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In modern society, environmental sustainability is a top priority as one of the most
promising entities in the new energy sector. Electric Vehicles (EVs) are rapidly gaining
popularity due to their promise of better performance and comfort. Above all, they can
help address the problem of urban air pollution. Nonetheless, lithium batteries, one of the
most essential and expensive components of EVs, have posed challenges, such as battery
aging, personal safety, and recycling. Precisely estimating the Remaining Useful Life (RUL)
of lithium battery packs can effectively assist in enhancing the personal safety of EVs and
facilitating secondary trading and recycling in other industries without compromising
safety and reliability. However, the RUL estimation of batteries involves many variables,
and the operating conditions of EV batteries are highly dynamic as they change with the
environment and the driving style of the users. Many existing methods exist to estimate
the RUL based on batteries' State-of-Health (SOH), but only some are suitable for real-
world data. There are several difficulties as follows. Firstly, obtaining data about battery
usage in the real world takes work. Secondly, most of these estimation models must be
more representative and generalized because they are trained on separate data for each
battery. Lastly, collecting data for centralized training may lead to a breach of user
privacy. In this paper, we propose an RUL estimation method utilizing a Deep Learning
(DL) approach based on Long Short-Term Memory (LSTM) and Federated Learning (FL) to
predict the RUL of lithium batteries. We refrain from incorporating unmeasurable variables
as inputs and instead develop an estimation model leveraging LSTM, capitalizing on its
ability to predict time series data. In addition, we apply the FL framework to train the
model to protect users' battery data privacy. We verified the results of the model on
experimental data. Meanwhile, we analyzed the model on actual data by comparing its
mean absolute and relative errors. The comparison of the training and prediction results of
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the three sets of experiments shows that the federated training method achieves higher
accuracy in predicting battery RUL compared to the centralized training method and
another DL method, with solid training stability.
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ABSTRACT16

In modern society, environmental sustainability is a top priority as one of the most promising entities

in the new energy sector. Electric Vehicles (EVs) are rapidly gaining popularity due to their promise of

better performance and comfort. Above all, they can help address the problem of urban air pollution.

Nonetheless, lithium batteries, one of the most essential and expensive components of EVs, have posed

challenges, such as battery aging, personal safety, and recycling. Precisely estimating the Remaining

Useful Life (RUL) of lithium battery packs can effectively assist in enhancing the personal safety of EVs

and facilitating secondary trading and recycling in other industries without compromising safety and

reliability. However, the RUL estimation of batteries involves many variables, and the operating conditions

of EV batteries are highly dynamic as they change with the environment and the driving style of the

users. Many existing methods exist to estimate the RUL based on batteries’ State-of-Health (SOH), but

only some are suitable for real-world data. There are several difficulties as follows. Firstly, obtaining

data about battery usage in the real world takes work. Secondly, most of these estimation models must

be more representative and generalized because they are trained on separate data for each battery.

Lastly, collecting data for centralized training may lead to a breach of user privacy. In this paper, we

propose an RUL estimation method utilizing a Deep Learning (DL) approach based on Long Short-Term

Memory (LSTM) and Federated Learning (FL) to predict the RUL of lithium batteries. We refrain from

incorporating unmeasurable variables as inputs and instead develop an estimation model leveraging

LSTM, capitalizing on its ability to predict time series data. In addition, we apply the FL framework to train

the model to protect users’ battery data privacy. We verified the results of the model on experimental

data. Meanwhile, we analyzed the model on actual data by comparing its mean absolute and relative

errors. The comparison of the training and prediction results of the three sets of experiments shows

that the federated training method achieves higher accuracy in predicting battery RUL compared to the

centralized training method and another DL method, with solid training stability.
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1 INTRODUCTION40

In modern society, environmental sustainability is always a top priority. In achieving sustainable de-41

velopment goals, the role of new energy sources has progressively grown in importance, contributing42

significantly to reducing carbon emissions (Gu and Liu, 2021). As one of the most promising entities43

in the new energy sector, Electric Vehicles (EVs) are rapidly gaining popularity due to their promise of44

better performance and comfort. Above all, they can help address the problem of urban air pollution.45
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The pivotal element of an EV resides in its lithium battery, which boasts ecological friendliness,46

extended longevity, and remarkable reliability in contrast to conventional battery types like lead-acid or47

NiMH batteries (Hannan et al., 2017; Zhang et al., 2019). Because of these advantages, lithium batteries48

are widely used in EVs and other critical applications, such as space applications, aircraft (Liu et al.,49

2014), and backup energy systems.50

Although lithium batteries are widely used, their failure can also be fatal. For example, in 2013,51

several Boeing 787s suffered fires due to lithium battery failures (Williard et al., 2013), while many car52

manufacturers recalled EVs due to fire safety concerns (Hawkins, 2020). Another issue with lithium53

batteries is cost. EVs are promising in many ways, but their high sale price remains a significant drawback54

(Bilgin et al., 2015), and lithium batteries, one of the most expensive components of EVs, are another55

major drawback (Andwari et al., 2017).56

An accurate estimate of the remaining useful life (RUL) of a lithium battery pack can improve the57

personal safety of electric vehicles and allow owners to trade up and reduce costs without sacrificing58

safety or reliability. Currently, existing approaches to battery life prediction typically fall into two59

categories: model-based and data-driven methods. However, these approaches have limitations in60

predicting battery life in electric vehicles, as they require either extensive physical knowledge or large61

amounts of experimental data for model-based approaches, or complex and uncertain condition monitoring62

data for data-driven strategies. Moreover, the relevant data used in these approaches is not readily available63

on electric vehicles, and the data used for model training is obtained in the laboratory, which cannot be64

generalized to realistic situations.65

Therefore, researchers have introduced data-driven deep learning (DL) based methods to study battery66

RUL as an alternative to model-based approaches. DL does not use human-designed features. Instead, the67

model automatically extracts complex structural features by training multiple non-linear networks with68

strong generalization capability.69

A traditional deep learning-based model for RUL prediction, which transfers battery data from electric70

vehicles to a cloud server for centralized training, has the following drawbacks:71

