
week.
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Table 4 Early prediction in programming courses.

What it predicts Week
prediction

Algorithms Metrics Prediction
(%)

Reference

Student drops out or not 4 NB, DT, MLP, SVM Precision, Recall, F1
Score

83 Costa et al. (2017)

Student grade 3 LR R2 87 Munson & Zitovsky (2018)
Student drops out or not from
the course

2 DT Precision, Recall 80 Pereira et al. (2019)

Student passes or fails the course 2 MLP, RF Precision, Recall, F1
Score

82 Pereira et al. (2020a)

The student passes or fails the
course

2 XGBoost, MLP, RF Precision, Recall, F1
Score

81 Pereira et al. (2021)

Similarly, in Munson & Zitovsky (2018), a model was developed to predict student
grades in the third week of the course. The data was collected from an automated source
code evaluation tool called CodeWork, which stores students’ scores from programming
activities (assignments and exams) as well as the final course grade. In the prediction,
linear regression and the R2 metric were used, achieving an 87% accuracy. Other authors
such as Pereira et al. (2019) predict whether a student will drop out or continue in the
programming course starting from the second week. For data collection, they utilize
CodeBench, an automated source code evaluation tool that stores student records related
to programming activities, such as code testing, generated submissions, keystrokes, etc. In
the process, they employed the time spent by the student (in minutes) for programming
tasks, the DT classification algorithm, and the precision and recall metrics. In the conducted
tests, the prediction model achieved 80% precision.

Table 4 presents the most relevant elements identified in related works where early
prediction is generated in programming courses. These elements are related to the type of
prediction and the week in which it is generated, the machine learning algorithms used in
the process, the metrics employed, the prediction percentage, and the respective reference.

In Pereira et al. (2020a), the prediction of whether a student passes or fails the
introductory programming course is made in the second week. It utilizes 18 source code
characteristics and programming behaviors stored in the CodeBench tool. The machine
learning algorithms used are MLP, RF, and the metrics employed are recall, precision,
and F1 score. The RF algorithm achieved the best results for the defined metrics, with an
accuracy of 82%.

Furthermore, in Pereira et al. (2021), the prediction of whether a student passes or fails
the CS1 course is made in the second week. The process involves using elements from
the source code extracted from the CodeBench automated evaluation tool, such as tests,
submissions, program executions, keystrokes, deadlines, error corrections, and time spent
on programming. The classification algorithms used are XGBoost, MLP, and RF, along
with metrics such as precision, recall, F1 score, and cross-validation of 10. They achieved
an accuracy of 81% for the mentioned week.
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Based on the literature review, the contributions generated by López Zambrano, Lara
Torralbo & Romero Morales (2021), as well as the conferences organized by the International
Educational Data Mining Society between 2020 and 2022, the following findings were
identified:

• There are research works where learning management systems (Moodle, edX) are used
as data sources to develop models for predicting student performance. Others include
automated source code evaluation tools such as CodeWork and CodeBench to extract
features for the proposed prediction models. However, in few studies, different data
sources are combined, which may include static and dynamic records, to define relevant
features in the construction of prediction models focused on student performance.
• The literature review identified four types of features for predicting student performance.
However, in Ramesh, Parkavi & Ramar (2013), it is indicated that characteristics related
to demographic data and study habits contribute little to these prediction models due
to their static nature. On the other hand, Quille & Bergin (2019), Moreno-Marcos et al.
(2020), Munson & Zitovsky (2018), Pereira et al. (2019), Yoshino et al. (2020) and López
Zambrano, Lara Torralbo & Romero Morales (2021) states that features related to grades
and programming are relevant for such models because they are dynamic in nature and
have shown good results in predicting student performance.
• Several studies were also identified where features such as demographic data, prior
studies, performance in activities, final course grades, clickstream data, forum
participation, submissions, among others, were used. However, few research works
include features such as delivery time and number of attempts, which, according
to Castro-Wunsch, Ahadi & Petersen (2017) and Alamri et al. (2019), can be used for
predicting student performance in programming courses.
• In early prediction of programming courses, it was identified that there are research
studies that generate predictions between the 2nd and 4th week of the course. They
employ classification algorithms such as naive Bayes (NB), decision tree (DT),multi-layer
perceptron (MLP), support vector machine (SVM), random forest (RF), and XGBoost.
Regression algorithms like linear regression (LR) are also used. The most commonly
usedmetrics are precision, recall, and F1 score. The accuracy of the predictions can range
from 80% to 87%. However, the use of multiple features in the process, as mentioned in
Márquez-Vera, Morales & Soto (2013), leads to high dimensionality, which means a large
number of features that can limit the prediction algorithms from achieving interesting
results quickly. Additionally, it was observed that while most works utilize traditional
machine learning algorithms to generate binary outputs, only a few studies combine
traditional and ensemble algorithms to generate multiclass classifications.

