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ABSTRACT
Miscommunications between air traffic controllers (ATCOs) and pilots in air traffic
control (ATC) may lead to catastrophic aviation accidents. Thanks to advances in
speech and language processing, automatic speech recognition (ASR) is an appealing
approach to prevent misunderstandings. To allow ATCOs and pilots sufficient time to
respond instantly and effectively, the ASR systems for ATC must have both superior
recognition performance and low transcription latency. However, most existing ASR
works for ATC are primarily concerned with recognition performance while paying
little attention to recognition speed, which motivates the research in this article.
To address this issue, this article introduces knowledge distillation into the ASR
for Mandarin ATC communications to enhance the generalization performance of
the light model. Specifically, we propose a simple yet effective lightweight strategy,
named Target-Swap Knowledge Distillation (TSKD), which swaps the logit output
of the teacher and student models for the target class. It can mitigate the potential
overconfidence of the teacher model regarding the target class and enable the student
model to concentrate on the distillation of knowledge fromnon-target classes. Extensive
experiments are conducted to demonstrate the effectiveness of the proposed TSKD in
homogeneous and heterogeneous architectures. The experimental results reveal that
the generated lightweight ASR model achieves a balance between recognition accuracy
and transcription latency.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Natural Language and
Speech
Keywords Automatic speech recognition, Knowledge distillation, Air traffic control
communications, Model compression, Mandarin ASR, Lightweight ASR

INTRODUCTION
To preserve aircraft safety and efficiency, air traffic controllers (ATCOs) and airline
pilots must comprehend each other’s intentions through radiotelephony communications
with clarity and accuracy (Lin, 2021). In order for instructions to be transmitted and
implemented correctly, it is crucial for both sides to make prompt, precise, and objective
decisions about content integrity, terminology uniformity, and readback consistency.
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Almost 83% of human information is perceived visually, roughly 11% auditorily, and the
remainder is less than 6% (Rosenblum, 2011). Due to the fact that both ATCOs and airline
pilots work in enclosed spaces with a limited field of vision, the effective visual perception
signals consist primarily of displayed digits, radar scanning points, and other flight status
indicators on the instrument panel of the air-ground data link system. Consequently,
in contrast to the majority of situations, hearing now serves as the dominant means of
immediate information perception during radiotelephony interactions (Shi et al., 2022).
As control density has climbed, ATCOs suffer from heavier physical and mental burdens,
particularly in light of the ongoing trend toward the explosive development of the air
transportation business and the unprecedented growth of air traffic flow (Guimin et al.,
2018). Occasionally, misunderstandings might occur due to noise interference, tiredness,
distraction, or pressure (Kim, Yu & Hyun, 2022). Nevertheless, the consequences would be
catastrophic in the case of an accident (Helmke et al., 2021).

Thanks to the tremendous advancement in fields of speech and language processing over
the last decade, it is progressively becoming feasible for computing devices to automatically
semantically verify ATCO’s control commands and pilot’s readback instructions. Ahead
of back-end text matching for semantic verification, the audio signal is required to
be transcribed into text via automatic speech recognition (ASR), which benefits the
performance of the overall system. In addition, ASR can also alleviate the workload of
air traffic controllers (ATCOs) (Helmke et al., 2016; Ohneiser et al., 2021a; Ohneiser et al.,
2021b) and reduce the potential flight safety risks associated with misunderstandings.

To guarantee that ATCOs and pilots have sufficient time to respond instantly and
efficiently, the ASR model is required to have both excellent recognition performance and
low transcription latency. However, themajority of existing ASRworks for air traffic control
(ATC) (Ohneiser et al., 2021a; Helmke et al., 2021; Zuluaga-Gomez et al., 2021; Lin et al.,
2021c) is mainly concerned with recognition performance while paying little attention to
recognition speed, which motivates the research in this article. Over the past few years, the
performance of end-to-end speech recognition models has been continuously enhanced
owing to the expansion of model capacity and computational complexity (Li & Etal, 2022),
leading to substantial computational expenses as well as time costs (Georgescu et al., 2021).
In preparation for actual deployment on mobile or embedded devices, it is essential to
construct a lightweight model that decreases the network size at the expense of negligible
performance loss. Fortunately, advancements in knowledge distillation (Li et al., 2021;
Huang et al., 2018) have shed light on this issue.