1. Data privacy issues. As big data develops and users become more aware of security and privacy,72

there is an increased risk of privacy leakage (Lohiya and Thakkar, 2020).73

2. Incomplete data distribution. Individual EV battery data rarely reflects how the battery is consumed74

and how long it will last under different scenarios. These problems result in insufficient training75

data for the model, negatively affecting its accuracy and reliability.76

Google initially introduced Federated Learning (FL) in 2017 (McMahan et al., 2017). Its distinctive77

training methods make it a significant form of distributed learning, including consolidating model78

parameters and implementing data constraints on the device. FL serves as an effective solution to the79

challenge of data protection. By leveraging shared information and global prediction models, it holds the80

potential to enhance the precision of forecasting remaining battery energy in EVs.81

This paper proposes an RUL prediction model grounded in FL and powered by recurrent neural82

networks. Through the utilization of local models on EVs, the uploading of model updates helps83

circumvent privacy breaches that may occur during transmission. In addition, by incorporating EVs as84

sub-nodes, each node in the FL network will possess distinct driving data from EVs. Consequently, this85

augmented data distribution contributes to a more comprehensive training of the global model. The global86

model parameters are aggregated through a central server in the cloud. The ultimate global prediction87

model for EV RUL is formed upon the receipt and distribution of model updates. We have conducted88

experiments involving the extraction of various impact indicators based on authentic vehicle operational89

data originating from diverse geographical regions and a range of vehicle models. The main contributions90

are as follows:91

1. Due to the limitations in obtaining comprehensive real-world usage data for EV batteries, we have92

devised a set of features that can be gathered and extracted directly from the EV terminal to evaluate93

the RUL of the battery.94

2. Many prior estimation models depended on individual battery data from individual EVs for isolated95

model training, leading to models that could have been more reliable and lacking in generality.96

Additionally, gathering and transmitting heterogeneous local data for model training and updates97

in an online centralized manner can potentially jeopardize user privacy. We propose an RUL98
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estimation method that utilizes a deep learning (DL) approach based on recurrent neural networks99

(RNN) and federated learning (FL) to predict the RUL of lithium batteries.100

3. Finally, we validated the results of the model on experimental data. The model was also analyzed101

on actual data by comparing the mean absolute and relative errors. The comparison of the training102

and prediction results of the three sets of experiments shows that the federated training method103

achieves higher accuracy in predicting battery RUL compared to the centralized training method104

and another DL method, with solid training stability.105

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 describes the106

proposed methodology. Section 4 demonstrates the experimental result. Section 5 concludes this paper107

and represents future work.108

2 RELATED WORK109

2.1 Classification of predictive techniques for SOH/RUL110

The storage capacity and the ability for rapid charging and discharging of the battery declines with aging.

This decline in battery health is most visibly evident in the reduction of available energy and power levels,

alongside a decrease in overall capacity and an elevation in internal resistance. Battery State of Health

(SOH) is typically assessed through parameters such as battery capacity and internal resistance. In the

context of this paper, the defined measure of SOH is as follows:

SOH =
Ct

C0
·100(%) (1)

where Ct is the current capacity and C0 is the nominal capacity. In most instances, the SOH for a newly111

manufactured battery is established at 100%. For purely electric vehicles, where capacity demand is of112

primary concern, it is reasonable to assume that safety performance may decline as the battery capacity113

reaches 80% of its initial ability. As a result, predicting SOH can facilitate repurposing batteries for114

secondary use, mitigating the safety risks associated with electric vehicles.115

SOH estimation methods can be divided into two main categories, namely experimental analysis116

methods and model-based methods, as shown in Figure 1.117

Figure 1. Classification of battery SOH estimation methods

Specifically, as shown in Table 1, the experimental analysis method refers to analyzing the collected118

battery current, voltage, temperature, and other experimental data. The indirect analysis method is also119

divided into indirect and direct measurements depending on battery parameters. In direct measurement,120
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specific characteristics of the battery are directly measured to determine the battery’s power. These charac-121

teristics include capacity/energy measurement, internal resistance measurement, impedance measurement,122

and cycle counting. The indirect analysis method is a typical multi-step derivation method, which does not123

directly calculate the battery capacity or internal resistance value. Still, it estimates the battery SOH by124

designing or measuring specific process parameters that reflect the battery capacity or internal resistance125

degradation, such as the capacity fade curve (Zhao et al., 2021).126

Table 1. Characteristics of battery SOH estimation methods.

Methods Advantages Disadvantages

Direct measurement

Characterization param-

eters

• higher prediction accuracy;

• relatively simple, without the

need for complex algorithms or

models;

• easily applied in practical produc-

tion and use;

• high cost of the experiment;

Indirect analysis Health

index

• provide real-time monitoring;

• not require complex testing

equipment and laboratory condi-

tions;

• relatively low prediction accu-

racy;

• not applicable to all types of bat-

teries;

• depends on a preset model;

Adaptive algorithms

• higher prediction accuracy;

• used for real-time monitoring of

battery life changes;

• necessary to establish complex

state estimation models;

• high cost of implementation and

application;

• high requirements for data acqui-

sition, transmission, and process-

ing;

Data-driven methods

• higher prediction accuracy;

• no need to have a deep under-

standing of the internal structure

and characteristics of the battery,

only the analysis of the opera-

tional data is required;

• require large amounts of battery

operation data;

• require a lot of data acquisition,

transmission, and processing, re-

sulting in high costs;

• require strong computing and al-

gorithm implementation capabili-

ties;