Based on the findings described above, this research work proposes using the early
prediction models from Costa et al. (2017), Pereira et al. (2020a) and Pereira et al. (2021) as
a baseline and incorporating the contributions fromMoreno-Marcos et al. (2020), Munson
& Zitovsky (2018), Pereira et al. (2019), Castro-Wunsch, Ahadi & Petersen (2017), Alamri
et al. (2019) and Márquez-Vera, Morales & Soto (2013) to define a multiclass classification
model that predicts student performance using different data sources and incremental
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Table 5 Baseline articles.

# Best Algorithm Metric Prediction (%) Reference

1 SVM F1 score 83 Costa et al. (2017)
2 RF F1 score 82 Pereira et al. (2020a)
3 XGBoost F1 score 81 Pereira et al. (2021)

features related to grading (three labs) and programming (delivery time and number of
attempts) in weeks 3, 5, and 7 of a 16-week CS1 programming course. Table 5 presents the
best algorithm, the metric used to evaluate the model, the prediction percentage, and the
references of the selected articles as the baseline.

This work integrates two data sources into the proposed model. The first source
comprises grades assigned to programming activities completed by students during the
course. The second source is an automated source code evaluation tool that extracts
students’ time spent on programming submissions and the number of attempts made.
These dynamic records are then transformed into the model’s features. In contrast to
other studies, our model predicts student performance early on with a limited number
of variables and a reduced volume of available course data, achieving promising results
through techniques such as feature selection and hyperparameter tuning, implemented via
ensemble algorithms like GBC.

METHODS
In this section, the research questions and the standard process for data mining (CRISP-
DM) used in this work for the construction of the prediction model are described. The
CRISP-DM lifecycle includes the following phases: data understanding, data preparation,
modeling, and model evaluation.

In the understanding phase, the sources for data collection are defined, and the dataset
is constructed. The objective is to observe the relationship between the records and verify
the data quality. In the subsequent phase, the data is prepared using various data mining
techniques to generate the required format for constructing the prediction model. In the
modeling phase, algorithms and metrics are selected to implement in the model, and the
prediction model is built. Finally, in the evaluation phase, the prediction model is assessed
based on the defined metrics, and an estimation is made to determine if the proposed
objectives have been achieved.

Research questions
Taking into account the problem described by Buenaño-Fernández, Gil & Luján-Mora
(2019) regarding programming courses and their association with low academic
performance, the following research questions are proposed:

• RQ1: How to build a model to early predict student performance in CS1 programming
courses?
• RQ2: How to classify students in CS1 programming courses according to their
performance?
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Data understanding
Data sources
In this work, data was collected from three sources: (i) A .csv file containing the grades
for laboratories 1, 2, and 3, exam 1, and the final grade of the student. These records
correspond to 12 CS1 and CS2 programming courses conducted between the years 2021
and 2022. The assessed topics with achievement indicators were: inputs and outputs,
decision structures, iterative structures, and functions. The grade values range from 0.0 to
5.0, and a student passes the course when the final grade is greater than or equal to 3.0.
(ii) A .csv file extracted from an automated source code evaluation tool, including delivery
time (in days), the number of attempts used by the student in their submissions, and the
outcome achieved in the tool (did not submit, failed, overflow, success). (iii) A .csv file
extracted from the academic records and admissions system of the University of Valle,
Colombia, containing information for the period equal to 2022 or before 2022 and the
enrollment type (withdrawn, regular, repeat) of the student during the semesters: 2021-1,
2021-2, and 2022-1.

Dataset
Considering the sources described in the previous section, the dataset was constructed for
this work. The process involved integrating student grades, records from the automated
source code evaluation tool, and data from the academic records and admissions system.
Subsequently, a .csv file was created with 18 columns and 754 rows of the collected
records. The columns include the course code, student name, grade for laboratory 1 with
its corresponding delivery time, number of attempts, and the outcome achieved by the
student according to the evaluation tool. Next, the grade for laboratory 2 appears along
with the delivery time, number of attempts, and the outcome. Similarly, the grade, delivery
time, number of attempts, and outcome for laboratory 3 are included. This is followed
by the grade for exam 1, the academic period, the enrollment type, and the final grade of
the student. Regarding the rows, it is important to clarify that each row corresponds to a
student record. The programming activities and the features defined for constructing the
prediction model are described below.

