
Machine learning code snippets semantic
classification
Valeriy Berezovskiy1, Anastasia Gorodilova1, Ekaterina Trofimova1 and
Andrey Ustyuzhanin2,3

1 HSE University, Moscow, Russia
2 Institute for Functional Intelligent Materials, National University of Singapore, Singapore
3 Constructor University, Bremen, Germany

ABSTRACT
Program code has recently become a valuable active data source for training various
data science models, from code classification to controlled code synthesis.
Annotating code snippets play an essential role in such tasks. This article presents a
novel approach that leverages CodeBERT, a powerful transformer-based model, to
classify code snippets extracted from Code4ML automatically. Code4ML is a
comprehensive machine learning code corpus compiled from Kaggle, a renowned
data science competition platform. The corpus includes code snippets and
information about the respective kernels and competitions, but it is limited in the
quality of the tagged data, which is ~0.2%. Our method addresses the lack of labeled
snippets for supervised model training by exploiting the internal ambiguity in
particular labeled snippets where multiple class labels are combined. Using a specially
designed algorithm, we effectively separate these ambiguous fragments, thereby
expanding the pool of training data. This data augmentation approach greatly
increases the amount of labeled data and improves the overall quality of the trained
models. The experimental results demonstrate the prowess of the proposed code
classifier, achieving an impressive F1 test score of ~89%. This achievement not only
enhances the practicality of CodeBERT for classifying code snippets but also
highlights the importance of enriching large-scale annotated machine learning code
datasets such as Code4ML. With a significant increase in accurately annotated code
snippets, Code4ML is becoming an even more valuable resource for learning and
improving various data processing models.

Subjects Data Mining and Machine Learning, Software Engineering, Text Mining
Keywords Code classification, Code annotation

INTRODUCTION
The demand for machine learning (ML) code as a source of data has recently grown among
data scientists (Agashe, Iyer & Zettlemoyer, 2019; Quaranta, Calefato & Lanubile, 2021).
However, training a deep learning model often requires large-scale annotated corpora.
Thus, a well-annotated ML-specific code data set can facilitate the expansion of data
processing methods.

Code4ML, a collection of�2:5 million snippets of machine learning code introduced by
Drozdova et al. (2022), is limited in a case of annotated data—only 0.2% of the collected
snippets are manually labeled. The authors apply the sequence of support vector machines
(SVM) models for snippets automatic classification. First, an SVM with a linear kernel

How to cite this article Berezovskiy V, Gorodilova A, Trofimova E, Ustyuzhanin A. 2023. Machine learning code snippets semantic
classification. PeerJ Comput. Sci. 9:e1654 DOI 10.7717/peerj-cs.1654

Submitted 18 May 2023
Accepted 26 September 2023
Published 27 November 2023

Corresponding author
Ekaterina Trofimova,
ktrofimova@protonmail.com

Academic editor
Syed Hassan Shah

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.1654

Copyright
2023 Berezovskiy et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1654
mailto:ktrofimova@�protonmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1654
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

model is trained on the Code4ML labeled data, then the predictions on an unlabeled part
are used for a cross-validation training of the RBF-based SVM model. However, given the
size of the data corpus, the automatic classification of Code4ML snippets needs more
accurate verification.

Our work aims to enrich the Code4ML corpus with high-quality, accurate annotation.
We explore various machine learning models for code snippet classification to achieve this.
We begin with classical methods based on TF-IDF code transformation, such as linear
models and ensembles. Subsequently, we delve into modern transformer models, initially
introduce by Vaswani et al. (2023), significantly enhancing classification performance
compared to baseline approaches. Among the transformer models, our best-performing
classifier is a fine-tuned CodeBERT model, as introduced by Feng et al. (2020). We also
present a novel data augmentation algorithm based on separating code chunks containing
snippets of different semantic types. This augmentation strategy effectively expands the
training set and elevates the quality of the final model.

The rest of the article is organized as follows. Section ‘Literature Review’
comprehensively reviews the existing literature on code classification. The code snippets
corpus with several pre-processing tools to prepare source codes for the classification and
data structure hypothesis are discussed in ‘Data and Metrics’. The following section
describes the dataset employed for training and evaluation. In ‘Experiments and Results’,
we present the results of fine-tuning CodeBERT and compare them against the baseline
models. The ‘Discussions’ section involves analyzing the obtained results. Finally, the
section ‘Conclusion’ highlights our contributions and avenues for future research.