Model-based approaches require using a battery model to estimate selected battery parameters to127

achieve battery SOH estimation, which can be divided into adaptive state estimation algorithms and128

data-driven methods depending on the estimation algorithm. Adaptive algorithms generally require129

electrochemical models or equivalent circuit models, which are used to identify the parameters of the130

model and then complete the SOH prediction. These methods are distinguished by their closed-loop131

control and feedback mechanisms, which enable adaptive refinement of estimation outcomes based on132

battery voltage variations. Data-driven SOH estimation methods can predict battery life by extracting133

historical battery data using specific learning algorithms without detailed knowledge of the battery134

structure and material properties, or they can use sample entropy to assess the predictability of the battery135

aging time series, quantify the regularity of the data series, and analyze the battery discharge voltage data.136

Data-driven methods for SOH estimation can predict battery lifespan by applying specialized learning137

algorithms to historical battery data. These methods don’t rely on comprehensive battery structure138

and material properties knowledge. Alternatively, they might employ sample entropy to evaluate the139
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predictability of battery aging time series, quantify data series regularity, and analyze battery discharge140

voltage data.141

Constructing an accurate battery model is a challenging endeavor. Conversely, the data-driven142

approach relies on something other than the presence of a precise, meticulously mathematical model143

to depict battery aging principles and processes. Instead, it solely draws upon historical battery data,144

allowing for straightforward generalization across various scenarios. Therefore, the next section will145

focus on the progress of the deep learning-based SOH/RUL prediction solution within the data-driven146

approach.147

2.2 Developments of Deep learning148

Some scholars have employed a combination of Convolutional Neural Networks (CNNs) and Long149

Short-Term Memory (LSTM) networks in pertinent research regarding fault prediction through deep150

learning models. Qin et al. (2023) proposed using a multi-scale CNN-LSTM neural network with a151

denoising module for anti-noise diesel engine misfire diagnosis in their article. This method may also152

have application value in predicting the RUL of batteries.153

Deep learning is gaining growing popularity within the realm of medical diagnosis. Some researchers154

combine deep learning models with clustering analysis to classify and diagnose medical images, signal155

data, and other data types. Mukherji et al. (2022) reviewed the current state of deep learning applications156

in biomedical diagnosis. It introduced an approach combining continuous clustering with deep learning157

models to classify and diagnose biomedical signal data effectively. This method could also hold promise158

for predicting the RUL of batteries.159

In medical image analysis, some scholars have utilized deep learning models, combining the char-160

acteristics of CNN and LSTM to achieve the classification and diagnosis of pathological tissue images.161

Karimi Jafarbigloo and Danyali (2021) proposed a method based on CNN feature extraction and LSTM162

classification to grade nuclear atypia in breast cancer histopathological images. This approach also holds163

valuable applications in image processing and category, particularly for predicting the RUL of batteries.164

Some scholars in mobile application development have designed efficient and time-saving applications165

by leveraging network services and Android application development technologies. Sarkar et al. (2015)166

proposed a network service-oriented Android application capable of achieving swift and effective data167

transmission and image processing. The application of this technology may help optimize and deploy168

the battery RUL prediction model on mobile devices, providing convenience for practical industrial169

applications.170

In dialogue management optimization, some researchers have utilized deep reinforcement learning171

models, including experience replay-based ones, to enhance and tailor dialogue flows for optimization172

and personalization. Malviya et al. (2022) proposed an experience replay-based deep reinforcement173

learning model to optimize policy selection and decision-making processes within dialogue management.174

This model’s optimization applications might extend to predicting battery RUL as well. For instance,175

employing experience replay in data collection and preprocessing could enhance the efficiency and176

precision of model training for battery RUL prediction.177

In network security, some scholars use machine learning methods such as decision trees, support178

vector machines, and neural networks to design and optimize intrusion detection systems. Hidayat et al.179

(2022) compared the effectiveness of different machine learning methods in intrusion detection systems180

through experiments and drew corresponding conclusions in their paper. This experimental comparison181

method can serve as inspiration for evaluating disparities in performance among diverse deep learning182

models and optimization algorithms within the context of battery RUL prediction. This method can aid in183

selecting appropriate models and algorithms for modeling and optimization.184

2.3 SOH/RUL prediction based on deep learning185

In recent decades, DL has emerged as a robust tool for pattern recognition. Deep neural network186

architectures entail stacking multiple hidden layers, a feature that significantly boosts the learning capacity187

of data-driven models. Consequently, it improves accuracy and efficiency in identifying features across188

various domains.189

Makhadmeh et al. (2021) introduced a solution termed BMO-PSPSH, which tackles the power190

scheduling quandary within an innovative home context, allowing for simultaneously attaining multiple191

objectives. The simulation results showed that BMO-PSPSH outperforms other state-of-the-art algorithms192
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in almost all scenarios. Lin et al. (2022) presented a multi-model feature fusion approach utilizing multi-193

source features. Using Pearson correlation coefficients, this method initially categorized the 27 extracted194

health factors into three groups. Subsequently, they constructed a deep multi-model incorporating CNN,195

LSTM, and GraphSAGE to amalgamate the deep features into feature vectors. Ultimately, the SOH196

prediction was achieved through a fully connected network. A battery SOH prediction model was197

formulated for batteries operating under various temperatures. This model was devised by employing198

BP neural networks with incremental capacity analysis (Wen et al., 2022). By analyzing the correlation199

between IC curve characteristics and SOH, the mapping relationship between temperature and IC curve200

characteristics was established by the least squares method. This was done to obtain the SOH prediction201

model at different temperatures. Along with ICA, an online real-time correction prediction model is202

built, with the characteristic data continuously updated to ensure accuracy in the prediction of SOH under203

various aging conditions. Xia et al. (2022) employed the fully integrated Empirical Mode Decomposition204

with Adaptive Noise (CEEMDAN) algorithm to decompose the raw SOH data into local fluctuations205

and overarching degradation trends. Subsequently, they used the GRU network and the ARIMA model206

to predict the abovementioned trends. Meanwhile, the second GRU algorithm is used to correct the207

prediction residuals of the global degenerative trend. The final SOH estimates are obtained by combining208

the prediction results of the above components. This method effectively addresses the negative impact of209

capacity regeneration and demonstrates higher accuracy and stronger robustness than other methods.210

