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ABSTRACT
The occurrence of faults in software systems represents an inevitable predicament.
Testing is the most common means to detect such faults; however, exhaustive testing is
not feasible for any nontrivial system. Software fault prediction (SFP), which identifies
software components that are more prone to errors, seeks to supplement the testing
process. Thus, testing efforts can be focused on such modules. Various approaches
exist for SFP, with machine learning (ML) emerging as the prevailing methodology.
ML-based SFP relies on a wide range of metrics, ranging from file-level and class-level
to method-level and even line-level metrics. More granularized metrics are expected
to possess a higher degree of micro-level coverage of the code. The Halstead metric
suite offers coverage at the line level and has been extensively employed across diverse
domains such as fault prediction, quality assessment, and similarity approximation for
the past three decades. In this article, we propose to decompose Halstead base metrics
and evaluate their fault prediction capability. The Halstead base metrics consist of
operators and operands. In the context of the Java language, we partition operators
into five distinct categories, i.e., assignment operators, arithmetic operators, logical
operators, relational operators, and all other types of operators. Similarly, operands
are classified into two classes: constants and variables. For the purpose of empirical
evaluation, two experiments were designed. In the first experiment, the Halstead base
metrics were used along with McCabe, Lines of Code (LoC), and Halstead-derived
metrics as predictors. In the second experiment, decomposed Halstead base metrics
were used along with McCabe, LoC, and Halstead-derived metrics. Five public datasets
were selected for the experiments. The ML classifiers used included logistic regression,
naïve Bayes, decision tree, multilayer perceptron, random forest, and support vector
machines. The ML classifiers’ effectiveness was assessed through metrics such as
accuracy, F-measure, and AUC. Accuracy saw an enhancement from 0.82 to 0.97,
while F-measure exhibited improvement from 0.81 to 0.99. Correspondingly, the AUC
value advanced from 0.79 to 0.99. These findings highlight the superior performance
of decomposed Halstead metrics, as opposed to the original Halstead base metrics, in
predicting faults across all datasets.
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INTRODUCTION
In the domain of software systems, the occurrence of faults is an unavoidable predicament.
The manifestation of software faults has the potential to generate significant losses and
catastrophic consequences. These faults are intimately linked with the security, reliability,
andmaintainability of the system. Testing is a crucial activity aimed at detecting the presence
of faults. Nonetheless, within software projects, it is an arduous and costly endeavor for
testers to find all the software faults. As a matter of fact, it has been reported that testing and
quality assurance consume roughly 35% of the total development cost (Capgemini Group,
2015). Furthermore, with the progressive increase in the complexity of software programs,
characterized by a vast number of lines of code, the occurrence of software faults becomes
inevitable (Zakari & Lee, 2019). It has been ascertained that faults in software systems are
not uniformly distributed, as reported by Sherer (1995). Certain modules in a software
product are more prone to carrying faults than others. Chappelly et al. (2017) found that
faults were present in only 42% of software modules in a software system. Moreover, a
separate study has indicated that approximately 70% of faults are discovered by testing
only 6% of the software modules (Abaei & Selamat, 2014). These results are consistent
with multiple studies conducted by Weyuker, Ostrand & Bell (2008) and Watanabe, Kaiya
& Kaijiri (2008). SFP is a formal process that involves the identification of fault-prone fp
module(s) within a software system or the estimation of the expected number of faults
in a particular software module (Rathore & Kumar, 2017b; Sandeep & Santosh, 2018). The
ability to detect faulty modules or estimate the number of faults in a module in a timely
manner is particularly beneficial for critical and strategic software systems as it helps to
reduce testing costs and improve the quality of the software (Sandeep & Santosh, 2018).
Furthermore, SFP facilitates the targeting of testing efforts towards fp modules, ultimately
leading to improved testing efficacy. The prediction of the number of faults is also valuable
as it provides a criterion for determining the sufficiency of testing. Additionally, SFP
contributes to the optimal utilization of resources in the software testing process (Seliya &
Khoshgoftaar, 2007). Typically, there exist three distinct methodologies that are employed
in SFP.
1. Experts’ opinion: The experts’ opinion on SFP emphasizes the necessity of a

comprehensive approach to data collection and analysis, which includes historical
fault data, code metrics, and information about the software development process.
They advocate for the use of software metrics to derive meaningful patterns and
relationships from the collected data, enabling the identification of potential fp areas
in software systems. Additionally, experts consider SFP as an integral part of a broader
software quality assurance process. They recommend the integration of fault prediction
with other quality assurance activities such as code reviews, testing, and software
maintenance, to ensure a holistic approach to software quality.