LITERATURE REVIEW
Many approaches to code analysis rely heavily on abstract syntax tree (AST)
representation of source code (Wei & Li, 2017; Zhang et al., 2019; Azcona et al., 2019).
ASTs are abstract and exclude characters such as punctuation. At the same time,
combining such a representation with neural networks allows linguistic and syntactic
information collection. The mentioned research for learning the code’s semantic features is
not intended to study the semantic features of different programming languages. Wang
et al. (2022) propose an application of a self-attention mechanism and a graph
convolutional neural network (GCN) for extracting global and local features of the AST
sequence, respectively. This approach eliminates the differences between programming
languages in the problems of classifying interlanguage programs. Puri et al. (2021) show
the competitiveness of GCN, as well as of C-BERT (Buratti et al., 2020), a model pre-
trained with C programs and fine-tuned on AST, in solving the problem of code
classification. C-BERT leverages the bidirectional transformer (BERT) model (Devlin et al.,
2018) to effectively extract AST features from the source code. Yang, Jin & Dou (2023)
extends the graph neural network paradigm to handle heterogeneous and directed edges in
the code’s abstract syntax tree.

AST implementation for programming code embeddings creation works excellent for
the algorithmic datasets, such as POJ-104 (Mou et al., 2014), CodeNet (Puri et al., 2021),
because such code has a lot of nested loops and other complex constructs. Therefore, the

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 2/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

AST representation of such code is very informative. Meanwhile, the ML code is often
represented via pipelines, sequences of repeating typical patterns, such as code snippets for
loading data, training a model, or evaluating metrics. Thus, we argue that AST
representation for ML-related datasets is uninformative by calculating the average depth of
the Code4ML syntactic snippet tree, which is almost twice less than in the POJ-104 dataset.

DATA AND METRICS
Dataset
We use Code4ML as a corpus of ML code snippets, including�8 thousand human-curated
annotated unique snippets. For snippets annotation, the authors introduce Taxonomy
Tree, a set of 11 high-level categories (Data Transform, Exploratory Data Analysis, Data
Extraction, Environment, Data Export, Debug, Visualization, Hyperparam Tuning, Model
Train, Model Interpretation, Model Evaluation) and �7 semantic types corresponding to
each level (for example, Save Model subclass of Model Train class). There is also a separate
category Other, reflecting snippets whose semantic types can not be identified within the
Taxonomy Tree.

The semantic type of the snippet in Code4ML is the subtask that the snippet solves.
Figures 1 and 2 show examples of a snippet of different types.

Each marked-up snippet is provided with a too_long flag and amark. too_long indicates
whether the snippet represents unambiguous code, that is, can not be divided into several
subsnippets of different semantic types. The approximate proportion of code blocks with
too_long = ‘yes’ to ones with ‘no’ is 6:1. The majority of the snippets have the highestmark,
a confidence level of a semantic snippet type provided by a human assessor.

Data pre-processing. For all experiments, we use a set of pre-processed snippets with
the maximum confidence level for the experiments. The snippets of categoryOther are also
removed. The resulting dataset has 5,152 unique snippets. (We will call these snippets
raw.) The data is split into two parts in all the experiments: 60% for train and validation
and 40% for results testing.

Code4ML includes only the code written in Python due to the popularity of this
programming language in the data science community. The following code
transformations have been used to eliminate redundant information from the snippet and
make it easier for ML models to work with it:

1) Comments deleting

2) Module imports removing

3) Empty strings removing

4) The remaining tokens are separated by a space

5) The programmer symbols are separated by spaces

Importing various modules and libraries or commenting on the code does not change
the semantic type of the code snippet (except only imports in the code cell). Therefore,
removing them helps the model correctly identify the semantic snippet type. Both
transformations are done using regular expressions: Python’s module imports and

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 3/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

commenting have a simple syntax that is easily recognized by the remodule. Figures 3 and
4 illustrate the difference between processed and raw code blocks.

Metrics
To assess the quality of the semantic code snippets classification models, we apply
weighted precision, recall (Eq. (1)) and F1-score (Eq. (2)). We choose precision and recall
as the most interpretable metrics and F1 as a validation suitable for unbalanced data.

precision ¼ TP
TPþ FP

; recall ¼ TP
TPþ FN

; (1)

where TP—true positive, TN—true negative, FP—false positive, FN—false negative rates.

Fb ¼ ð1þ b2Þ precision� recall

b2precisionþ recall
: (2)

SEMANTIC CLASSIFICATION MODELS
To classify the ML snippets into semantic types, we leverage the power of the transformer
models without focusing on the AST representation of the source code. BERT-family
models use the input information to produce a feature representation set for downstream
tasks. In this section, we briefly explain the mechanism of CodeBERT by Feng et al. (2020),
the pioneer pre-trained model for both natural language and programming language input
(see Fig. 5). We also discuss an augmentation algorithm that divides too long flagged code
snippets into subsnippets.