• Programming activities

Lab 1 comprises two programming exercises that are to be submitted in week 3 of the
course. It carries a weight of 7.68% towards the student’s final grade. This lab assesses two
achievement indicators: (1) implementation of an algorithm in a programming language
that provides a solution to a problem. This includes input and output handling, decision
structures, loops, arrays, and/or functions. (2) Application of a development methodology
for a specific problem, including the delivery of elements for each stage of the methodology.

Lab 2 consists of two programming exercises that are completed in week 5 of the course.
It contributes 12% towards the student’s final grade. The achievement indicators assessed
in this lab are related to proposing algorithms that involve the use of decision structures
and functions to solve a given problem.
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Table 6 Features used in the proposed model.

Category Feature Data type Description

Grade lab_1 numeric decimal Lab 1 grade
lab_2 numeric decimal Lab 2 grade
lab_3 numeric decimal Lab 3 grade
exam_1 numeric decimal Exam 1 grade

Automatic assessment tool delivery_time_lab_1 numeric decimal Lab 1 delivery time in hours
attempts_lab_1 integer numeric Total lab 1 attempts
result_lab_1 integer numeric Result delivered by INGInious for lab 1 (Did not file, Failed,

Overflow, Success)
delivery_time_lab_2 numeric decimal Lab 2 delivery time in hours
attempts_lab_2 integer numeric Total lab 2 attempts
result_lab_2 integer numeric Result delivered by INGInious for lab 2 (Did not file, Failed,

Overflow, Success)
delivery_time_lab_3 numeric decimal Lab 3 delivery time in hours
attempts_lab_3 integer numeric Total lab 3 attempts
result_lab_3 integer numeric Result delivered by INGInious for lab 3 (Did not file, Failed,

Overflow, Success)
Administrative information period integer numeric Student enrollment period (Same as 2022, Less a 2022)

enrollment_type integer numeric Type of student enrollment (Retired, Normal, Repeater)

Lab 3 and the exam both take place in week 7 of the course. The lab carries a weight
of 6% towards the student’s final grade and assesses whether the student proposes an
algorithm with repetition structures to solve a problem. The exam consists of two exercises
and contributes 26.56% towards the final grade. It evaluates seven achievement indicators
related to solving a problem that involves input and output, decision structures, cycles,
arrays, and functions. It also assesses the student’s ability to perform desktop testing on
algorithms that utilize decision structures, repetition structures, and functions. The exam
further examines the student’s capability to propose algorithms that require the use of
decision and repetition structures to solve a given problem and track recursive calls of a
function.

• Features for constructing the prediction model

Each of the columns described in this section, with the exception of the course code,
student name, and final grade, were defined as features for the proposed prediction
model and were organized into three categories, along with their respective data type
and description (see Table 6). The first category is related to the student’s grade in
programming tasks, including the grades for the three laboratories and exam 1. The second
category utilizes variables such as delivery time, number of attempts, and the outcome
achieved by the student in the laboratories. The third category pertains to the academic
period and enrollment type.
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Table 7 Number of students and deliveries per semester.

Semester # Students # Labs delivered # Exams delivered

2021-1 150 1,050 150
2021-2 175 1,225 175
2022-1 143 1,001 143
Total 468 3,276 468

Data preparation
Data anonymization
After constructing the dataset, the course code and student name columns were removed to
anonymize the data. This was done to preserve student privacy, comply with data handling
regulations, and foster trust in the use of personal data in research.

Data preprocessing
In this task, the resulting .csv file was loaded into a DataFrame to perform the necessary
preprocessing. The first step was to identify the NaN records in the DataFrame and remove
them from the dataset. The pandas function .isnull().sum(axis = 0) was used to obtain the
number of NaN values for each column. Then, the .dropna() method was used to remove
these records from the dataset, resulting in a total of 468 rows.