As a teacher-student training strategy, knowledge distillation (KD) aims to transfer
knowledge from the heavy pre-trained teacher model into the relatively compact student
model, regardless of their structural distinctions (Wang & Yoon, 2021). It can enhance
the lightweight one’s effectiveness and generalization without consuming extra expenses.
Recently, decoupled knowledge distillation (DKD) (Zhao et al., 2022) has brought the
logits-based KD approach back into the state-of-the-art, which can extract the rich
‘‘dark knowledge’’ (Hinton, Vinyals & Dean, 2015) from the teacher network efficiently by
decoupling the standard KD loss into two separate parts, including target class knowledge
distillation (TCKD) and non-target class knowledge distillation (NCKD). Note that the
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term ‘‘target class’’ in KD refers to the specific class to which a given input sample belongs,
i.e., its ground truth label for training. DKD empirically explores and reveals that TCKD
transfers knowledge regarding the difficulty of training examples, while NCKD is the key
contributor to the success of logit distillation. In this manner, the original logits-based
method’s restrictions on the flexibility and effectiveness of knowledge transfer have been
somewhat alleviated. Meanwhile, NCKD can play a more prominent role, especially when
the target class encounters overconfidence. However, DKD still suffers from two issues:
indirect strategies to mitigate overconfidence regarding the target class and insufficient
investigation into hyperparameters for ASR tasks.

To alleviate the above issues, this article proposes a simple yet effective knowledge
distillation strategy by swapping the logit output of the teacher and student models on the
target class, named the Target-Swap Knowledge Distillation (TSKD). Precisely, it consists
of two parts: the teacher’s target class logit-swapped knowledge distillation (TKD) and
the student’s target class logit-swapped knowledge distillation (SKD). On the one hand,
it can facilitate the student model to focus on NCKD; on the other hand, it can mitigate
the potential overconfidence of the teacher model regarding the target class. In addition,
hyperparameters between TKD and SKD are elaborately investigated through parameter
sensitivity experiments for ASR tasks. Overall, our primary contributions are summarized
as follows:

• To the best of our knowledge, we are pioneers in introducing the knowledge distillation
idea into the ASR for Mandarin air traffic control communications. The generated
lightweight ASR model balances recognition performance and transcription latency,
allowing ATCOs and pilots sufficient time to respond immediately and effectively.
• This article proposes Target-Swap Knowledge Distillation (TSKD), a simple yet effective
lightweight strategy that swaps the logit output of the teacher and student models for the
target class. It can mitigate the potential overconfidence of the teacher model regarding
the target class and enable the student model to concentrate on the distillation of
knowledge from non-target classes.
• Extensive experiments are conducted to demonstrate the effectiveness of the proposed
TSKD in several homogeneous and heterogeneous architectures.

The rest of the article is structured as follows. ‘Related work’ discusses the related
work. ‘Method’ details the Target-Swap Knowledge Distillation strategy for Mandarin air
traffic control communications. ‘Experiments and result analysis’ introduces the dataset
and experimental implementation and analyzes the experimental results. ‘Conclusions’
concludes the research.

RELATED WORK
Automatic speech recognition for air traffic control communications
When it comes to automatic speech recognition for air traffic control communications,
numerous works have been conducted by academia and industry from around the world.
The majority of them concentrate on recognition performance, such as the recognition
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error rate of words, characters, and sentences, which can reduce the workload of ATCOs
and potential flight safety risks associated with miscommunications (Helmke et al., 2016).