BERT and CodeBERT models
Large pre-trained transformer-based models, such as BERT, can be called the current
standard in various natural language processing (NLP) tasks. BERT is a self-supervised
model whose workflow consists of pre-training and fine-tuning. The first stage solves
masked language modeling (MLM) and the following sentence prediction tasks while fine-
tuning is used for downstream applications.

CodeBERT is pre-trained on CodeSearchNet dataset (Husain et al., 2019) with different
objectives (MLM or RTD) and settings: from scratch and with the initialization of

#file to save
filename =
#model saving
pickle.dump(model, open(filename,))

Figure 1 Code4ML snippet of Model Train class Save Model semantic type example.
Full-size DOI: 10.7717/peerj-cs.1654/fig-1

#adding column `month`
df[] = [x.month for x in df[]
#adding column `year`
df[] = [x.year for x in df[]

Figure 2 Code4ML snippet of Data Transform class Feature Engineering semantic type example.
Full-size DOI: 10.7717/peerj-cs.1654/fig-2

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 4/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-1
http://dx.doi.org/10.7717/peerj-cs.1654/fig-2
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

RoBERTa (Liu et al., 2019) parameters. To make the model able to classify ML code into
semantic types, we fine-tune CodeBERT on Code4ML labeled data. We use multiple
objectives with the RoBERTa weights initialization configuration of the model as it shows
the best results on the Python data according to the original article. We also compare the
fine-tuned CodeBERT with pre-trained BERT, fine-tuned on the ML snippets1. The
experiments and results are described in ‘Experiments and Results’.

Dataset augmentation
As shown earlier, a significant portion, approximately 20%, of the data is not amenable to
unambiguous interpretation as valid code. Consequently, such code snippets cannot be
effectively employed for model validation, as their class membership cannot be
unequivocally determined. As a result, predictions made by the model in these instances
cannot be definitively labeled as correct or incorrect. Notably, including such ambiguous
code in the training set only worsens the model’s performance on new data, resulting in a

#get character data columns
notNumTypeCol = [col for col in

train_df.columns if
train_df[col].dtype ==
dtype()]

Figure 3 Raw code snippet. Full-size DOI: 10.7717/peerj-cs.1654/fig-3

,

Figure 4 Preprocessed code snippet. Full-size DOI: 10.7717/peerj-cs.1654/fig-4

Figure 5 CodeBERT architecture scheme about the replaced token detection objective. Based on
original article by Feng et al. (2020). Full-size DOI: 10.7717/peerj-cs.1654/fig-5

1 For the experiments, we use models and
tokenizers from the transformers library
https://huggingface.com. The code can
be accessed via https://zenodo.org/
record/8250804.

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 5/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-3
http://dx.doi.org/10.7717/peerj-cs.1654/fig-4
http://dx.doi.org/10.7717/peerj-cs.1654/fig-5
https://huggingface.com
https://zenodo.org/record/8250804
https://zenodo.org/record/8250804
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

decrease in overall quality. However, it has been observed that some data instances contain
code segments from several classes, often representing a sequence of code fragments, each
representing a fragment of a particular semantic type (see Fig. 6).

To deal with such multi-class snippets, we propose a partitioning algorithm (Algorithm
1) that intelligently splits a single snippet into several subsnippets. It starts with finding all
possible ways of breaking one snippet into sequences of subsnippets.

The algorithm seeks to determine the optimal partition that minimizes the model’s
confidence for each subsnippet while considering the average model confidence across all
subsnippets in the division. Here, confidence refers to the probability of a subsnippet
belonging to a specific semantic type, calculated using the softmax operation.

The correctness of the split is checked separately: it is unacceptable to split the snippet in
the place where a line break occurred due to a multi-line function call, or a line break; this
usually happens in code to comply with PEP-8. Such splits, influenced by code formatting
rather than semantic boundaries, are deemed unacceptable to maintain the integrity and
accuracy of the generated subsnippets.

By employing this partition algorithm, we can effectively handle complex multi-class
snippets and generate meaningful subsnippets. These are valuable training data to enhance
model performance on ambiguous code instances. The resulting partitioned subsnippets
not only improve the quality of the trained model but also facilitate more accurate code
classification and synthesis tasks.

Figure 7 is an example of a snippet that contains code from two classes: read csv and
prepare x and y. After using the snippet partition algorithm, it will be divided into two
snippets, which are shown in Figs. 8 and 9.

The initial model’s confidence in the entire snippet is relatively low due to its multi-class
nature, making accurate classification challenging. While an alternative option for splitting
the snippet into a snippet comprising the first two lines and another with the third line
exists, this approach would yield suboptimal model confidence in one of the snippets. We
obtain two high-quality snippets from the initially ambiguous code through the partition
algorithm, which serves as valuable training data to enhance the model’s performance.