The next step involved transforming the outcome of the laboratories, academic period,
and enrollment type into discrete values for classification. The sklearn library, specifically
the preprocessing package and the LabelEncoder() method, were used for this task. The
values for the laboratory outcome were encoded as follows: 0 for ‘‘Did not file,’’ 1 for
‘‘Failed,’’ 2 for ‘‘Overflow,’’ and 3 for ‘‘Success.’’ Similarly, the values for the academic
period were encoded as 0 for ‘‘Same as 2022’’ and 1 for ‘‘Less than 2022.’’ Finally, for the
enrollment type, the values were encoded as 0 for ‘‘Retired,’’ 1 for ‘‘Normal,’’ and 2 for
‘‘Repeater’’.

The final task in data preprocessing involved transforming the student’s final grade
column into the values proposed by Villagrá-Arnedo et al. (2017), which defines low,
medium, and high performance. In our project, this is the target variable that we want to
predict, and it was transformed as follows: 0 for Low Performance (grades between 0.0 and
2.9), 1 for Medium Performance (grades between 3.0 and 4.0), and 2 for High Performance
(grades between 4.1 and 5.0).

Table 7 presents the number of students, laboratories, and exams submitted per semester
after applying data preprocessing. A total of 3,744 submissions were analyzed across the
three semesters. In the 2021-1 semester, there were 1,200 submissions from 150 students.
In the 2021-2 semester, 1,400 submissions from 175 students were analyzed. Lastly, in the
2022-1 semester, there were 1144 submissions from 143 students.

Data balancing
In this task, the records of the target variable were grouped to observe the data distribution.
For 0 (Low Performance), there were 162 records, while for 1 (Medium Performance)
there were 200 records, and for 2 (High Performance) there were 106 records. Since the
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proposed prediction model is for classification, it was necessary to balance the data to
prevent overfitting. Therefore, we used the oversampling technique, which includes the
resample method from the sklearn library, to balance the records.

Modeling
Selected algorithms
The proposed model utilizes three types of classification algorithms: the traditional ones
mentioned in Table 3, an artificial neural network called multilayer perceptron (MLP),
and two ensemble algorithms: random forest (RF) and gradient boosting classifier (GBC).
The traditional algorithms and MLP were selected because they have been used in previous
research and have achieved good results (Buenaño-Fernández, Gil & Luján-Mora, 2019;
Pereira et al., 2021; Pereira et al., 2020a). The last type of algorithms was selected because in
the baseline articles (Pereira et al., 2020a; Pereira et al., 2021), the authorsmention that they
are suitable for predicting student performance in early stages as they improve performance
and help stabilize the model.

After selecting the classification algorithms, the prediction model is built. For this,
80% of the data generated in the data preparation phase is used for training the model,
and the remaining 20% is used for testing. Additionally, the grid search technique and
cross-validation with a value of 10 were used to identify the best hyperparameters. Then,
with the selected hyperparameters, the final prediction was generated, and the results for
each of the selected metrics for weeks 3, 5, and 7 of the programming course were obtained.
The model and data are available at https://zenodo.org/record/8111596.

Selected metrics
To evaluate the proposed prediction model in this work, the metrics identified in the
literature review and baseline models were used, namely: precision, recall, and F1 score.

Precision is the rate of correctly identified or classified positive data. Thismetric indicates
the true positive data within all instances classified by themachine learning algorithm (Ossa
Giraldo & Jaramillo Marin, 2021). Its calculation is generated using the formula:

precision=
TP

TP+FP
(1)

Where:

• TP = True Positives
• FP = False Positives

Recall, also known as True Positive rate or Sensitivity, refers to the rate of correctly
identified positive instances among all actual positive instances (Ossa Giraldo & Jaramillo
Marin, 2021). Its equation is given by:

recall =
TP

TP+FN
(2)

Where:

• TP = True Positives
• FN = False Positives
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F1 score is defined as the harmonic mean of precision and recall. This metric takes into
account both false positives and false negatives (Sasaki, 2007). Its equation is given by:

F1= 2
Precision∗Recall
Precision+Recall

(3)

The value of F1 score is defined as the harmonic mean of precision and recall, thus its
value lies between both metrics, leaning towards the lower value (Rodríguez Bustos, 2020).

Evaluation
Based on the baseline articles (Costa et al., 2017; Pereira et al., 2020a; Pereira et al., 2021),
the objective for this work is to achieve a value greater than or equal to 83% in the F1 score
metric, based on the prediction of student performance from week 3 of the course. All the
results of the prediction model evaluation are presented in the results section.