A popular approach is to use RNNs to find relationships between RUL and time series. The LSTM211

(Hochreiter and Schmidhuber, 1997) network is a type of RNN that can handle long-term sequences,212

and it has become the benchmark for recurrent networks. Therefore, LSTM and its variants are widely213

used in battery environments. Moreover, specific experiments have endeavored to employ convolutional214

neural networks (CNNs) for processing time series data or simple feedforward neural networks (FFNNs)215

following some form of preprocessing.216

AM assigns different weights to the LSTM hidden layer to improve critical information depending217

on different data sets and battery capacity data with varying multipliers of discharge (Zhang et al.,218

2022). Additionally, Sun et al. (2022) proposed a method for predicting the SOH of lead-acid batteries219

using a CNN-BiLSTM-Attention model. The CNN is utilized to extract the features and reduce data220

dimensionality, which is then fed as input to a bidirectional LSTM (BiLSTM) that learns the time series221

from the local features’ time-dependent information in both directions, leading to predicting multi-step222

SOH of the battery. Shu et al. (2021) developed cell mean models (CMM) to predict SOH based on partial223

training data by combining LSTM and transfer learning (TL). They used the LSTM model to assess cell224

differences, applying it as a cell difference model (CDM). Based on the inconsistencies of cell SOH, they225

calculated the minimum CDM estimate to determine Pack SOH. The experiment resulted in a significant226

reduction in the amount of required training data and computational burden.227

However, deep learning-based methods might not be suitable for predicting the energy of the whole228

EV network since they predict the energy of each EV individually. To avoid overlooking essential features229

such as driver behavior and traffic conditions that impact remaining battery energy, EVs should share their230

learned local model information instead of exclusively utilizing their dataset, leading to more accurate231

predictions. Therefore, using shared information or global prediction models to improve the accuracy of232

predicting the remaining battery energy for EVs is a challenge.233

2.4 Federated learning-based energy forecasting in the electric vehicle sector234

As discussed in the preceding subsection, machine learning is commonly used for energy prediction.235

However, traditional machine learning methods cannot train accurate energy prediction models with236

limited data available from a single EV. Thus, implementing federated learning can solve the issue of237

data silos and enhance the accuracy of predicting the remaining battery energy for electric vehicles. This238

technique employs shared information or global prediction models. Each end device trains a local model239

using its own data and shares gradient updates in horizontal federated learning. The centralized server240

updates the global model by aggregating the device gradients periodically. The global model is then241

sent back to the end devices until it achieves the desired accuracy. However, collecting and transmitting242

heterogeneous local data online for model training and updating can be undesirable, as it may violate243

users’ privacy. Furthermore, the offline anonymization of the dataset can be time-consuming and prone to244

errors. As a result, it is more desirable to update the model online while considering privacy concerns.245
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Saputra et al. (2019) proposed a federated learning approach for energy demand that enables charging246

stations to transmit their trained models exclusively to the charging station providers for processing. It247

can significantly reduce communication overhead and effectively protect the data privacy of EV users.248

Experimental results showed that the proposed method improves energy demand prediction accuracy by249

24.63% and reduces communication overhead by 83.4% compared to other baseline machine learning250

algorithms.251

Lu et al. (2020) proposed an asynchronous federated learning scheme that reduces transmission load252

and protects providers’ privacy. It also uses deep reinforcement learning for node selection to improve253

efficiency. Moreover, it integrates the learned model into the blockchain and performs a two-stage254

validation to ensure data reliability. Numerical results showed that the proposed data-sharing scheme255

achieves higher learning accuracy and faster convergence.256

Liu (2021) proposed Fed BEV, an end-to-end federated learning framework to model the energy257

consumption of battery electric vehicles. The framework employs a stacked LSTM architecture to train258

local models and the FedAvg algorithm to aggregate them into a global model. The experimental results259

demonstrated that asynchronous iterations using the FedAvg algorithm can improve the predictive power260

of the local model.261

Thorgeirsson et al. (2021) extended the federal average algorithm to train probabilistic neural networks262

and linear regression models in a communication-efficient and privacy-preserving manner. The study263

examined a network of battery electric vehicles connected to a cloud-based infrastructure that incorporates264

multiple relevant sources of information to forecast energy demand. To train prediction models, they265

utilized multi-scale regression with sensor data from the vehicle and TRDB data from the cloud. The266

energy demand predictions were validated with driving data, and the performance was measured using267

appropriate scoring rules. The study demonstrated that probabilistic forecasts outperform traditional268

deterministic forecasts. Additionally, the study highlighted that probabilistic energy demand forecasting269

benefits from a variable safety margin, resulting in improved battery energy utilization and increased270

effective driving range.271

Saputra et al. (2020) presented a new technique for forecasting energy demand in battery electric272

vehicle networks through federated learning. The method involves local training of the charging transaction273

dataset at individual charging stations to enhance prediction precision, reduce communication overhead,274

and maintain information privacy. After local training, the learned model will be shared only among the275

charging stations without revealing their real dataset to other parties. Moreover, this paper integrated276

federated learning with charging station clustering to optimize energy demand forecasting by reducing277

biased predictions caused by unbalanced features and labels.278

3 METHODS279

3.1 Overall Architecture280

Figure 2 illustrates the proposed federated learning framework for EV RUL prediction. Local models281

are deployed on EVs to train local data and avoid privacy leaks during transmission by uploading model282

updates. Moreover, since the EVs act as sub-nodes of federated learning, they have different environments283

and driving habits, which makes the data distribution for training the global model more comprehensive as284

each node contributes additional EV driving data. Finally, the central server located in the cloud collects285

the parameters, receives and disseminates updates related to the model, and ultimately develops the final286

global prediction model for EV RUL. The overall structure consists of five steps:287

• Step 1: Collecting data on electric vehicles. Electric vehicles gather operational data through288

onboard devices such as built-in sensors, including vehicle ID, collection time, status updates,289

charging status, speed, total mileage, total voltage, total current, and other physical parameters.290