Regarding computational efficiency, we acknowledge that the running time of our
algorithm can be exponential due to the large number of possible partitions. To mitigate
this, we introduce the max_lines parameter to the algorithm, controlling the maximum
number of lines in a code snippet. If the snippet exceeds the thresholdmax_lines = 20, the
algorithm retains the original form of the snippet without searching for an optimal
partition. Consequently, the algorithm operates within a few seconds for code snippets
with up to approximately 20 lines, making it highly efficient for most cells in Jupyter
notebooks, which often contain concise code snippets.

EXPERIMENTS AND RESULTS
We compare the transformer-based and classical ML models to classify the ML code
snippets. In the case of classical MLmodels, the hyper-parameters choice is made using the
three-folds cross-validation method, aiming to maximize the model’s accuracy. We use

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 6/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

TF-IDF embedding to extract the numerical features from the pre-processed code blocks
as input to the classical models. In all experiments, we use a fixed random seed for the
reproducibility of the results.

Taxonomy type: read_csv
df = pd.read_csv('data.csv')
Taxonomy type: prepare_x_and_y
y = df['target']
X = df.drop(['target'])
Taxonomy type: split
X_tr, X_t, y_tr, y_t = train_test_split(X, y)
Taxonomy type: train_model
model = svm.SVC().fit(X_tr, y_tr)
Taxonomy type: predict_on_test
y_pred = model.predict(X_t)
Taxonomy type: compute_test_metric
acc_test = accuracy_score(y_t, y_pred)

Figure 6 An example of a snippet that contains code from different classes (classes are specified in
the comments). Full-size DOI: 10.7717/peerj-cs.1654/fig-6

Algorithm 1 Snippet partition algorithm.

Require: xi

Ensure: fxi;1; xi;2;…g ▹ Snippet

all partitions all possible partitions ▹ Snippet partition

partition probs [

for partition 2 all partitions do

if partition is correct then

min prob minimal subsnippet confidence

mean prob average supsnippet confidence

partition probs partition probs [ðmin prob;mean probÞ
end if

end for

return arg max
partition

partition probsð Þ

df = pd.read_csv('data.csv')
y = df['target']
X = df.drop(['target'])

Figure 7 Code4ML snippet before partition. Full-size DOI: 10.7717/peerj-cs.1654/fig-7

df = pd.read_csv('data.csv')

Figure 8 The first resulted subsnippet. Full-size DOI: 10.7717/peerj-cs.1654/fig-8

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 7/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-6
http://dx.doi.org/10.7717/peerj-cs.1654/fig-7
http://dx.doi.org/10.7717/peerj-cs.1654/fig-8
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

C-support vector classification. For the c-support vector classification (SVC) model
(Platt, 1999), the following hyper-parameters are chosen with the gridsearch technique: C,
indicating the strength of the model’s regularization, kernel, the separating hyperplane
type, and gamma, kernel coefficient. The best results are gained with C ¼ 1:668, selected
from 10 logarithmically spaced points from 0.01 to 100, linear kernel out of linear,
polynomial, and RBF types, and gamma ¼ 0:01, chosen from the same logarithmic vector
as C hyper-parameter.

Logistic regression. The best maximum-entropy classification method (Bishop, 2006)
results go with C ¼ 100:0 from the same logarithmic vector and 12 norm of the penalty
out of binary choice: 12 or none penalty.

Random forest. For random forest ensemble model (Breiman, 2001), the crucial hyper-
parameters are n estimators, corresponding to the number of the trees in the ensemble,
max depth, the maximum depth of the tree, min samples split, indicating the minimum
required several objects to split a node and min samples leaf , the minimum required a
number of objects at a leaf node. The best random forest performance is achieved with
n estimators ¼ 100 out of [100, 200, 400, 800], max depth ¼ None, which means that
nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples, outperforming configurations with other grid values
(max depth ¼ 5 anmax depth ¼ 20),min samples split ¼ 8,min samples leaf ¼ 1 out of
[2, 8, 32], [1, 4, 16], correspondingly.

Gradient boosting. For gradient boosting ensemble model (Friedman, 2001), the search
is done on the [20, 40] grid for n estimators, [2, 4, None] for max depth, [0.01,0.1,1] for
learning rate (lr), the gradient step size. The model with n estimators ¼ 40,
max depth ¼ 4, learning rate ¼ 0:1 outperforms its variations with different choices of
hyper-parameters.