2. Statistical modeling: One of the key approaches to SFP is statistical modeling. This
refers to the use of statistical techniques and models to analyze software data and make
predictions about the occurrence of faults or defects in software systems. Statistical
modeling involves employing various approaches, such as regression analysis and
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time series analysis, to identify patterns, relationships, and trends in software metrics
or other relevant data. To build predictive models that can estimate the likelihood
of future software faults, statistical models are trained on historical software data.
This data includes software metrics, fault records, and other contextual information.
By learning patterns from this data, predictive models can be created to forecast the
occurrence of future software faults.

3. Machine learning: The utilization of machine learning algorithms for SFP is an
approach in which historical data related to software development and testing is
analyzed to identify patterns and relationships, and predictivemodels are constructed to
forecast potential faults. This approach involves applying machine learning techniques
to predict software faults or defects in a system.
Among them, machine learning (ML) is the most dominant method in use due to its

high accuracy, as noted in a previous study (Catal & Diri, 2009). The main requirement in
machine learning based SFP is to train a fault prediction model using a labeled dataset. The
dataset consists of features (software metrics) of software modules and a label (i.e., faulty or
non-faulty). Thesemetrics can be categorized as productmetrics or processmetrics. Process
metrics relate to the software development process. Examples of such metrics include
programmer experience level, defects found in reviews, and the amount of time spent
in reviews on a module. On the other hand, product metrics describe the characteristics
of the software product, such as its size, complexity, design features, performance, and
quality level. According to studies reported by Catal & Diri (2009), product metrics are
used in 79% of the SFP studies. The coverage of product metrics can be at the class level,
method level, or file level. Class-level metrics are used in object-oriented programming
due to the fact that the class concept represents the abstract characteristic of an object
in an object-oriented paradigm. Among the various metric suites used in the object-
oriented paradigm, the CK metric suite is the most frequently used, as reported in several
studies (Radjenović et al., 2013; Catal & Diri, 2009; Beecham et al., 2010; Gondra, 2008;
Malhotra, 2015; Chappelly et al., 2017;Nam et al., 2017; Li, Jing & Zhu, 2018). Other metric
suites specific to the object-oriented paradigm, such as MOOD (Abreu & Carapuça, 1994;
Lorenz & Kidd, 1994), are also available. Method-level metrics, such as Fan-in, Fan-out,
and McCabe, capture the method-level aspects of a software system. Furthermore, certain
metrics have the potential to compute line-level aspects of a software system, with the
Halstead metrics suite being one such metric. According to research, method-level metrics
are the most widely used (60%), followed by class-level metrics, which account for about
24% (Catal & Diri, 2009). A comprehensive discussion of software metrics is available
in Ghani (2014); Fenton & Bieman (2014); Abbad-Andaloussi (2023). Moreover, software
metrics have a strong relation with cognitive complexity, which interns leads to software
faults (Abbad-Andaloussi, 2023). It is worth noting that a more granular metric, such as
the Halstead metrics suite, can provide greater coverage of the code at a micro level. The
Halstead basemetrics are comprised of four fundamentalmetrics: total operators (N1), total
operands (N2), unique operators(n1), and unique operands (n2). According to Halstead’s
definition as outlined in Halstead (1972), ‘‘operands’’ refer to variables and constants,
while ‘‘operators’’ encompass all symbols, combinations of symbols, punctuation marks,
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arithmetic, keywords, special symbols, and function names. These base metrics are further
composed of operators and operands. In addition to these base metrics, seven derived
metrics have been developed, including length, level, difficulty, volume, effort, program
time, and error estimation.

Feature decomposition in machine learning pertains to the systematic procedure
of decomposing intricate input features into more straightforward and informative
representations. This endeavor encompasses the dissection of the features into a reduced
feature set (Caiafa et al., 2020). Through the extraction of actionable elements from
a column, novel features are generated, enabling machine learning (ML) algorithms
to achieve a deeper understanding of the data. Consequently, this enhancement in
comprehension leads to an improvement in model performance by unearthing latent
information (Jiawei, Jian & Micheline, 2000; Caiafa et al., 2020).