Helmke and Ohneiser et al. adopted ontology-enhanced approaches for speech
recognition applications in a variety of real-world ATC scenarios, such as robust command
recognition and extraction (Ohneiser et al., 2021a; Ohneiser et al., 2021b) and callsign
recognition for automatic readback error detection (Helmke et al., 2021). Zuluaga-Gomez
et al. proposed a contextual semi-supervised learning approach combining untranscribed
ATC speech and air surveillance data (Zuluaga-Gomez et al., 2021) and a two-stage method
incorporating contextual radar data (Nigmatulina et al., 2022), which enhanced the callsign
recognition. Lin et al. (2021c) proposed several end-to-endmultilingual speech recognition
frameworks for ATC communications (Lin et al., 2021c; Yang et al., 2020; Lin et al., 2021a;
Lin et al., 2021b), which focus on the multilingual ASR on parallel Chinese and English
ATC recordings. Shi et al. (2022) proposed an end-to-end Conformer-based multi-task
learning speech recognition model for Mandarin radiotelephony communications in civil
aviation, which can effectively extract global and local acoustic features, especially the
contextual long-distance dependent local similarity features.

The above ASR works for air traffic control (ATC) is mainly concerned with recognition
performance while paying little attention to recognition speed. To address this issue, this
article introduces the lightweight idea of knowledge distillation into the ASR for Mandarin
ATC communications to enhance the generalization performance of the light model. In
this way, the generated lightweight ASR model achieves a balance between recognition
performance and transcription latency, allowing ATCOs and pilots sufficient time to
respond immediately and effectively.

Knowledge distillation
Over the past decade, advancements in model compression (Cheng et al., 2018; Choudhary
et al., 2020), such as knowledge distillation (Li et al., 2021; Huang et al., 2018), low-rank
matrix factorization (Povey et al., 2018), network pruning (Gao et al., 2020), parameter
quantization (He et al., 2019; Sainath et al., 2020), and lottery ticket hypothesis (Ding,
Chen & Wang, 2022), have attracted much attention. Knowledge distillation (KD) aims to
transfer knowledge from the heavy pre-trained teacher model into the relatively compact
student model, regardless of their structural distinctions (Wang & Yoon, 2021). It can
enhance the lightweight student model’s generalization without introducing extra costs,
since soft targets convey more generalization information than hard ones to prevent
overfitting of the student model. Regarding knowledge source types, distilled knowledge
consists of response-based knowledge from the final output layer, feature-based knowledge
from intermediate layers, and relation-based knowledge within feature maps or data
samples (Gou et al., 2021).

After the idea of KD was first proposed in Hinton, Vinyals & Dean (2015), the logits-
based KD and the feature-based KD, like FitNets (Romero et al., 2015), take turns
playing the central role throughout the history of KD research. Compared with logits-
based KD, feature-based KD achieves superior performance at the expense of extra
computation and storage requirements during training. It is worth noting that decoupled
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knowledge distillation (DKD) (Zhao et al., 2022) has recently brought the logits-based
KD approach back into the state-of-the-art, which can efficiently extract the rich ‘‘dark
knowledge’’ (Hinton, Vinyals & Dean, 2015) from the teacher network. However, DKD
still suffers from two issues: indirect strategies to mitigate overconfidence regarding the
target class and insufficient investigation into hyperparameters for ASR tasks. As for the
former, with the help of an efficient decoupling mechanism, the conventional logits-
based method’s restrictions on the flexibility of knowledge transfer have been somewhat
alleviated; therefore, NCKD can play a more prominent role, particularly when the target
class encounters overconfidence. Nevertheless, it requires more direct strategies to prevent
overconfidence in the target class (Ren, Guo & Sutherland, 2022). As for the latter, the
scale factor hyperparameters for the two decoupled components differ considerably for
various tasks. While DKD explored hyperparameters for a number of computer vision
tasks, further investigation is required for assignments like ASR.

To address this issue, this article proposes Target-SwapKnowledgeDistillation (TSKD), a
simple yet effective lightweight strategy that swaps the logit output of the teacher and student
models for the target class. On the one hand, it mitigates the potential overconfidence of
the teacher model regarding the target class; on the other hand, it enables the student
model to concentrate on the distillation of knowledge from non-target classes. In addition,
hyperparameters between TKD and SKD are elaborately investigated through parameter
sensitivity experiments for ASR tasks.