The hyper-parameters choice is made with stratified three-folds cross-validation for the
above mentioned experiments. Thus, the distribution of classes in each split is preserved,
and each group is kept within a single partition. Table 1 summarizes the test results of these
models. SVC gives the best result among the classical models based on F-1 score. Ensemble
methods struggle to extract much additional information from the features obtained by
TF-IDF transformation because it is not informative enough in the case of working with
program code.

The pre-processing impact on ML models performance. Table 1 also illustrates the
influence of data pre-processing on ML models’ performance. We train and validate the
models on raw code snippets as well. The greeds for hyper-parameters remain the same.
The best results are reached with C ¼ 4:641, gamma ¼ 0:01 and linear kernel for SVC,
C ¼ 100:0 and l2 penalty for Logistic regression, n estimators ¼ 400, max depth ¼ None,

y = df['target']
X = df.drop(['target'])

Figure 9 The second resulted subsnippet. Full-size DOI: 10.7717/peerj-cs.1654/fig-9

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 8/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-9
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

min samples split ¼ 2, and min samples leaf ¼ 1 for Random forest and
n estimators ¼ 40, max depth ¼ None, learning rate ¼ 0:1 for boosting. One can see that
pre-processing leads to a significant quality increase.

BERT and CodeBERT
As mentioned earlier, we fine-tune both BERT and CodeBERT models on the Code4ML
dataset labeled part with a confidence equal to 5. The train and validation parts are 40%
and 20%, respectively. Both models require no additional pre-processing of the code data.
We utilize the standard tokenizers with parameters add special tokens ¼ True,
padding ¼ max length, truncation ¼ True, and max length ¼ 512 to handle input
sequences of up to 512 tokens.

For the training process, we employ a batch size of 32, AdamW optimizer, and conduct
training for 50 epochs. We adopt a linear scheduler with a warmup, a common approach
for transformer models. During the initial ten epochs of training, the learning rate
gradually has increased from zero to 5e−5, and in the subsequent 40 epochs, it linearly has
decreased back to zero. The scheduler step is applied to each batch of the training set. The
learning rate value 5e−5 is selected considering both models had already been pre-trained
on extensive natural and programming language datasets.

To adapt both neural networks for code classification, we adjust the number of vertices
in the last classification layer and unfroze all weights for training. The performance curves
of the CodeBERT model can be found in “Snippet Splitting Algorithm Performance
Assessment”, while “Snippets Classification Algorithm Confidence Assessment” justifies
the prediction confidence of the CodeBERT.

The test scores of the experiments are shown in Table 2. One can notice that
transformer-based models fine-tuned on the code snippets demonstrate a quality increase
compared to the SVM model. Due to pre-training on the program code, including the
Python code, CodeBERT outperforms its predecessor model. The overall F1-score of the
CodeBERT model is �87%.

Application of the augmentation algorithm.As mentioned, the results are obtained on
�5K processed (in case of ML models) or raw (in case of BERT and CodeBERT) high-
marked code snippets. We explore the capability of the snippet partition algorithm by
analyzing the quality of CodeBERT fine-tuned on the different combinations of code

Table 1 ML models performance on raw test data. The best results are highlighted in bold.

Processed data Raw data

Model F1-score Precision Recall F1-score Precision Recall

Logistic regression 0:835 0.853 0.828 0.488 0.640 0.481

Random forest 0.833 0:864 0.819 0.453 0.650 0.436

Gradient boosting 0.751 0.772 0.755 0.350 0.550 0.369

SVC 0.839 0.856 0.832 0.458 0.605 0.456

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 9/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

blocks with the highest mark and the ones processed by the Algorithm 1 with the
mark ¼ 4.

When dealing with ambiguously interpreted code snippets, it is essential to be careful
when using them. As mentioned earlier, such snippets are only suitable for inclusion in the
training set since their ambiguous nature makes them unsuitable for the test set. Similarly,
the snippets generated by the augmentation algorithm should be subjected to human
verification before inclusion in the test set. Since we can not guarantee the model’s
predictions on these augmented snippets, they are exclusively added to the training set to
prevent compromising the validity of the test results. The validation and test sets remain
consistent with previous experiments, ensuring a fair comparison of model performance.

To further elaborate, we select 1,414 raw snippets with a confidence mark of four, and
through the application of the augmentation algorithm, 2,152 augmented snippets are
generated from this initial set. These additional snippets are purely for enhancing the
training data, increasing the model’s ability to handle ambiguous and varied code snippets
efficiently. Careful handling of the augmented snippets ensures the robustness and
accuracy of the trained model on new and unseen data.

CodeBERT shows the best results of �89% F1 score on the mix of the augmented
snippets withmark ¼ 4 and snippets of higher confidence. Such data configuration implies
�40% training dataset augmentation. The details on CodeBERT performance comparison
are provided in “Snippet Splitting Algorithm Performance Assessment”.