In this article, we present our proposal to decompose the Halstead base metrics and
assess their predictive performance in software fault prediction (SFP). Specifically, we
decompose the metric known as ‘‘number of operators’’ into its constituent types, such
as arithmetic operators, relational operators, logical operators, and so on. Similarly, the
metric ‘‘number of operands’’ is decomposed into various types, including variables,
constants, and others. Since datasets containing decomposed Halstead metrics were not
readily accessible, we opted to utilize five datasets for which the corresponding source code
was available. By parsing the source code using our customized parser, we were able to
extract the decomposed Halstead metrics from these datasets.

In recent years, the research community in the field of SFP has been predominantly
concentrated on the classification of fp and nfp modules, as highlighted in various
studies (Rathore & Kumar, 2017a; Catal, 2011). In our investigation, we employedmachine
learning algorithms based on classification, namely logistic regression, naïve Bayes, decision
tree, multilayer perceptron, random forest, and support vector machines.

The structure of the article is organized as follows. Firstly, the ‘‘Research Questions’’
section provides a concise overview of the research direction and objectives. It outlines
the specific questions that the study aims to address. The subsequent section, ‘‘Related
Work’’, briefly examines previous studies that have utilized the Halstead metrics suite in
SFP. This section provides context and highlights the existing literature and research in
this area. Moving forward, the ‘‘Decomposition of Halstead Base Metrics’’ section delves
into the concept of decomposition and its significance in relation to Halstead base metrics.
It expands on how decomposing these metrics can enhance understanding and analysis.
In the ‘‘Methodology’’ section, the article focuses on describing the specific methodology
employed for the empirical evaluation of Decomposed Halstead base metrics. This section
highlights the approach taken in the research process. The ‘‘Experimentation’’ section
is dedicated to detailing the experiments conducted as part of the study. It explains the
experimental setup, variables, and procedures employed to gather data and insights. Next,
the ‘‘Results and Discussion’’ section presents the findings derived from the materials and
methods discussed earlier. This section reports the results computed during the research
and provides a comprehensive discussion and analysis of these findings. To ensure the
validity of the results, the ‘‘Threat to Validity’’ section assesses potential limitations and
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threats to the validity of the study’s findings. It acknowledges any potential biases or
constraints that could affect the interpretation of the results. Finally, the ‘‘Conclusion
and Future Direction’’ section concludes the article by summarizing the key findings
and implications. It also suggests potential avenues for future research, offering possible
directions for further exploration and investigation in the field.

RESEARCH QUESTIONS
RQ 1: How can the Halstead base metrics be decomposed?
Rationale:This research question seeks to investigate the process andmethodology involved
in decomposing the Halstead base metrics. It aims to explore the potential approaches
and techniques that can be employed to break down the Halstead base metrics into its
constituent components or sub-metrics. By addressing this question, the study aims to
contribute to the understanding of the decomposition process and its implications for
improving the efficiency and effectiveness of the Halstead metrics suite in software analysis
and evaluation. The section ‘Decomposition of Halstead base metrics’ is dedicated to
answering this question.
RQ 2: What is the impact of decomposed Halstead base metrics in SFP?
Rationale:The research question aims to investigate the impact of the decomposedHalstead
base metrics in SFP. It encourages us to analyze and compare the results obtained using the
decomposed Halstead base metrics against the traditional Halstead base metrics, identify
suitable performance measures, consider the influence of different datasets, and explore
the applicability of the decomposed Halstead base metrics in various software engineering
tasks. The section ‘Results and Discussion’ is dedicated to answering this question.

RELATED WORK
Our research endeavors to conduct a comprehensive analysis of the decomposed Halstead
base metrics with the purpose of evaluating its efficacy in the realm of SFP. To accomplish
this, we have undertaken a literature review with two primary objectives. Firstly, we have
sought to investigate the prevailing trends in SFP, particularly in relation to Machine
Learning (ML) algorithms and datasets. This exploration has aided us in the selection of
appropriate datasets and ML algorithms for our experimental investigations. Secondly, we
have aimed to identify the commonly employed software metrics in conjunction with the
Halstead metrics suite for SFP. This objective holds significant importance as SFP typically
involves the integration of diverse software metrics with ML techniques for the prediction
of software faults. In order to achieve our first objective, we have conducted a review of
systematic literature reviews (SLRs) to promptly identify the current trends in SFP, with a
specific focus on datasets and ML algorithms. For our second objective, we have examined
studies in SFP that have exclusively utilized the Halstead metric suite within their metric
set for the prediction of software faults.