METHOD
The overall architecture of target-swap knowledge distillation (TSKD)
In logits-based offline knowledge distillation for speech recognition, the teacher model is a
sophisticated pre-trained model with good performance. Their output logits are valuable
prior knowledge, which can guide the student model to learn and represent the mapping
relationship between acoustic features and predicted text through knowledge transfer.

In this article, we propose a simple yet effective lightweight strategy named Target-Swap
Knowledge Distillation (TSKD), which swaps the logit output of the teacher and student
models for the target class. Figure 1 depicts the overall architecture of knowledge distillation
from the pre-trained teacher model to the student model with the TSKD strategy. The
overall loss Loverall comprises two components, LTSKD for the TSKD loss proposed in this
article and LCE for the original cross-entropy loss, which can be calculated as the formula
below,

Loverall =αLTSKD+βLCE , (1)

where α and β are tuned hyper-parameters to make a trade-off between the two losses,
given the usual constraints that α+β = 1.

In the following two subsections, we will describe the two parts of TSKD: the teacher’s
target class logit-swapped knowledge distillation (TKD) and the student’s target class
logit-swapped knowledge distillation (SKD). On the one hand, it can enable the student
model to concentrate on the distillation of knowledge from non-target classes; on the other
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Figure 1 The overall architecture of target-swap knowledge distillation (TSKD).
Full-size DOI: 10.7717/peerjcs.1650/fig-1

(a) classical logits-based KD (b) TSKD proposed in this paper
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SZ1
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Figure 2 The distinction between the conventional logits-based knowledge distillation (Hinton,
Vinyals & Dean, 2015) and TSKD proposed in this article.

Full-size DOI: 10.7717/peerjcs.1650/fig-2

hand, it can mitigate the potential overconfidence of the teacher model regarding the target
class. Figure 2 illustrates the distinction between the conventional logits-based knowledge
distillation loss function (Hinton, Vinyals & Dean, 2015) and that of the TSKD proposed
in this article. In this way, the network will be optimized collaboratively to balance the two
portions of enhanced loss functions, as calculated with the following formula:

LTSKD= λ1LTKD+λ2LSKD. (2)

Teacher’s target class logit-swapped knowledge distillation (TKD)
With the acoustic features of phonetic fraction as input, the teacher model for speech
recognition will generate the logits vector zT =

{
zT1 ,z

T
2 ,...,z

T
V
}
, where zi represents the
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1The temperature (T) in Hinton, Vinyals
& Dean (2015) is omitted without loss of
generality.

network’s predicted logit value for the i-th character and V represents the vocabulary size,
i.e., the total number of categories. Correspondingly, the student model will produce the
logits vector zS =

{
zS1 ,z

S
2 ,...,z

S
V
}
, where T and S stand for the teacher and the student

model, respectively. Thus, the class probability distributions of the teacher and student
models, namely pT =

{
pT1 ,p

T
2 ,...,p

T
V
}
and pS =

{
pS1 ,p

S
2 ,...,p

S
V
}
, can be calculated with

the following formula 1 :

pi=
exp(zi)∑V
j=1exp(zj)

. (3)

To urge the student model to concentrate on non-target classes for knowledge
distillation, inspired by DKD (Zhao et al., 2022), the logit output of the student model
on the target class is substituted with that of the teacher model zTt . Hence, the student
model yields the logits vector zS =

{
zS1 ,z

S
2 ,...,z

S
t−1,z

T
t ,z

S
t+1,...,z

S
V
}
, and the student

model’s class probability can be represented as p̂S =
{
p̂S1 ,p̂

S
2 ,...,p̂

S
t ,...,p̂

S
V
}
, which can be

calculated as follows,

p̂St =
exp(zTt )∑V

j=1,j 6=t exp(z
S
j )+exp(z

T
t )
, (4)

p̂Si =
exp(zSi )∑V

j=1,j 6=t exp(z
S
j )+exp(z

T
t )
, (5)

where i ∈ {1,2,...,t−1,t+1,...,V }. Given that the logits generated by the teacher
model remain unchanged, its class probability distribution also keeps identical, namely
pT =