DISCUSSION
The results of our experiments reveal promising advancements in machine learning code
snippets annotation, mainly through the application of transformer-based models like
BERT and CodeBERT.

Firstly, the fine-tuning of transformer-based models on the Code4ML dataset
significantly enhances the classification quality compared to traditional approaches like
SVM. With their ability to capture complex contextual information, the transformer
models demonstrate a superior understanding of code semantics, leading to more accurate
predictions.

Moreover, the integration of CodeBERT, a transformer model pre-trained on
programming and natural language data, yields remarkable improvements over BERT.
Leveraging the vast amount of programming language-specific context, CodeBERT excels
in code-related tasks, outperforming its predecessor model, BERT.

The proposed extension algorithm improves the model’s performance on ambiguously
interpreted code fragments. We create high-quality subsnippets that contribute to an

Table 2 Test performance of the transformer-based models fine-tuned on the code snippets with
mark ¼ 5. The best results are highlighted in bold.

Model F1-score Precision Recall

BERT 0.852 0.854 0.858

CodeBERT 0.871 0.874 0.873

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 10/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

enriched training set by intelligently splitting snippets from multiple classes. This
extension strategy effectively solves the problem of limited annotated data, resulting in
improved model performance and code classification accuracy.

Compared to the results reported in Drozdova et al. (2022), our baseline model (SVM)
achieves a remarkable improvement of 14 percentage points in the F1 score. The previous
study obtained an F1 score of 68.9%, and although they achieved further enhancements
using pseudo-labels, our superior data preprocessing techniques significantly improve
performance without relying on pseudo-labels.

Moreover, incorporating CodeBERT and developing our augmentation algorithm
contribute to an additional increase in the F1 score. As a result, our models demonstrate
substantially better performance without resorting to pseudo-labels from the remaining
dataset. This enhancement enables our models to make more objective predictions on
unlabeled data, as it has not been artificially included in the training set.

However, we acknowledge the limitation of our algorithm’s exponential running time
for snippets with many lines. Optimizing the partition algorithm to handle larger snippets
efficiently would be beneficial as a future direction.

Furthermore, we emphasize the importance of cautiously handling ambiguous and
augmented snippets. It is essential to restrict their inclusion only to the training set, as
using them in the test sample may compromise the integrity of the test results.

CONCLUSION
This study highlights the promising potential of modern natural language processing
models in addressing the challenging problem of machine learning code classification.
Through comprehensive comparisons between classic ML models and fine-tuned
transformer-based models, we have demonstrated the superiority of CodeBERT, which
stands out due to its multi-modal structure, enabling effective processing of programming
code and benefiting from pre-training on Python code.

The proposed method significantly enhances the automatic classification of machine
learning code snippets, leading to notable improvements in performance. Consequently,
the large-scale Code4ML corpus is enriched with high-quality annotations (Drozdova et al.,
2022), serving as a valuable resource for various machine learning challenges, including
code generation, auto-completion, and other ML tasks.

Our findings reinforce the significance of effectively leveraging transformer-based
models and data augmentation techniques to tackle code classification challenges. By
intelligently handling ambiguously interpreted code snippets and efficiently expanding the
training data, we advance the accuracy and robustness of code classification models.

The done research paves the way for further investigations into adapting transformer-
based models for other programming languages and exploring novel approaches to
optimize the partition algorithm for larger snippets.

In conclusion, this study contributes to advancing automated code understanding and
generation, opening up exciting opportunities for future research in machine learning code

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 11/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

classification. The enriched Code4ML corpus and the state-of-the-art performance
achieved by CodeBERT underscore the potential of modern NLP models in empowering
code analysis tools.

SNIPPET SPLITTING ALGORITHM PERFORMANCE
ASSESSMENT
In this appendix, we evaluate the impact of the snippet splitting algorithm presented in
“Dataset augmentation” on the performance of CodeBERT.

We assess the Algorithm 1 by running the following tests:

� Training and Validation CodeBERT model on the raw snippets with mark ¼ 5

� Training and Validation CodeBERT model on the raw snippets with mark ¼ 4

� Training and Validation CodeBERT model on the augmented snippets with mark ¼ 4

� Training and Validation CodeBERT model on the raw snippets with mark ¼ 5 and
mark ¼ 4

� Training and Validation CodeBERT model on the raw snippets with mark ¼ 5 and
augmented snippets with mark ¼ 4