Catal & Diri (2009) emphasizes several key findings in SFP research, including the
widespread utilization of method-level metrics, the growing prevalence of public datasets,
and the increased adoption of machine learning techniques. These observations serve
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as important insights for advancing the field and enhancing the precision and efficacy
of SFP models. By recognizing and implementing these recommendations, researchers
and practitioners can contribute to the ongoing development and refinement of SFP
methodologies.

Catal (2011) presents a comprehensive survey of the software engineering literature on
SFP, covering both machine learning-based and statistical-based approaches. The survey
findings indicate that a significant proportion of the studies examined in this survey
concentrate on method-level metrics, with machine learning techniques being the primary
approach employed for constructing prediction models. Notably, the study suggests that
naïve Bayes emerges as a robust machine learning algorithm suitable for supervised SFP.

Hall et al. (2012) highlights the presence of exemplary fault prediction studies while
emphasizing the existence of unresolved inquiries concerning the development of efficient
fault prediction models for software systems. It asserts the necessity for additional studies
that conform to reliable methodologies and consistently document contextual details
and methodologies. The accumulation of a larger body of such studies would facilitate
meta-analysis, provide practitioners with the confidence to adeptly choose and implement
models in their systems, and ultimately augment the influence of fault prediction on the
quality and cost of industrial software systems.

Radjenović et al. (2013) contributes significant insights regarding the feasibility of
software measures for defect prediction. It presents recommendations to select metrics
and underscores the crucial role of realistic validation and industrial relevance in shaping
future research endeavors.

Malhotra (2015) review that focuses on evaluating the performance of machine learning
(ML) techniques in Software SFP. The review involves analyzing the quality of 64 primary
studies conducted between 1991 and 2013. The characteristics of these studies, including
metrics reduction techniques, metrics used, data sets, and performance measures, are
summarized. The performance of ML techniques in SFP is assessed by comparing them to
models predicted using logistic regression. Furthermore, the performance ofML techniques
is analyzed in comparison to other ML approaches.

Wahono (2015) analyzes 71 studies published between 2000 and 2013 to understand
trends, datasets, methods, and frameworks used in software defect prediction. The research
primarily focuses on estimation, association, classification, clustering, and dataset analysis.
Classificationmethods dominate the studies, accounting for 77.46%, followed by estimation
methods at 14.08%, and clustering/association methods at 1.41%. Public datasets are
utilized in 64.79% of the studies, while private datasets are used in 35.21%. The review
identifies seven frequently employed methods: logistic regression, naïve Bayes, k-nearest
neighbor, neural network, decision tree, support vector machine, and random forest.

Rathore & Kumar (2017b) provides an examination of SFP through a comprehensive
analysis of the existing literature. The review encompasses various aspects including
software metrics, fault prediction techniques, concerns related to data quality, and
evaluation measures for performance. By exploring these domains, the review sheds light
on the challenges and methodological issues that are inherent in this field. Existing studies
predominantly concentrate on object-oriented (OO) metrics and process metrics, and
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they primarily utilize publicly available data. Statistical techniques, particularly binary class
classification, are widely employed in these studies. A considerable amount of attention has
been given to tackling issues such as high data dimensionality and class imbalance quality.
Evaluation metrics like accuracy, precision, and recall are commonly used in assessing the
performance of these fault prediction techniques.

Caulo (2019) introduces a comprehensive taxonomy of metrics for SFP. The taxonomy
comprises a total of 526 metrics employed in research papers published from 1991 to
2017. The article emphasizes the significance of evaluating the efficacy of each metric in
SFP. Additionally, the author proposes to categorize the identified metrics based on their
co-linearity, thereby facilitating the exploration of relationships between different metrics
and their collective influence on SFP.

Pandey, Mishra & Tripathi (2021) presents a comprehensive analysis of machine
learning-based methods for SFP. Its primary objective is to explore and summarize the
current state of the field by examining a diverse range of ML techniques and approaches
utilized in SFP. The survey underscores the importance of leveraging machine learning for
fault prediction and acknowledges its potential to improve software quality and reliability.
It delves into various machine learning algorithms, including decision trees, support vector
machines (SVM), neural networks, and ensemble methods, and investigates their specific
applications in the context of fault prediction.