{
pT1 ,p

T
2 ,...,p

T
V
}
. The student model’s modified class probability distribution p̂S

and that of the teacher model pT are employed for the calculation of the KL divergence
loss, named the Teacher’s target class logit-swapped Knowledge Distillation (TKD), as the
following formula:

LTKD = KL(pT ||p̂S)

= pTt log
(
pTt
p̂St

)
+

V∑
i=1,i6=t

pTi log

(
pTi
p̂Si

)
. (6)

Student’s target class logit-swapped knowledge distillation (SKD)
To alleviate the potential overconfidence (Ren, Guo & Sutherland, 2022) of the teacher
model on the target class, the logit output of the teacher model on the target class is
substituted with that of the student model zSt . Thus, the teacher model produces the logits
vector zT =

{
zT1 ,z

T
2 ,...,z

T
t−1,z

S
t ,z

T
t+1,...,z

T
V
}
, and the teacher model’s class probability

distribution can be represented as p̂T =
{
p̂T1 ,p̂

T
2 ,...,p̂

T
t ,...,p̂

T
V
}
, which can be calculated

as follows,

p̂Tt =
exp(zSt )∑V

j=1,j 6=t exp(z
T
j )+exp(zSt )

, (7)
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p̂Ti =
exp(zTi )∑V

j=1,j 6=t exp(z
T
j )+exp(zSt )

, (8)

where i ∈ {1,2,...,t−1,t+1,...,V }. The teacher model’s modified class probability
distribution p̂T and that of the student model pS are employed for the calculation of the
KL divergence loss, named the Student’s target class logit-swapped Knowledge Distillation
(SKD), as the following formula:

LSKD = KL(p̂T ||pS)

= p̂Tt log
(
p̂Tt
pSt

)
+

V∑
i=1,i6=t

p̂Ti log

(
p̂Ti
pSi

)
. (9)

EXPERIMENTS AND RESULT ANALYSIS
Dataset
Under the instruction of first-line ATCOs and tutors of ATC courses, a corpus was
established, and qualified ATCOs were chosen to record the corpus in a quiet situation.
Consequently, the built dataset follows the linguistic and acoustic feature distribution of air-
ground communications regarding call content, voice control, pronunciation regulations,
syntactic structure, and linguistic conventions. The Mandarin ATC communications
dataset is a paraphrase dataset, with each sample consisting of the ATCO’s control
instruction and the flight crew’s readback instruction successively. In this double-checked
manner, the command could be carried out efficiently and precisely.

The Mandarin ATC communications dataset is stored as a WAV audio file with a
sampling frequency of 16 kHz, 16 bits, and mono for each recording. Ten males and seven
females, a total of seventeen certified ATCOs, participated in the recording. With 641
corpora and 10971 recorded voices, the total speech data has a duration of 1516 minutes.
The dataset is randomly scrambled and split into the training set, validation set, and test
set in the ratio of 7:1:2.

Implementation details
In this experiment, 80-dimensional FBank (Filter bank) features are taken as the model
input, and frame window and frameshift size are 25ms and 10ms, respectively. The Kaldi
toolkit (Povey et al., 2011) was employed to extract the acoustic features, and the speed
factors of 0.9x and 1.1x were applied to scale the dataset for data augmentation. In the
training procedure, the relative positional encoding of Transformer-XL (Dai et al., 2019)
was utilized, and the Adam optimizer with the Noam learning rate (Vaswani et al., 2017)
was adopted for efficient parameter optimization. All models were trained on the dataset
through eight NVIDIA A100-SXM4-40G GPUs.