Table A1 provides the comparison of CodeBERT performance trained and validated on
different dataset parts. Figures A1–A4 demonstrate the difference in loss and metrics
curves of a CodeBERT model fine-tuned on various data configurations. One can notice
the superiority of the model trained on augmented snippets with mark ¼ 4 over raw
snippets with mark ¼ 4, as well as the CodeBERT trained on raw snippets with mark ¼ 5
and augmented snippets with mark ¼ 4 over the one trained on raw snippets with
mark ¼ 5 and mark ¼ 4. Thus, applying the augmentation algorithm to snippets with a
lower mark turns them into higher-quality data for training. By combining the raw
snippets with mark ¼ 5 and the augmented snippets with mark ¼ 4, we achieve the
highest classification quality in our experiments. The resulting model demonstrates the
best performance and provides its predictions on Drozdova et al. (2022). For every snippet,
probabilities are supplied, indicating the likelihood of it belonging to each class.

SNIPPETS CLASSIFICATION ALGORITHM CONFIDENCE
ASSESSMENT
In this appendix we do the snippet probability analysis.

Table A1 CodeBERT performance on test data. The best results are highlighted in bold.

Data F1-score Precision Recall

Raw snippets with mark ¼ 5 (rs5) 0.871 0.874 0.873

Raw snippets with mark ¼ 4 (rs4) 0.593 0.591 0.638

Augmented snippets with mark ¼ 4 (as4) 0.709 0.705 0.748

rs5 and rs4 0.872 0.874 0.875

rs5 and as4 0.888 0.890 0.891

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 12/17

http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

The following experiments are carried out on four datasets (train, test, val, and all
unmarked snippets). For each value p from 0 to 1 (with step = 1e−5), we calculate the
proportion of the samples with the model class probability � p. Thus, p is the probability
threshold. More formally, the value of f ðpÞ is calculated for each p as follows:

Figure A1 Fine-tuned CodeBERT training loss curves.
Full-size DOI: 10.7717/peerj-cs.1654/fig-10

Figure A2 Fine-tuned CodeBERT validation loss curves.
Full-size DOI: 10.7717/peerj-cs.1654/fig-11

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 13/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-10
http://dx.doi.org/10.7717/peerj-cs.1654/fig-11
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

f ðpÞ ¼ jXpj
jXj

Xp ¼ fx 2 X j PðxÞ, ¼ pg;
where p 2 ð0; 1Þ; X � whole selection; Pð�Þ�class probability:

Figure A3 Fine-tuned CodeBERT training F1-score curves.
Full-size DOI: 10.7717/peerj-cs.1654/fig-12

Figure A4 Fine-tuned CodeBERT validation F1-score curves.
Full-size DOI: 10.7717/peerj-cs.1654/fig-13

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 14/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-12
http://dx.doi.org/10.7717/peerj-cs.1654/fig-13
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

Figure B1 shows that in the training sample, the model is very confident in its
predictions. On the test sample and unlabeled data, the confidence is lower but still
relatively high, which shows the generalizing ability of the model, for example, for the
snippets where the class probability is �0.1. These are those snippets, examples of which
were not in the marked-up data: some custom functions that are difficult to attribute to one
code class.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The publication was supported by the grant for research centers in the field of AI provided
by the Analytical Center for the Government of the Russian Federation (ACRF) in
accordance with the agreement on the provision of subsidies (identifier of the agreement
000000D730321P5Q0002) and the agreement with HSE University No. 70-2021-00139.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Analytical Center for the Government of the Russian Federation (ACRF):
000000D730321P5Q0002.
HSE University: 70-2021-00139.

Competing Interests
The authors declare that they have no competing interests.

Figure B1 Comparison of class probabilities on labeled and all other data.
Full-size DOI: 10.7717/peerj-cs.1654/fig-14

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 15/17

http://dx.doi.org/10.7717/peerj-cs.1654/fig-14
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

Author Contributions
� Valeriy Berezovskiy conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
� Anastasia Gorodilova conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.
� Ekaterina Trofimova conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.
� Andrey Ustyuzhanin conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Zenodo: Valeriy Berezosvkiy. (2023). ketrint/ml-snippets-
classification: v1.0.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8250804.

The enriched with annotations code snippets dataset is available at Zenodo: Anastasia
Drozdova, Polina Guseva, Ekaterina Trofimova, Anna Scherbakova, Andrey Ustyuzhanin,
Anastasia Gorodilova, & Valeriy Berezovskiy. (2022). Code4ML: a Large-scale Dataset of
annotated Machine Learning Code (1.0.1) [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.7733823.

REFERENCES
Agashe R, Iyer S, Zettlemoyer L. 2019. Juice: a large scale distantly supervised dataset for open

domain context-based code generation. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational
Linguistics, 5436–5446 DOI 10.18653/v1/D19-1546.