Pachouly et al. (2022) provides a comprehensive overview of software defect prediction
using artificial intelligence (AI). It covers four key aspects: datasets, data validation
methods, approaches, and tools. The review emphasizes the importance of high-quality
datasets and explores different validation methods to ensure accurate and reliable data. It
discusses various AI techniques and algorithms used in defect prediction, highlighting their
strengths and limitations. Additionally, it identifies and examines tools and frameworks
that aid in implementing and evaluating AI models for defect prediction.

A number of studies in the field of SFP have provided significant insights and
recommendations, contributing to the advancement of this field. These studies have
observed the widespread utilization of method-level metrics, the increasing availability of
public datasets, and the growing adoption of machine learning techniques. They have also
highlighted the concentration on method-level metrics and the effectiveness of algorithms
such as naïve Bayes and logistic regression for supervised SFP. In terms of experimentation,
the PROMISE and NASA MDP repositories are frequently used for conducting research.
These findings are valuable in assisting the selection of appropriate modeling algorithms
for our own experimentation. However, the articles to find out the accompanying metrics
of Halstead metrics suite in SFP have been discussed below along with the summary in
Table 1.

Chiu (2011) reported the classification accuracy of Halstead, when used with McCabe,
LoC, andBranch count. Themodeling has been performedusing four different classification
algorithms, i.e., LR, SVM, ANN, and DIN The experiment on KC2 dataset shows the best
results when used IDN for modeling.

Dejaeger, Verbraken & Baesens (2013) includes LR, RF, and the Bayesian Network (BN)
classifiers for modeling on 11 public datasets. Halstead metrics suite along with McCabe
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Table 1 Summarized view of studies using Halstead metric suite for SFP.

Article Metrics Dataset Technique Performance measure

Chiu (2011) Halstead, McCabe,
LOC, Branch Count

KC2 LR, SVM, ANN, In-
tegrated decision net-
work approach (IDN)

Acc, Pre, Recall, F-
measure

Dejaeger, Ver-
braken & Baesens
(2013)

Halstead, McCabe,
LOC

JM1, KC1, MC1, PC1,
PC2, PC3, PC4, PC5,
EC12.0a, EC12.1a,
EC13.0a

LR, RF, NB AUC, H-Measure

Arar & Ayan
(2015)

Halstead, McCabe KC1, KC2, JM1, PC1,
CM1

ANN, Artificial Bee
Colony (ABC)

AUC, Acc

Dhanajayan & Pil-
lai (2017)

Halstead, McCabe,
LOC, Branch Count

CM1 NB, RF, ANN, Spiral
life cycle model-based
Bayesian classification
(SLMBC)

False Negative Rate,
False Positive Rate,
Overall error rate

Bhandari & Gupta
(2018)

Halstead, McCabe,
LOC

JM1, PC1, KC1, jEdit RF, DT, NB, SVM,
ANN

Acc, F1-Score, precision,
recall, AUC

Shippey, Bowes &
Hall (2019)

Halstead, McCabe,
LOC, Branch Count

T2, T1, EJDT, Ar-
goUML, AspectJ,
JMOL, GenoViz,
K Framework, So-
cialSDK, JMRI, JBoss
Reddeer

NB, DT, RF. Recall, Pre

Ahmed et al. (2020) Halstead, McCabe,
LOC, Branch_Count,
Call_Pairs

PC1, PC2, PC3, PC4,
PC5, JM1, KC1, MC1,
Ecl2.0a, Ecl2.1a,
Ecl3.0a,

DT, NB, SVM, RF,
KNN, LR,

AUC

Cetiner & Sahingoz
(2020)

Halstead, McCabe,
LOC

PC1, JM1, KC1, CM1,
KC2

DT, NB, KNN, SVM,
RF, MLP, Extra Trees,
Ada boost, Gradient
Boosting, Bagging

Acc

Kumar, Kumar &
Mohapatra (2021)

Halstead, McCabe,
LOC

PC1, PC2, PC3, PC4,
CM1, JM1, KC3 DT,
CRV, BN, LS, LR

LR, NB, D,T MLP,
SVM, RF, LSSVM

Acc, AUC, F1-Score

and LoC has been used as an Independent variable (IV) The results, both in terms of the
AUC and H-measure have been recorded wherein NB outperforms.