Concerning the effect of the teacher and student architectures on the efficacy of
knowledge distillation, Cho & Hariharan (2019) reveals that an excellent teacher only
sometimes produces qualified students due to their capacity gap. Hence, it is crucial to
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Table 1 Parameter configurations for the encoder and decoder of the student model variants.

Base Variants Encoder Decoder

Model Abbreviations N d_model d_ff h Attention Hidden units
Dimension Dimension

BiLSTM BiLSTM_3_512 3 256 – – 256 512
Trans_6_1024 6 256 2,048 4 512 1,024

Transformer
Trans_12_512 12 128 1,024 2 256 512
Con_12_512 12 128 256 2 256 512

Conformer
Con_12_256 12 128 256 2 256 256

select a suitable network as the student model given the teacher model. In this experiment,
the teacher models adopted the bidirectional long short-term memory (BiLSTM) network,
Transformer (Vaswani et al., 2017), and Conformer (Gulati et al., 2020) models, which
followed the configurations in our previous work (Shi et al., 2022). To choose student
models with appropriate capacity, several speech recognition model variants with varying
network sizes were constructed by modifying the encoder and decoder structures based
on BiLSTM, Transformer, and Conformer, respectively. For easy identification, individual
abbreviations were assigned to the corresponding student models in Table 1. Each
abbreviation consists of the base model type, the number of layers of the encoder N ,
and the dimension of the decoder’s hidden units, which are connected by underscores.

The experiments employed characters as the fundamental modeling unit and the
sentence error rate (SER) as the evaluation criterion with the following formula:

SER=
F
M
, (10)

where F is the number of sentences with transcription errors, and M is the total number
of sentences.

Table 2 represents the parameters, recognition error rate, and transcription time for all
teacher and student model variants on the test set. For fairness, all the transcription results
were calculated, given a beam search size of 10. Table 2 demonstrates that as model capacity
decreases, the recognition performance of each of the three groups of models declines.
Specifically, as the model capacity falls, the sentence error rate (SER) of the Transformer
model rises sharply, whereas it goes up relatively gently for the LSTM and Conformer
models. Notably, when the student model’s capacity drops to a quarter of the teacher
model’s, the LSTM and Conformer models can still make reliable predictions. In contrast,
the Transformer model can no longer make effective estimations. It verifies that the
Conformer-based speech recognition model (Shi et al., 2022) can effectively extract global
and local acoustic features, especially the long-distance context-dependent local similarity
features in the dataset of Mandarin ATC communications. Overall, the Conformer-based
knowledge distillation significantly lowers the model capacity with minimal accuracy loss.
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Table 2 Parameters, recognition error rate, and transcription time of the teacher and student model
variants given a beam search size of 10.

Model Parameter (M) SER (%) Transcription time (ms)

BiLSTM 43.90 5.58 984
Transformer 34.28 4.12 1867Teacher

Conformer 36.71 2.89 2012
BiLSTM_3_512 12.39 7.32 816
Trans_6_1024 26.39 11.57 1454
Trans_12_512 9.74 11.85 934
Con_12_512 9.91 4.35 1014

Student

Con_12_256 7.35 6.85 711

Table 3 Effectiveness of TSKD in homogeneous and heterogeneous architectures.

Method SER (%)

Conformer Transformer
Teacher

2.89 4.12
Con_12_256 Con_12_512

Student
6.85 4.35

TKD 6.39 4.07
SKD 6.67 4.35
TSKD (Ours) 6.00 3.98

Notes.
Results of the proposed model are in bold.

Effectiveness of TSKD in homogeneous and heterogeneous
architectures
Experiments were carried out on theMandarin ATC communications dataset to investigate
the effectiveness of the TSKD training strategy proposed in this article. As shown in
Table 3, two distinct teacher-student network structures, including homogeneous and
heterogeneous architectures, were employed. The left set used the Conformer teacher
model to distill the Conformer student model within homogeneous architectures, whereas
the right group made use of the Transformer teacher model to distill the Conformer
student model within heterogeneous network structures. The findings suggest that the
effectiveness of knowledge distillation can be boosted by employing either TKD or SKD,
with TKD bringing greater benefits. It also supports that non-target class knowledge
distillation (NCKD) is the primary reason why classical logits-based distillation is effective
but severely restricted, which coincides with the efficiency analysis of DKD (Zhao et al.,
2022). Furthermore, integrating two training strategies into one, namely TSKD, can further
strengthen the performance of knowledge distillation.