Instruments
Two tools were utilized for conducting this research. The first tool is Replit (https:
//replit.com/), an online integrated development environment that enables the development
of applications in various programming languages. Students utilize this platform to work
on their course labs and exams, implementing solutions in a programming language.
The second tool employed is INGInious (https://inginious.org/), an automated source code
evaluation tool that assesses student submissions based on predefined input and output test
cases provided by the instructor. Using INGInious, students upload their source code from
Replit, containing their lab solutions. If the inputs and outputs are correct, a score of 100%
is awarded. In cases where discrepancies are detected between the expected and submitted
inputs/outputs, a comparison is displayed on the screen, allowing students to identify their
errors and make subsequent submissions. Students have an unlimited number of attempts
on INGInious, with the only constraint being the assignment’s due date.

RESULTS
This section presents the results of the research questions defined in the methodology. The
first part answers RQ1, based on the selection of features used in the construction of the
proposed prediction model, the results achieved in the machine learning algorithms for
the metrics Precision, Recall, F1 Score, and a radar chart that allows comparing the results
achieved by each algorithm per week.

Features selected
Taking into account that the objective of this work is the early prediction of student
performance, features related to the grade and automatic source code evaluation tool were
used, specifically for Lab 1, as it is the first programming activity that students undertake in
the course. These features were then combined with enrollment-related features for testing
with the selected machine learning algorithms. However, the results obtained fell short of
the objective set in this work. Therefore, the decision was made to remove some features
from the prediction model, based on the findings described by Márquez-Vera, Morales &
Soto (2013), which state that a large number of features can limit the results of classification
algorithms in early prediction models.
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To identify the features that have the greatest contribution to the prediction of
the proposed model, the best features technique and the ELI5 library were used. The
show_weights() method in ELI5 was employed to generate a report that includes the
name of the feature and its weight contribution to the model, sorted in descending order.
For the prediction of week 3, the selected features were lab_1, delivery_time_lab_1, and
attempts_lab_1, which had weights of 0.48, 0.21, and 0.20, respectively. Subsequently,
the prediction for week 5 was performed, combining the three types of features (grade,
automatic evaluation tool, and enrollment) for Labs 1 and 2. This was done to create an
incremental prediction model, which, according to de la Peña et al. (2017), improves the
results for the selected metrics by adding new features. The show_weights() method from
the ELI5 library was used again, and the selected features and their respective weights were:
lab_1 = 0.35, lab_2 = 0.32, delivery_time_lab_1 = 0.13, and attempts_lab_1 = 0.10.

Finally, the prediction for week 7 was performed by combining the three types
of features for Labs 1, 2, 3, and Exam 1. The selected features were lab_1, lab_2,
lab_3, delivery_time_lab_1, and attempts_lab_1, based on the weights generated by the
show_weights() method, which were 0.34, 0.31, 0.12, 0.08, and 0.06, respectively. The
results described above indicate that the grade-related features contribute the most to the
proposed prediction model. They have the highest weights in each of the combinations
generated for weeks 3, 5, and 7.

Machine learning algorithms and metrics
In this work, eight classification algorithms were used for prediction, five of which are
traditional algorithms: NB, SVC, DT, LR, and KNN, one is an artificial neural network:
MLP, and the remaining two algorithms are ensemble algorithms: RF and GBC. The tests
conducted allowed obtaining the values for the metrics: precision, recall, and F1 score for
weeks 3, 5, and 7. In week 3, the algorithm that presented the highest results according to
the selected metrics was GBC, with values of 0.86 for precision, 0.87 for recall, and 0.86 for
F1 score. Meanwhile, the algorithm with the lowest results was NB, with 0.60, 0.63, and
0.61 for the same metrics.

Inweek 5, RF andGBCachieved 0.94 in allmetrics, indicating that they are the algorithms
with the best results. However, the NB algorithm obtained the lowest results with 0.67
for precision, 0.68 for recall, and 0.67 for F1 score. Finally, in week 7, it can be observed
that GBC achieved the highest results, with 0.96 for each of the metrics. Meanwhile, the
algorithm with the lowest results was NB with 0.76 for each of the metrics (see Table 8).
Based on the results obtained, it can be observed that ensemble algorithms achieved the
highest results for the selected metrics in weeks 3, 5, and 7. This indicates that this type
of algorithms is appropriate for early prediction models, where characteristics related to
grades, delivery time, and number of attempts generated by the student in programming
activities are used.

Figure 1 displays a radar chart illustrating the performance of the prediction algorithms
in weeks 3, 5, and 7, based on the selected metrics. The lines closer to the center represent
the results for week 3, where the algorithms achieved values ranging from 0.60 in accuracy
to 0.87 in recall. The yellow, blue, and green lines located in the middle of the radar depict
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Table 8 Results of prediction algorithms in week 3, 5 and 7.