Arar & Ayan (2015) utilized artificial neural networks (ANN) and the ABC optimization
algorithm to analyze five datasets from the NASA Metrics Data Program repository. The
classification approach was evaluated based on several performance indicators, including
accuracy, probability of detection, probability of false alarm, balance, Area Under Curve
(AUC), and Normalized Expected Cost of Misclassification (NECM). Halstead and
McCabe metrics were employed as independent variables (IV). The experimental findings
demonstrated the successful creation of a cost-sensitive neural network through the
application of the ABC optimization algorithm.

Dhanajayan & Pillai (2017) assess the SFP capability of Halstead, McCabe, LOC, and
Branch Count on CM1 data set using NB, RF, ANN, Spiral life cycle model-based Bayesian
classification (SLMBC). The performance has been evaluated using false negative rate, false
positive rate, and overall error rate.
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Bhandari & Gupta (2018) proposes a spiral life cycle model-based Bayesian classification
technique for efficient SFP and classification. In this process, initially, the independent
software modules are identified which are Halstead, McCabe, and LoC. The experiment
results show that RF achieves higher accuracy, precision, recall, probability of detection,
F-measure, and lower error rate than the rest of the techniques.

Shippey, Bowes & Hall (2019) employed the utilization of Abstract Syntax Tree (AST)
n-grams to detect characteristics of faulty Java code that enhance the accuracy of defect
prediction. Various metrics such as Halstead, McCabe, Lines of Code (LoC), and Branch
Count have been applied to train naïve Bayes, J489, and random forest models. The
outcome reveals a strong and statistically significant correlation between AST n-grams and
faults in certain systems, demonstrating a substantial impact.

Ahmed et al. (2020) proposed a software defect predictive development model using
machine learning techniques that can enable the software to continue its projected task.
Halstead, McCabe, LoC, Branch count and Call pairs have been used for modeling SVM,
DT, NB, RF, KNN, and LR on three defect datasets in terms of f1 measure. The experiment
results are in favor of LR.

Cetiner & Sahingoz (2020) conducted a comparative analysis of machine learning-based
software defect prediction systems by evaluating 10 learning algorithms including decision
tree, naïve Bayes, k-nearest neighbor, support vector machine, random forest, extra
trees, ada boost, gradient boosting, bagging, and multi-layer perceptron. The analysis
was performed on the public datasets CM1, KC1, KC2, JM1, and PC1 obtained from
the PROMISE warehouse. Halstead, McCabe, and LoC were utilized for modeling the
classification algorithms. The experimental findings demonstrated that the Random Forest
(RF)model exhibited favorable accuracy levels in software defect prediction, thus enhancing
the software quality.

Kumar, Kumar & Mohapatra (2021) aimed to create and compare different SFP models
using Least Squares Support Vector Machine (LSSVM) with three types of kernels: Linear,
Polynomial, and Radial Basis Function (RBF). These models aim to classify software
modules as either faulty or non-faulty based on various software metrics such as Halstead
software metrics, McCabe, and Lines of Code (LoC). To assess the impact of the proposed
models, experiments are conducted on fifteen open source projects. The performance of the
models is evaluated usingAccuracy, F-measure, andROCAUCasmetrics. The experimental
findings indicate that the LSSVMmodel with a polynomial kernel outperforms the LSSVM
model with a linear kernel, and performs similarly to the RBF kernel. Additionally, the
models developed using LSSVM demonstrate improved accuracy in SFP compared to
commonly used models in the field.

The studies have explored the use of different classification algorithms and metrics
along with Halstead for SFP. The studies utilized Halstead, McCabe, LoC, and Branch
count metrics as independent variables IV for modeling. LR, MLP, RF, naïve Bayes
(NB), Decision Tree classification (SLMBC), and LSSVM with Linear, Polynomial, and
Radial Basis Function (RBF) kernels were among the most algorithms used. Performance
evaluation metrics included AUC, accuracy, precision, recall, F-measure, overall error rate,
and ROC AUC.
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DECOMPOSITION OF HALSTEAD BASE METRICS
In the ML domain, feature decomposition is an activity to break down a feature into
smaller features. The decomposition enables ML algorithms to comprehend features and
thus improves model performance by uncovering potential information (Caiafa et al.,
2020). In this article, we decompose the Halstead base metrics by breaking them down into
smaller metrics. The Halstead metric suite comprises four base metrics and seven derived
metrics which are derived out of the base metrics. The four base metrics are Total operators
(N1), Total operands (N2), Unique operators (n1), and Unique operands (n2). Likewise,
these base metrics are composed of operators and operands. According to the definition
of Halstead, the software program is a composition of tokens. Each token can either be an
operator or an operand. Operand includes variables and constants. While all other tokens
are included in operators that can safely be extracted from various languages (Halstead,
1972; Govil, 2020). The following subsection would elaborate on the decomposition of
Halstead operators and Halstead operands.