In this article, TSKD focuses on the logit output exchange of the target class between the
student and teacher models, which can effectively improve the distillation performance.
Apart from the target class, the top-k information predicted by the teacher model for each
segment of acoustic features is also a sort of valuable information (Reddi et al., 2021); it
reflects which k characters the acoustic features input should be transcribed into, from the
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Table 4 Knowledge distillation performance through swapping top-k predictive information.

Method SER (%)

Conformer Transformer
Teacher

2.89 4.12
Con_12_256 Con_12_512

Student
6.85 4.35

top-1 6.30 4.26
top-2 6.48 4.38
top-3 6.57 4.82
top-5 6.20 4.44
top-8 6.20 4.17
top-10 6.57 4.17
TSKD (Ours) 6.00 3.98

Notes.
Results of the proposed model are in bold.

Table 5 Performance comparison of various knowledge distillation methods in homogeneous archi-
tectures.

Method SER (%)

Conformer Transformer BiLSTM
Teacher

2.89 4.12 5.58
Con_12_256 Trans_12_512 BiLSTM_3_512

Student
6.85 11.85 7.32

classical KD (Hinton, Vinyals & Dean, 2015) 6.30 11.76 6.94
FitNets (Romero et al., 2015) 6.22 10.92 6.68
DKD (Zhao et al., 2022) 6.11 11.39 6.30
TSKD (Ours) 6.00 10.65 6.11

Notes.
Results of the proposed model are in bold.

perspective of the teacher model. On the basis of this assumption, another comparative
experiment was conducted to verify the effectiveness of the TSKD, with the predictive top-k
output of the teacher model for each segment as the information exchange. As shown in
Table 4, the experimental results show that exchanging top-k information is an effective
knowledge distillation approach, nevertheless, its performance does not surpass that of the
target class, i.e., TSKD.

To further validate the effectiveness of TSKD proposed in this article, several typical
knowledge distillation methods were implemented in homogeneous and heterogeneous
network structures. The experimental results are presented in Tables 5 and 6, respectively.
The results demonstrate that under these six homogeneous or heterogeneous architectures,
the TSKD enhanced the recognition accuracy of all student models by an average of 1.13%,
achieving the best distillation results in most experiments.

Specifically, the TSKD dramatically boosts the Transformer student model under
heterogeneous architectures, reducing the SER by 2.13%. A plausible explanation is that
the Conformer teacher model may enable the Transformer student model to capture
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Table 6 Performance comparison of various knowledge distillation methods in heterogeneous archi-
tectures.

Method SER (%)

Conformer Conformer Transformer
Teacher

2.89 2.89 4.12
Trans_6_1024 BiLSTM_3_256 Con_12_512

Student
11.57 7.32 4.35

classical KD (Hinton, Vinyals & Dean, 2015) 10.83 6.48 4.26
FitNets (Romero et al., 2015) 9.22 6.61 3.98
DKD (Zhao et al., 2022) 8.80 6.57 4.17
TSKD (Ours) 9.44 6.30 3.98

Notes.
The bold values indicate the best recognition performance in the corresponding column regarding SER (%).

Table 7 Parameter sensitivity experiment between TKD (λ1) and SKD (λ2) in Equation 2.

TKD (λ1) SKD (λ2) SER (%)

1.8 0.2 4.07
1.5 0.5 4.07
1.2 0.8 4.44
1 1 3.98
0.8 1.2 4.07
0.5 1.5 5.00
0.2 1.8 4.73

Notes.
The bold values indicate the best recognition performance in the corresponding column regarding SER (%).

local similarity features more effectively, particularly the long-distance context-dependent
local similarity features in the Mandarin ATC communications dataset. Notably, in the
heterogeneous network employing the Transformer teacher model to distill the Conformer
student model, the distillation performance of the student model exceeds that of the
teacher; it suggests that Conformer is superior to Transformer in terms of the model
architecture’s efficient feature extraction capabilities.