Week Metric NB SVC DT LR KNN MLP RF GBC

3 Precision 0.60 0.75 0.78 0.65 0.80 0.77 0.84 0.86
Recall 0.63 0.75 0.78 0.67 0.81 0.78 0.84 0.87
F1 Score 0.61 0.75 0.77 0.65 0.79 0.77 0.83 0.86
AUC 0.83 0.87 0.92 0.85 0.94 0.89 0.95 0.96

5 Precision 0.67 0.90 0.88 0.87 0.91 0.86 0.94 0.94
Recall 0.68 0.88 0.86 0.86 0.91 0.84 0.94 0.94
F1 Score 0.67 0.88 0.86 0.86 0.91 0.84 0.94 0.94
AUC 0.94 0.97 0.98 0.99 0.99 0.97 0.99 0.99

7 Precision 0.76 0.95 0.91 0.91 0.93 0.90 0.95 0.96
Recall 0.76 0.94 0.91 0.90 0.93 0.89 0.95 0.96
F1 Score 0.76 0.94 0.91 0.90 0.93 0.89 0.95 0.96
AUC 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99

the results for week 5, with the algorithms reaching values between 0.67 for precision and
F1 score, up to 0.94 for all metrics. Finally, the lines furthest from the center represent the
results for week 7, with the algorithm range spanning from 0.76 to 0.96 for all metrics.

Across the weeks, the algorithm with the highest performance was GBC, followed by RF
in second place. Conversely, NB consistently achieved the lowest results across all three
weeks. When comparing the performance of the algorithms week by week, it is evident that
as the weeks progress and more features are incorporated into the prediction model, the
results improve across all metrics for all algorithms.

Figure 2 displays the ROC curves of the GBC algorithm for the defined classes in the
prediction model. The green line represents class 0, indicating low performance, with an
area under the curve (AUC) of 0.90. The orange line represents class 1, representingmedium
performance, with an AUC of 0.64. The blue line represents class 2, corresponding to high
performance, with an AUC of 0.89. The ROC curve provides insight into the sensitivity
and specificity of the GBC algorithm at different threshold values. The GBC algorithm
was selected as the best-performing algorithm based on the accuracy, recall, and F1 score
metrics in weeks 3, 5, and 7.

Classification of students according to their performance
After conducting tests on the model, we proceeded to predict the performance of a CS1
programming course for the semester 2022-2, in order to answer RQ2 based on statistical
results obtained by the student. The course consists of 40 students, and the same metrics
used in the tests (precision, recall, and F1 score) along with the ensemble algorithm GBC
were employed. For the week 3, where the Lab 1 was developed, the model classified
seven students as having low performance, two with medium performance, and 31 with
high performance. In this activity, the student presents two programming exercises in
INGInious, and two achievement indicators are evaluated. The first one is related to the
use of a development methodology to solve a specific problem, and the second one involves
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Figure 1 Radar graph with the results of the prediction algorithms per week.
Full-size DOI: 10.7717/peerjcs.1655/fig-1

implementing an algorithm in a programming language to solve a specific problem with
inputs and outputs.

In Lab 2, which was developed in week 5, the prediction model classified five students as
having low performance, eight with medium performance, and 27 with high performance.
In this activity, two programming exercises were presented, and an achievement indicator
was evaluated, which involved implementing decision structures and functions to solve a
specific problem.

Finally, for week 7 where Lab 3 was conducted, the model classified seven students as
having low performance, eight with medium performance, and 25 with high performance.
In this learning activity, two programming exercises were developed, and an achievement
indicator related to the implementation of an algorithm with repetition structures to solve
a specific problem was evaluated. This information is important because the instructor
can make decisions regarding the course and intervene with students who exhibit low or
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Figure 2 Multiclass ROC curves for the GBC algorithm.
Full-size DOI: 10.7717/peerjcs.1655/fig-2

Table 9 Results by activity and characteristic for students classified as ‘‘Low Performance’’ (LP), ‘‘Medium Performance’’ (MP), and ‘‘High
Performance’’ (HP) are as follows.