• Step 2: Data preprocessing. The data processor of the electric vehicle performs data cleaning291

(deduplication), calculates simple features, and extracts features from the physical parameters of292

vehicle driving collected during Step 1.293

• Step 3: Build the initial model. After extracting features, the input ones are filtered. The initial294

global model is designed on the central cloud server, which includes the model inputs/outputs,295

model structure, and loss function.296

• Step 4: Begin the federated learning process. The central cloud server transmits the initial global297

model to every end node (in this case, an electric vehicle). The end nodes receive the global298

7/18PeerJ Comput. Sci. reviewing PDF | (CS-2022:12:80615:1:3:CHECK 27 Aug 2023)

Manuscript to be reviewedComputer Science



model, update their local model with the local data, and upload the model update information to the299

central cloud server. The server aggregates the parameters and updates the global model, then sends300

the model parameters again and repeats this process until the global model reaches a predefined301

threshold value.302

• Step 5: The cloud server shares the final global model with all end EVs when federated learning is303

complete. Then, each EV predicts its own remaining battery life cycle, considering its historical304

driving data and current driving conditions.305

Figure 2. Overall Architecture

3.2 Data preprocessing306

3.2.1 Data Cleaning307

Technical defects in the sensors and complex operating conditions can sometimes lead to signal delays,308

false positives, or even data loss during GPS data transmission, which can cause anomalies in the collected309

data. Therefore, data cleaning is required. In case of duplicate data, all those data records except one are310

eliminated, and a single record is retained. In cases of missing data, data padding is applied. For instance,311

if the mileage values are absent for a segment, they are replaced with the mileage values of that particular312

segment. If a segment’s mileage values are missing, they are filled with the mileage values at the end of313

the previous segment.314

3.2.2 Sliding window to calculate the battery capacity315

Analyzing the factors that influence battery RUL is necessary for accurate prediction. In current battery

research, State of Charge (SOC) is the most common feature, which reflects the battery’s remaining

capacity and decays with the number of cycles. It is defined numerically as the ratio of remaining to battery

capacity. Therefore, it has a strong correlation with the battery RUL. This paper uses the ampere-time

integration method to calculate battery capacity with the following equation:

C =

�
Īdt

∆SOC

(2)

Where C is the calculated capacity, Ī is the current fragment current mean value. ∆SOC is the difference316

between the maximum SOC and the minimum SOC within the fragment.317

As shown in Figure 3, the battery ID is the same for a charging process in the data set, and the first data318

point is the starting point of that process. The battery capacity of this window is calculated by applying319

the ampere-time integration method, and the window is slid by one step until the end of charging (i.e., the320

last data point). The sliding window size is set to 60 records, meaning one unit per 60 records. Then, the321

battery capacity of this process is calculated by estimating the average capacity of all windows.322

3.2.3 Feature extraction323

To predict the accurate RUL of a battery, it is necessary to collectively consider environmental, vehicle324

operating, and historical factors. As shown in Table 2, the temperature of the external environment325
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Figure 3. Sliding window to calculate battery capacity

impacts the electrochemical reactions inside the battery, which in turn affects its charging and discharging326

performance. There is a significant difference in the vehicle’s operating characteristics between emergency327

braking and normal driving conditions. As batteries age, their remaining life cycle decreases.328

We use an RNN model based on time series, which splits the input by time. Considering the spatial329

and temporal distribution of electric vehicle operation, the frequency of car use is higher on holidays than330

on weekdays. Moreover, the battery wear and tear is increased. Therefore, this paper extracts each feature331

by month.332

Table 2. Features extracted

Type Feature name Data type Explanation

Environment feature mon a temp float Average temperature by month

mon day int Total driving days by month

mon mile float Total driving mileage by month

mon cycle int Total charging and discharging cycles by month

mon acc Time int Total acceleration time by month

Vehicle operation features

mon acc time int Total acceleration times by month

mon a cap float Average capacitance by month

mon a R float Average resistance by month

mon a I float Average current by month

mon a V float Average voltage by month

mon use soc float Total electricity consumption by month

mon a V diff float Average voltage range by month

mon a temp diff float Average temperature range by month

Battery features

soc float State of Charge

a cycle int Total cycles

a days int Total driving daysHistorical feature

a mileage float Total mileage

3.3 Model construction333

Before presenting the model construction, the following definitions of features are given:334

1. F = ( f1, f2, · · · , f16) : A row vector of dimension 1× A row vector of dimension 16, representing335

the ith feature vector of a given cell.336

2. EVi = (F1,F2, · · · ,Fn)
−1

: denotes the eigenmatrix consisting of all eigenvectors of cell i.337

3. FM = (EV1,EV2, . . . ,EVn)
−1

:The set of all electric vehicle battery feature matrices.338

3.3.1 Analysis of the problem339

The RUL of a battery refers to the point where its performance or health has declined to the extent that

it can no longer sustain the equipment’s operation under specific charge and discharge conditions or
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after it has undergone a specified number of charge and discharge cycles. The SOH of a battery usually

refers to the parameters that characterize the battery’s health. These parameters are also known as health

factors. This paper calculates SOH using the capacity measurement method, which accurately measures

the current maximum available capacity of the battery as a percentage of its rated capacity. The capacity

measurement method uses capacity as a health factor, and the formula for defining SOH is as follows:

CSOH =
CM

CN

×100% (3)

Where CSOH is the SOH as defined by the capacitance method. CM is the current stable capacity of the

battery. CN is the rated capacity. The RUL prediction is an assessment of the remaining life cycle of the

battery before failure, generally defined as a battery failure at 80% SOH, and is given by:

RUL = TSOH 80% −TNow (4)

Where RUL represents the remaining life cycle of the battery. TSOH80% represents the time at which the340

battery SOH reaches 80%. TNow represents the time under the current SOH of the battery.341