Decomposition of Halstead operators
According to the sources (Python Academy, 2020; Pratt, 2021; Feroz, 2019; Gustedt, 2019;
Gvero, 2013), it can be stated that the definition ofHalstead operator ismore comprehensive
than that of the operators defined in conventional programming languages such as C, C++,
Java, and others. Halstead operators include not only the commonly recognized operators
such as brackets, semicolon, colon, and punctuation marks but also function names and
other elements that are not considered operators in conventional languages. It should also
be noted that there are some operators present in some programming languages that are
not present in others. For instance, the increment/decrement operators are present in C,
C++, Java, and PhP but are not present in Python. Therefore, it can be concluded that
while some Halstead operators are recognized as operators by all major programming
languages, others are not defined as operators by all languages or only by a few languages.
Consequently, five overarching categories can be discerned that are universally applicable
to all major programming languages.
1. Assignment operators, are operators that are explicitly declared as assignment

operators in conventional programming languages. The assignment operation can
be performed explicitly using the = operator, or in combination with other operators
such as += and −=, or sometimes implicitly using operators like −− and ++.

2. Arithmetic operators, are a class of operators that are conventionally recognized as
such in programming languages. These operators, such as addition, subtraction, and
multiplication, can be explicitly declared using symbols like +and−, and are commonly
used in mathematical expressions.

3. Logical operators are formally defined and recognized in conventional programming
languages. The conjunction operator, denoted by && (AND), and the disjunction
operator, denoted by || (OR), are examples of such operators.

4. Relational operators are defined as binary operators in traditional programming
languages and satisfy the properties of reflexivity, anti-symmetry, and transitivity, such
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Table 2 Halstead operators with their corresponding decomposed operators.

Base metrics Decomposedmetrics Description

As Total assignment operators
A Total arithmetic operators
R Total relational operators
Log Total logical operators

Total
operators
(N1)

O Total operators other than assignment, arithmetic,
relational, and logical operators

as Unique assignment operators
a Unique arithmetic operators
r Unique relational operators
log Unique logical operators

Unique
operators
(n1)

o Unique operators other than assignment, arithmetic,
relational, and logical operators

as the less than or equal to operator (<=) and the greater than or equal to operator
(>=).

5. Others The remaining Halstead operators include items such as brackets and function
names, among others.
Table 2 presents the Halstead operators along with their corresponding decomposed

metrics. For example, if A represents the total operator, it can be decomposed into
a1,a2,...,an such that the value of A equals the sum of the values of the decomposed
operators a1,a2,...,an. In this article, we present a demonstration of the Decomposed
Halstead base metric utilizing the Java programming language. Within Java, the operators
that are declared can be categorized into the five previously discussed categories. An
overview of the Java operators, along with their corresponding proposed categories, is
provided in Table 3. Furthermore, we reiterate that the objective of this article is to
showcase the application and effectiveness of the Decomposed Halstead base metric using
Java.

Decomposition of Halstead operands
In the realm of traditional computer programming, the term ‘‘operand’’ is utilized to
describe any object that possesses the capability to be manipulated. Halstead’s operands
can be decomposed into two distinct and mutually exclusive types: variables and constants.
A variable refers to a data item whose value can be modified during the execution of
a program. Conversely, a constant is a literal utilized to represent a fixed value within
the source code. To illustrate, consider the following code snippet written in the Java
programming language:

1. int x = 5;

2. final int y=10;

3. char z=‘b’;

x, y, and z are variables, while 5, 10 and ‘b’ are constants, rest of the tokens i.e., int,
final, char, =, and ;(semicolon) are all operators. Keeping in view such decomposition,
if B represents the total operands, it can be decomposed into b1,b2,...,bn such that the
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Table 3 Java operators and their category.