Azcona D, Arora P, Hsiao I, Smeaton AF. 2019. user2code2vec: embeddings for profiling students
based on distributional representations of source code. In: Proceedings of the 9th International
Conference on Learning Analytics & Knowledge. New York: ACM.

Bishop CM. 2006. Pattern recognition and machine learning (Information Science and Statistics).
Berlin, Heidelberg: Springer-Verlag.

Breiman L. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/A:1010933404324.

Buratti L, Pujar S, Bornea M, McCarley S, Zheng Y, Rossiello G, Morari A, Laredo J, Thost V,
Zhuang Y, Domeniconi G. 2020. Exploring software naturalness through neural language
models. DOI 10.48550/arXiv.2006.12641.

Devlin J, Chang M-W, Lee K, Toutanova K. 2018. BERT: pre-training of deep bidirectional
transformers for language understanding. DOI 10.18653/v1/N19-1423.

Drozdova A, Guseva P, Trofimova E, Scherbakova A, Ustyuzhanin A, Gorodilova A,
Berezovskiy V. 2022. Code4ML: a large-scale dataset of annotated machine learning code.
Available at https://peerj.com/articles/cs-1230/.

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 16/17

https://doi.org/10.5281/zenodo.8250804
https://doi.org/10.5281/zenodo.7733823
https://doi.org/10.5281/zenodo.7733823
http://dx.doi.org/10.18653/v1/D19-1546
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.48550/arXiv.2006.12641
http://dx.doi.org/10.18653/v1/N19-1423
https://peerj.com/articles/cs-1230/
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D, Zhou M.
2020. CodeBERT: a pre-trained model for programming and natural languages.
DOI 10.18653/v1/2020.findings-emnlp.139.

Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. The Annals of
Statistics 29(5):1189–1232 DOI 10.1214/aos/1013203450.

Husain H, Wu H-H, Gazit T, Allamanis M, Brockschmidt M. 2019. CodeSearchNet challenge:
evaluating the state of semantic code search. DOI 10.48550/arXiv.1909.09436.

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V.
2019. RoBERTa: a robustly optimized BERT pretraining approach.
DOI 10.48550/arXiv.1907.11692.

Mou L, Li G, Zhang L, Wang T, Jin Z. 2014. Convolutional neural networks over tree structures
for programming language processing. DOI 10.48550/arXiv.1409.5718.

Platt J. 1999. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in Large-Margin Classifiers 10(3):61–74.

Puri R, Kung DS, Janssen G, Zhang W, Domeniconi G, Zolotov V, Dolby J, Chen J, Choudhury
M, Decker L, Thost V, Buratti L, Pujar S, Ramji S, Finkler U, Malaika S, Reiss F. 2021.
CodeNet: a large-scale AI for code dataset for learning a diversity of coding tasks.
DOI 10.48550/arXiv.2105.12655.

Quaranta L, Calefato F, Lanubile F. 2021. KGTorrent: a dataset of python Jupyter notebooks from
Kaggle. In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR). Piscataway: IEEE DOI 10.1109/MSR52588.2021.00072.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2023. Attention is all you need. DOI 10.48550/arXiv.1706.03762.

Wang K, Yan M, Zhang H, Hu H. 2022. Unified abstract syntax tree representation learning for
cross-language program classification. In: 2022 IEEE/ACM 30th International Conference on
Program Comprehension (ICPC). Piscataway: IEEE, 390–400.

Wei H, Li M. 2017. Supervised deep features for software functional clone detection by exploiting
lexical and syntactical information in source code. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17. New York: ACM, 3034–3040.

Yang G, Jin T, Dou L. 2023. Heterogeneous directed hypergraph neural network over abstract
syntax tree (AST) for code classification. DOI 10.18293/SEKE2023-136.

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. 2019. A novel neural source code
representation based on abstract syntax tree. 783–794. Available at https://ieeexplore.ieee.org/
document/8812062.

Berezovskiy et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1654 17/17

http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
http://dx.doi.org/10.1214/aos/1013203450
http://dx.doi.org/10.48550/arXiv.1909.09436
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.48550/arXiv.1409.5718
http://dx.doi.org/10.48550/arXiv.2105.12655
http://dx.doi.org/10.1109/MSR52588.2021.00072
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.18293/SEKE2023-136
https://ieeexplore.ieee.org/document/8812062
https://ieeexplore.ieee.org/document/8812062
http://dx.doi.org/10.7717/peerj-cs.1654
https://peerj.com/computer-science/

	Machine learning code snippets semantic classification
	Introduction
	Literature review
	Data and metrics
	Semantic classification models
	Experiments and results
	Discussion
	Conclusion
	Snippet splitting algorithm performance assessment
	Snippets classification algorithm confidence assessment
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