Figure 4. Model input & output

3.3.2 RNN models342

Data with time-series characteristics can be handled by RNNs using the information from the hidden layer343

neurons of the network. Specifically, in the RUL prediction scenario, the battery aging data is extracted344

from the feature parameters and fed into the RNN for training. This structure fits the battery decline curve345

well and accurately predicts the battery’s remaining life.346

First, the feature matrix FM was normalized. Then the FMs are cropped according to different lengths347

to form a set H = {EV1,EV2, . . . ,EVn} containing multiple subsets of FMs as input to the model. The348

shape of each FM subset is 16*N. N is the batch size during training. As shown in Figure 4, the prediction349

of RUL is achieved by calculating the loss of each vector input for each FM subset.350

As shown in Figure 5, the model consists of an input, hidden, and output layer. The number of neurons351

in each fully connected layer is set as low as possible to keep the model lightweight. The hidden layer has352

five layers of simple recurrent neural networks with 64,32,16,8,4 neurons and two thoroughly combined353

layers.354

Figure 5. RNN model structure

We use mean squared error (MSE) and mean absolute error (MAE) to assess the difference between

the predicted and actual values of the model using the following formula:

MSE =
1

m

m

∑
i=1

("yi − yi)
2

(5)
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MAE =
1

m

m

∑
i=1

|�yi − yi| (6)

Where yi denotes the actual value of SOH, ŷi is its corresponding predicted value, and m represents the355

feature dimension.356

3.3.3 Federated Learning357

The training process for federated learning consists of two parts: global model training and local model358

training. Clients update their local models based on their individual data and transmit the updates to the359

central server. Then, the central server aggregates the updates to calculate a modified global model.360

Local training of the model consists of four steps:361

• Step1: The initial global model is received from the incoming central server.362

• Step2: Collecting multiple EVs in a trusted vehicle network to form an ensemble363

H = {EV1,EV2, . . . ,EVn} training dataset.364

• Step3: EVi is taken from the set FM at each training session, and the model is trained using the365

gradient descent algorithm until all the EVs in the set FM are trained.366

• Step4: Receive the updated model parameters from the central server after uploading the weights367

and biases of the trained model. Repeat steps 3 and 4 several times until the global node converges368

globally.369

Global training consists of 3 steps:370

• Step1:Design the model and distributes it to each node.371

• Step2:Collect model parameters and losses for local training at each node.372

• Step3:The parameters and losses of each node are aggregated and resent to each node. Repeat steps373

2) and 3) several times until the global loss reaches the set convergence threshold.374

• Step4:Considering the different data volumes of the sub-nodes when aggregating the model globally,375

the ratio of each node’s data volume to the total data volume is used as the weight for aggregation.376

4 EXPERIMENTAL SETUP377

To validate the performance of the proposed method, we conducted experiments with data collected from378

automotive sensors. We used 124 batteries, each with several charge and discharge cycles. Our focus was379

on two aspects: (1) the stability of federated training; and (2) the accuracy of the model’s predictions.380

Figure 6 shows the experimental procedure, including data preprocessing, data splitting, and compari-381

son experiments. The 124-cell data collected by the sensors was cleaned and normalized. The dataset382

required for the experiments was formed by extracting each cell’s data over time. The dataset was then383

split into a training set and a validation set by battery, and a bunch of comparison experiments were384

conducted. The federated training experiments divided the training data into five nodes, and the centralized385

training experiments used the whole training data. Finally, we analyzed the results of the two experiments.386

4.1 Experimental environment and dataset387

The experiments were conducted on a computer system that included an Intel(R) Core(TM) i5-8250U388

CPU processor and an Intel(R) UHD Graphics 620 graphics card operating on the Windows 10 platform.389

The TensorFlow deep learning framework, version 1.10.0, and Python programming language, version390

3.6.2, were utilized. The dataset employed for the experiments was acquired from a published study391

(Severson et al., 2019). The dataset was collected from 124 commercial lithium iron phosphate/graphite392

batteries subjected to fast-charging cycles, with cycle lives ranging from 150 to 2300 cycles.393

4.2 Data preprocessing394

First, the data has many spikes, which may represent some errors in the sensor readings or other anomalous395

data that need to be cleaned up. Here the data is processed using an exponential moving average to396

remove outliers and ’smooth out’ problematic curves. Secondly, the features in the dataset have different397

value ranges. Hence, the data needs to be normalized to a specific interval ([-1,1]) to make the features398

comparable, eliminate the undesirable effects caused by odd sample data, speed up gradient descent to399

find the optimal solution and improve accuracy. Third, the battery IDs in the dataset are the same for a400

battery with multiple charge/discharge cycles. We obtain 60 ”windows” of 100 cycles from the first 160401
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Figure 6. Overall experimental process

cycles of each battery as all the data for that battery, treating them as many time series, each with many402

features, and maintaining the temporal order of the series. Finally, there are 124 cells in the dataset, each403

with 60 sliding windows. This results in a total of 7440-time data series, each containing 100 data cycles,404

as shown in Table 3.405

Table 3. Dataset Description

Data items Numerical values

Number of batteries 124

Sliding window size 100

Number of acquisition windows per cell 60

Total number of sequences 7440

Total number of cycles 744000

Number of features 16

4.3 Data splitting406

Due to the large number of batteries and the small amount of data that can be obtained for each battery,407

we merged the data by battery and split it into a training and validation set. The data from 120 batteries,408

from batteries 0 to 119, were used as the training set. The data from 4 batteries, 120 to 123, were used as409

the validation set. It means that the training set has 7,260 time series data, which is 726,000 data cycles.410

The validation set has 180 time series data, which is 18,000 data cycles. Further, according to the number411

of sub-nodes in the federated training, the training set is split into five parts by battery. We combine every412

24 batteries into one battery, equivalent to a training set of 5 batteries in the federated training, and each413

sub-node training set has 1440 time series data and 144000 cycle data.414

4.4 Parameter setup415

We designed a series of comparative experiments comprising three components to assess our concerns416

regarding the stability of federated training and the accuracy of model predictions. Specifically, we417

conducted experiments utilizing the RNN federated training method, the RNN centralized training method,418

and the CNN-ATSLSTM method proposed by Li P et al. in their study (Li et al., 2022), respectively, for419