Week Activity Feature LP (mean) LP (SD) MP (mean) MP (SD) HP (mean) HP (SD) KruskalWallis
(p-value)

3 Lab 1 Grade 0.00 0.00 2.90 0.56 4.90 0.24 2.9e−07
Delivery time 0.00 0.00 1.81 1.67 2.22 2.11 4.7e−05
Attempts 0.00 0.00 2.63 2.06 4.51 3.18 5.9e−05

5 Lab 2 Grade 1.00 2.23 3.60 1.23 4.70 0.47 4.2e−04
Delivery time 0.01 0.03 1.10 2.64 0.05 0.03 1.1e−03
Attempts 3.50 0.70 2.43 1.96 2.13 1.56 0.052

7 Lab 3 Grade 0.35 0.94 1.88 1.63 4.80 0.69 2.2e−0.7
Delivery time 1.07 2.63 4.43 3.46 5.63 2.49 0.064
Attempts 3.00 4.12 2.91 2.53 2.55 2.40 0.080

medium performance as early as week 3 of the course. This contributes to addressing the
issue of low academic performance that is often encountered in CS1 programming courses.

Statistical results of students’ performance
Then, the mean and standard deviation of the students classified as ‘‘Low’’, ‘‘Medium’’, and
‘‘High’’ performance were analyzed for each of the characteristics defined in the prediction
model (grade, delivery time, and number of attempts). The objective of this analysis is to
observe the distribution of the data so that the professor can identify student behaviors
and provide support throughout the academic semester (see Table 9).

In the statistical analysis of the data, three important findings were identified that can
contribute to the performance of students in CS1 programming courses. The first is related
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to the standard deviation of grades, the second is related to the mean time used by students
in programming assignments, and the last is related to the mean number of attempts.

In the standard deviation of grades, it is observed that the average for students with low
performance is 1.06, while those withmedium performance scored 1.14 and those with high
performance obtained 0.47. These results indicate that students with high performance
achieved the lowest dispersion in grades, indicating that the values tend to cluster closer
to the mean. On the other hand, students with medium performance had the highest
standard deviation, showing that the values tend to spread more widely around the mean.
This statistical measure is useful because it allows the teacher to understand the variability
of grades generated by students.

For the delivery time used by students in programming activities, the mean for students
with low performance was 0.36 days, medium performance was 2.45 days, and high
performance was 2.63 days. Comparing these results, it can be observed that students with
low performance used less time in delivering programming labs, while students with high
performance used 0.18 days more than students with medium performance and 2.27 days
more than those with low performance. These results are likely to have an influence on
students’ academic performance, but further tests are needed to validate this claim.

In the number of attempts used by students in programming submissions, the mean
for students with low performance was 2.17, for medium performance it was 2.66, and for
high performance it was 3.06. These results indicate that students with high performance
make more submissions in programming labs compared to students with medium and
low performance. This information can be relevant for academic performance because
students with high performance tend to be more persistent with their submissions and aim
to achieve higher grades in the automated evaluation tool.

Finally, the non-parametric statistical test of Kruskal-Wallis was applied. This test is
used to determine if there are significant differences at a statistical level between two or
more groups. The test determines if the medians of two or more groups are different by
calculating a test statistic and comparing it to a cutoff point in the distribution. In this work,
three groups were defined for the analysis: the first group comprised students classified
as ‘‘Low Performance’’, the second group comprised students classified as ‘‘Medium
Performance’’, and the last group comprised students classified as ‘‘High Performance’’.
Two hypotheses were defined: H0 states that the medians of the groups are equal, and H1
states that the medians of the groups are not equal. In this sense, if the resulting p-value is
less than 0.05, H0 is rejected. For the tests conducted in this work, as shown in Table 9, it
was observed that the p-value is less than 0.05 for the grade of all weeks, the delivery time
of the labs 1 and 2, and the number of attempts for week 3. Therefore, H0 is rejected, and
it is concluded that for the grades, delivery time, and number of attempts described above,
the medians of the groups are not equal.

DISCUSSION AND CONCLUSIONS
In the literature review, it was identified that the most commonly used data sources for
predicting student performance are learning management platforms (such as Moodle
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or edX) and automatic source code evaluation tools like CodeWork and CodeBench.
However, few studies combine different data sources. In this work, three different data
sources are used to construct the prediction model dataset. These sources include student
grades, records from an automatic source code evaluation tool, and enrollment data from
an academic records and admissions system.