Parameter sensitivity experiment
To determine the relative importance between TKD and SKD, parameter sensitivity
experiments were conducted to explore the influence of the proportion of the two
components of TSKD on recognition accuracy. Table 7 presents the effect of varying
ratios of the two parts of the loss functions in Eq. (2) on the SER of the student model,
with Transformer and Con_12_512 serving as the teacher and student model, respectively.
The experimental results show that the optimal knowledge distillation effect of 3.98% is
achieved when the ratio of TKD to SKD is 1:1, indicating that the two parts of TKD and
SKD are of equal value for effective knowledge distillation.
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Table 8 Effect of beam search size on sentence error rate (SER (%)) and transcription time (ms).

Model Beam search size

1 3 5 10

BiLSTM_3_512 6.21/396 6.19/546 6.13/784 6.11/873
Trans_6_1024 9.13/609 8.86/760 8.80/1213 8.80/1531
Trans_12_512 10.90/316 10.71/418 10.68/591 10.65/984
Con_12_512 4.29/365 4.11/465 3.99/628 3.98/1034
Con_12_256 6.23/324 6.07/409 6.00/450 6.01/762

Notes.
The bold values indicate the best recognition performance in the corresponding column regarding SER (%).

Effect of beam search size on recognition accuracy and transcription
speed
The efficiency and accuracy of speech recognition depend on the beam search size as well
as the model capacity. Table 8 details the effect of beam search size on recognition accuracy
and transcription speed of the speech recognition student model variants. The results
indicate that expanding the beam search size generally decreases SER, considering the
models have a greater chance of predicting the optimal sequence of characters. However,
this enhancement comes at the cost of a substantial rise in transcription time.

Specifically, when the beam search size is less than 3, the SER decreases dramatically as it
increases. In contrast, when it is greater than 3, the SER decreases slowly and even increases
in certain instances. When the beam search size is 10, transcription takes approximately
twice as long as when it is 3. Nevertheless, the performance gain is limited to a maximum
of 0.13% (Con_12_512) absolute recognition accuracy. In a word, by restricting the beam
search size from 10 to 3, the average recognition speed can generally be doubled with
comparable model accuracy.

CONCLUSIONS
In this article, we propose a simple yet effective lightweight strategy for the ASR ofMandarin
ATC communications, named Target-Swap Knowledge Distillation (TSKD), which swaps
the logit output of the teacher and student models for the target class. TSKD consists of
two components: TKD and SKD. TKD enables the student model to focus on distilling
knowledge from non-target classes, while SKD mitigates the potential overconfidence of
the teacher model regarding the target class.

Extensive experiments are conducted to demonstrate the effectiveness of the proposed
TSKD in homogeneous and heterogeneous architectures. The experimental results indicate
that either TKD or SKD contributes to the efficacy of KD, with TKD presenting a more
significant benefit, validating that NCKD is the critical factor to the success of logits-based
knowledge distillation. In addition, the target class is superior to the top-k predictive
output for logit exchange. Moreover, the TSKD enhances the recognition accuracy of all
student models by an average of 1.13%, achieving the most effective distillation results in
most experiments. In particular, the optimal knowledge distillation performance of 3.98%
is achieved when the ratio of TKD to SKD is 1:1 in heterogeneous architectures from
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Transformer to Conformer. By restricting the beam search size from 10 to 3, the average
recognition speed can generally be doubled at the cost of negligible performance loss.

In summary, with the help of TSKD, the generated lightweight ASR model balances
recognition accuracy and transcription latency, allowing ATCOs and pilots sufficient time
to respond immediately and effectively, thereby reducing the potential flight safety risks
associated with miscommunications.
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