RUL prediction. The respective parameter configurations for these experiments are presented in Table 4.420
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Table 4. Experimental parameter settings

Parameter name Federated training Centralized training CNN-ATSLSTM

Number of nodes 5 - -

Data volume by node 1440 - -

Total data volume 7200 7260 7260

Local training rounds 100 1000 1000

Global training rounds 10 - -

Optimizer Adam Adam Adam

Learning Rate 0.0005 0.0005 0.0005

Data batch size 64 64 64

Federated training: The number of nodes in the federated training experiment was restricted to 5;421

each node used 24 batteries of data as the training data set, containing 1440 time series data, i.e., 144000422

cycles of data; the total data volume of 5 nodes was 7200; the number of local training rounds was limited423

to 100; the number of global training rounds was 10 rounds, each node would train 1000 rounds. The424

optimizer is Adam, the learning rate is set to 0.0005, and the data batch size is 64.425

Centralized training: The amount of data in the centralized training experiment is 7260 time series426

data, i.e., 726000 cycles of data; the local training rounds are set to 1000. the optimizer is Adam; the427

learning rate is set to 0.0005, and the data batch size is 64.428

CNN-ATSLSTM: The training set data volume is 7260 time series data, i.e., 726000 cycles of data;429

the number of local training rounds epochs is set to 1000; the optimizer is Adam; the learning rate is set430

to 0.0005, and the data batch size is 64.431

4.5 Evaluation Metrics432

The evaluation metrics used in the experimental component are:433

Mean Squared Error Loss (MSE Loss) measures how bad a neural network’s performance is. It is the

average of the sum of the squares of the differences between the predicted and target values, calculated as:

MSE Loss =





mean
ø
(yi − ŷi)

2
ø
, reduction = mean

sum
ø
(yi − ŷi)

2
ø
, reduction = sum



 (7)

Mean Absolute Error (MAE), which is the average of the absolute errors, better reflects the actual situation

of the forecast value error and is calculated as:

MAE =
1

m

m

∑
i=1

|yi − ŷi| (8)

Residuals, the difference between the actual and estimated values, are used to measure the difference

between the predicted and true values and are calculated as:

Residuals = yi − ŷi (9)

In the above equation, ŷi is the true value of the target, and yi is the predicted value.434

5 EXPERIMENTAL RESULTS435

5.1 Comparison of training stability436

Figure 7 displays the trend of MSE Loss change for the three experimental sets, where RNN-FL loss and437

RNN-FL val loss denote the MSE Loss of federated training. It can be observed that the MSE Loss of all438

three models converges to the lowest value within 300 epochs. As the Loss value decreases, the val Loss439

value also decreases, indicating standard model training. The federated training and CNN-ATSLSTM440

curves exhibit relatively smooth trends with minor fluctuations in values, indicating strong training441

stability. At the beginning of training, the MSE Loss of federated training converges faster than that of442

CNN-ATSLSTM. The specific MSE Losses of each epoch are presented in Table 5. The overall MSE443

Loss of federated training is lower than the other two models, and the final convergence at the end of444

training attains values of 231.7720 and 99.5836, respectively, which are lower than the final values of445

centralized training and CNN-ATSLSTM. Thus, federated training exhibits more substantial stability with446

lower loss and superior training results.447
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Figure 7. Trends in MSELoss

Table 5. MSE Loss values

centralized training CNN-ATSLSTM federated training

epochs Loss val Loss Loss val Loss Loss val Loss

0 491646.0032 185134.0506 486878.0032 483986.0506 486979.0536 209103.2877

1 134666.7335 133816.1474 479478.7335 476722.1474 297430.8339 247654.1310

2 132730.9633 145277.1068 471960.9633 468408.1068 138228.1763 131975.9990

... ... ... ... ... ... ...

995 1311.0405 1640.3068 635.4150 134.6640 246.9252 102.1924

996 1735.1783 1098.3275 636.7056 114.3281 243.9156 93.9880

997 1829.7231 1985.8028 608.3708 95.4834 233.9361 105.1113

998 1555.3295 1735.3379 601.0994 127.1374 247.6579 112.2270

999 1334.7052 812.2385 627.3907 99.5114 231.7720 99.5836

5.2 Comparison of prediction accuracy448

5.2.1 MAE449

Figure 8 shows the MAE variation trend for the three experiment sets. RNN-FL MAE and RNN-450

FL val MAE indicate the MAE of federated training. The MAE and val MAE of all three models451

converge at a faster rate. The MAE of the centralized training model is larger and exhibits more452

fluctuations. In contrast, the MAE of federated training and CNN-ATSLSTM drop smoothly to a lower453

value and fluctuate steadily in a smaller range. Furthermore, the MAE of federated training converges first.454

It indicates that the training error of the federated training model is smaller than that of the centralized455

training model and can reach about the same accuracy as that of the CNN-ATSLSTM model.

Figure 8. MAE change curve

456
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5.2.2 Model prediction results457

The trained model was utilized to predict the battery RUL on the test set data, and the accuracy of the458

prediction results was analyzed. Figure 9 compares the predicted and actual values of the three models459

using the first 100 data of the test set for analysis. The solid blue line represents the RUL values predicted460

by the models, and the dashed orange line represents the true RUL label values. The figure shows that the461

prediction results of all three sets of experiments are in good agreement with the actual values. However,462

the RUL predictions of the centralized training model deviate significantly from the real values in more463

parts, and a small portion of the CNN-ATSLSTM model also had inaccurate predictions. In contrast,464

the prediction values of the federated training model were highly consistent with the actual values. The465

federated training model demonstrates more accurate prediction results.466

Figure 9. Comparison between model predictions and true values

5.2.3 Residual analysis467

Figure 10 shows the range and distribution of Residuals values for the predicted results. It includes468

univariate distribution plots (histograms and kernel density plots) of Residuals and Residuals values for469

each model. The Residuals of the centralized training model are mainly concentrated in the (-50, 50) range,470

while the CNN-ATSLSTM model and the federated training model are primarily in the (-20, 20) and471

the (-10, 10) ranges, respectively. All three models have approximately normally distributed Residuals,472

indicating accurate data predictions. However, the overall values of the residuals of the federated training473

model are smaller than those of the other two models. Moreover, the Residuals statistical analysis in474