Demographic characteristics and study habits are commonly used to predict student
performance. However, Ramesh, Parkavi & Ramar (2013) suggests that these types of
characteristics contribute little to early prediction models due to their static nature. Some
authors, such as Quille & Bergin (2019), Moreno-Marcos et al. (2020), Munson & Zitovsky
(2018), Pereira et al. (2019), Yoshino et al. (2020) and López Zambrano, Lara Torralbo &
Romero Morales (2021), recommend using grading and programming characteristics for
predicting student performance as they have achieved good results. In this work, we utilized
these two types of characteristics and validated the findings described by these authors, as
we achieved results exceeding 83% for the F1 Score metric in week 3 of a CS1 programming
course, as defined in the methodology.

Various research studies utilize demographic data, prior studies, activity grades, final
course grades, clickstream data, forum participation, and submissions as characteristics to
predict student performance. However, few studies include the characteristics of delivery
time and number of attempts. According to Castro-Wunsch, Ahadi & Petersen (2017) and
Alamri et al. (2019), these characteristics can be used for predicting student performance in
programming courses. In the proposed model, we used these characteristics (delivery time
and number of attempts) and combined them with grades to predict student performance
in programming courses at an early stage. In the tests conducted, the GBC algorithm
achieved an 86% F1 Score metric for week 3 with 468 records. This result confirms that the
mentioned characteristics can be used for this type of prediction. Additionally, we validated
the findings described in Pereira et al. (2020a); Pereira et al. (2021), where it is mentioned
that ensemble algorithms can yield better results than traditional algorithms. This is because
the algorithm is based on decision trees that are repeatedly summed, and each iteration
corrects the errors found in the leaves of the previous tree using statistical measures. For
this reason, ensemble algorithms are suitable for predicting student performance at early
stages.

With the development of this work, we also validated the findings described byMárquez-
Vera, Morales & Soto (2013) in their research, where they indicate that early prediction
models can be created with few characteristics. In this case, for week 3, we used the grade
of Lab 1, delivery time, and the number of attempts generated by the student in the same
programming activity, and achieved results above 85% for the precision, recall, and F1
score metrics. Additionally, we validate the findings described by de la Peña et al. (2017)
in their work, where it is mentioned that the metrics improve for prediction models when
they are incremental and new characteristics are added to the prediction model. In the
results of the proposed model, it can be observed that when transitioning from week 3 to
week 5 and adding new characteristics, the model reaches 94% in the F1 score metric for
the RF and GBC algorithms. Furthermore, when transitioning from week 5 to week 7, the
GBC algorithm can reach 96% by adding new characteristics for the same metric.
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In the executed tests, it was observed that the characteristics related to grades proved
to be the most important for the proposed prediction model, as they obtained higher
weights compared to the characteristics related to the automatic source code evaluation
tool and enrollment. It was also observed that as we move from one week to another and
add new characteristics, the results of the metrics change for all algorithms, increasing
approximately 7% from week 3 to week 5, and 6% from week 5 to week 7.

To classify the students in the programming course according to their performance, the
mean, standard deviation, and Kruskal-Wallis test were used. In the statistical analysis, it
was identified that students with low and medium performance have higher dispersion
compared to students with high performance, with values of 0.59 and 0.67, respectively.
It was also observed that students with high performance take more time in their
programming lab submissions compared to students with low and medium performance,
with a difference of up to 2.27 days. In terms of the number of attempts made by students
in their programming submissions, it was found that students with high performance make
more submissions in the labs compared to students with low and medium performance,
with values of 0.89 and 0.40 attempts, respectively. These findings are important for the
academic performance of students, as the instructor can understand the variability of grades
generated by students, make informed decisions for course development, and intervene
early with students who may be facing difficulties.

As a future work, it is suggested to develop a tool that integrates the proposed prediction
model in order to provide early intervention to students in weeks 3, 5, and 7 of CS1
programming courses. This tool would enable instructors to monitor the academic
performance of the course, make informed decisions regarding the educational process,
and provide support to students facing difficulties.

LIMITATIONS OF THE RESEARCH
This research has several limitations, and it is important to be aware of them in order to
properly evaluate the results. This work is limited to predicting student performance in
weeks 3, 5, and 7 of a 16-week CS1 programming course. The dataset used for training and
testing the prediction model consists of 468 records from 12 CS1 and CS2 programming
courses conducted in 2021 and 2022. The selected features are limited to grade, delivery
time, and number of attempts generated by students in three programming labs within
the course. The selected algorithms are limited to NB, SVC, DT, LR, KNN, MLP, RF, and
GBC, with the metrics precision, recall, and F1 score.
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