Table 6 shows that the federated training model has better Residuals mean, standard deviation, and other475

statistical values. Therefore, the federated training model is more accurate in predicting RUL than the476

centralized training model and the CNN-ATSLSTM model.477

6 CONCLUSIONS478

The proposed RNN-based federated learning method for RUL prediction provides a promising approach479

for addressing privacy concerns while achieving high prediction accuracy. The privacy of user battery480

data is protected by partitioning the models into local and global models and uploading only model481

updates during training. Furthermore, using battery data from different sub-nodes to train the global482

model results in a complete data distribution compared to centralized training methods and other existing483

RUL prediction methods. The comparison of the training and prediction results of the three sets of484

experiments shows that the federated training method achieves higher accuracy in predicting battery RUL485

compared to centralized training and CNN-ATSLSTM methods, with solid training stability. Overall,486

the proposed method protects the privacy of user battery data and achieves good training stability and487
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higher prediction accuracy, making it a promising approach for RUL prediction in the context of battery488

management systems.489

Figure 10. Residuals comparison
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Mohammed, M. A., and Abdulkareem, K. H. (2021). Smart home battery for the multi-objective power527

scheduling problem in a smart home using grey wolf optimizer. Electronics, 10(4):447.528

Malviya, S., Kumar, P., Namasudra, S., and Tiwary, U. S. (2022). Experience replay-based deep529

reinforcement learning for dialogue management optimisation. Transactions on Asian and Low-530

Resource Language Information Processing.531

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient532

learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages533

1273–1282. PMLR.534

Mukherji, A., Mondal, A., Banerjee, R., and Mallik, S. (2022). Recent landscape of deep learning inter-535

vention and consecutive clustering on biomedical diagnosis. In Artificial Intelligence and Applications.536

Qin, C., Jin, Y., Zhang, Z., Yu, H., Tao, J., Sun, H., and Liu, C. (2023). Anti-noise diesel engine misfire537

diagnosis using a multi-scale cnn-lstm neural network with denoising module. CAAI Transactions on538

Intelligence Technology.539

Saputra, Y. M., Hoang, D. T., Nguyen, D. N., Dutkiewicz, E., Mueck, M. D., and Srikanteswara, S. (2019).540

Energy demand prediction with federated learning for electric vehicle networks. In 2019 IEEE Global541

Communications Conference (GLOBECOM), pages 1–6. IEEE.542

Saputra, Y. M., Nguyen, D., Dinh, H. T., Vu, T. X., Dutkiewicz, E., and Chatzinotas, S. (2020). Federated543

learning meets contract theory: economic-efficiency framework for electric vehicle networks. IEEE544

Transactions on Mobile Computing.545

17/18PeerJ Comput. Sci. reviewing PDF | (CS-2022:12:80615:1:3:CHECK 27 Aug 2023)

Manuscript to be reviewedComputer Science



Sarkar, S., Saha, K., Namasudra, S., and Roy, P. (2015). An efficient and time saving web service based546

android application. SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE),547

2(8):18–21.548

Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring,549

P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C., and Braatz, R. D. (2019). Data-driven550

prediction of battery cycle life before capacity degradation. Nature Energy, 4(5):383–391.551

Shu, X., Shen, J., Li, G., Zhang, Y., Chen, Z., and Liu, Y. (2021). A flexible state-of-health prediction552

scheme for lithium-ion battery packs with long short-term memory network and transfer learning. IEEE553

Transactions on Transportation Electrification, 7(4):2238–2248.554

Sun, S., Sun, J., Wang, Z., Zhou, Z., and Cai, W. (2022). Prediction of battery soh by cnn-bilstm network555

fused with attention mechanism. Energies, 15(12).556

Thorgeirsson, A. T., Scheubner, S., Fünfgeld, S., and Gauterin, F. (2021). Probabilistic prediction of557

energy demand and driving range for electric vehicles with federated learning. IEEE Open Journal of558

Vehicular Technology, 2:151–161.559

Wen, J., Chen, X., Li, X., and Li, Y. (2022). Soh prediction of lithium battery based on ic curve feature560

and bp neural network. Energy, 261:125234.561

Williard, N., He, W., Hendricks, C., and Pecht, M. (2013). Lessons learned from the 787 dreamliner issue562

on lithium-ion battery reliability. Energies, 6(9):4682–4695.563

Xia, F., Wang, K., and Chen, J. (2022). State-of-health prediction for lithium-ion batteries based on564

complete ensemble empirical mode decomposition with adaptive noise-gate recurrent unit fusion model.565

Energy Technology, 10(4):2100767.566

Zhang, S., Zhai, B., Guo, X., Wang, K., Peng, N., and Zhang, X. (2019). Synchronous estimation of567

state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and568

artificial neural networks. Journal of Energy Storage, 26:100951.569

Zhang, X., Sun, J., Shang, Y., Ren, S., Liu, Y., and Wang, D. (2022). A novel state-of-health prediction570

method based on long short-term memory network with attention mechanism for lithium-ion battery.571

Frontiers in Energy Research, 10.572

Zhao, Q., Jiang, H., Chen, B., Wang, C., and Chang, L. (2021). Research on the soh prediction based on the573

feature points of incremental capacity curve. Journal of The Electrochemical Society, 168(11):110554.574

18/18PeerJ Comput. Sci. reviewing PDF | (CS-2022:12:80615:1:3:CHECK 27 Aug 2023)

Manuscript to be reviewedComputer Science