Category Operator Description

Assignment = Simple assignment operator
+= Addition and assignment operator
−= Subtraction and assignment operator
∗= Multiplication and assignment operator
/= Divide and assignment operator
%= Modulus and assignment operator
&= Bitwise and assignment operator
ˆ= Bitwise exclusive OR and assignment operator
| = Bitwise inclusive OR and assignment operator
<<= Left shift and assignment operator
>>= Right shift and assignment operator
++ Increment operator
−− Decrement operator

Arithmetic + Additive operator
− Subtraction operator
∗ Multiplication operator
/ Division operator
% Remainder operator
+ Unary plus operator
− Unary minus operator

Logical && Conditional-AND
|| Conditional-OR
! Logical complement operator

Relational == Equal to
> Greater than
! = Not equal to
>= Greater than or equal to
< Less than
<= Less than or equal to

Others Function name Any function name in a program
Class name Any class name in a program
{,}, [,] Brackets
int, float, double, etc. Data types
; , Special symbols

value of B equals the sum of the values of the decomposed operands b1,b2,...,bn. The
Halstead operands along with corresponding decomposed metrics are shown in Table 4.

The decomposition of operators and operands is a universally applicable principle that
encompasses all prominent programming languages, such as Java, C, C++, and others.
This decomposition entails the systematic categorization of operators and operands into
distinct and non-overlapping classes, as depicted in Fig. 1.

We employ Java projects as a means of experimentation in this study. In order to
enhance comprehension regarding the decomposition of operators and operands, we
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Table 4 Halstead operands with their corresponding decomposed operands.

Base metrics Decomposedmetrics Description

Total operands (N2) Var Total variables
C Total constants

Unique operands (n2) var Unique constants
c Unique variables

Figure 1 Hierarchy of decomposed operators and operands.
Full-size DOI: 10.7717/peerjcs.1647/fig-1

present a concise illustrative Java code snippet, as depicted in Fig. 2. Table 5 provides
a comprehensive display of the assigned values for each token, corresponding to their
respective decomposed operator or operand class.

METHODOLOGY
Our objective is to evaluate the impact of the decomposed Halstead base metric in SFP.
To achieve this goal, we have designed a methodology as depicted in Fig. 3, which would
steer the execution of our experiment, elaborated in the next section. In the proposed
methodology, our initial step involves the selection of case studies. The optimal choice
for a case study would encompass a publicly available dataset along with accompanying
source code. These case studies will serve as the foundation for the development of three
distinct datasets. The first dataset, denoted as ‘‘Dataset-1’’, will encompass the Halstead
metric suite as well as frequently reported valuable metrics utilized in SFP, such as Lines of
Code (LoC) andMcCabe. The second dataset, referred to as ‘‘Dataset-2’’, will consist of the
same software metrics employed in ‘‘Dataset-1’’, with the exception of the Halstead base
metrics. To obtain the Decomposed Halstead base metrics, the source code of the selected
case studies will be parsed using a metrics extractor. The parsed Decomposed Halstead base
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Figure 2 Sample code for Decomposed Halstead base metrics demonstration.
Full-size DOI: 10.7717/peerjcs.1647/fig-2

Table 5 Metrics count for sample code.

Halstead Decomposed Halstead Tokens

As: 22 =: 13 ++:9
A: 6 -: 2 +: 4
R: 7 <: 6 <=: 1
Log: 1 &&: 1

N1: 142

O: 106 void: 1 mrge: 1 (: 7 ): 7 int: 7 {: 6 {: 6 ,: 8 ;: 22 [: 17 ]: 17 for:
2 while: 3 if:1 else: 1

as: 2 =: 13 ++:9
a: 2 -: 2 +: 4
r: 2 <: 6 <=: 1
log: 1 &&: 1

n1: 22

o: 15 void: 1 mrge: 1 (: 7 ): 7 int: 7 {: 6 {: 6 ,: 8 ;: 22 [: 17 ]: 17 for:
2 while: 3 if:1 else: 1

Var: 64 beg: 4 mid: 4 end: 3 I: 12 j: 12 k: 9 n1: 5 n2: 5 LeftArray: 5
RightArray: 5

N2: 66
C: 2 1: 1 0: 1
var: 10 beg: 4 mid: 4 end: 3 I: 12 j: 12 k: 9 n1: 5 n2: 5 LeftArray: 5

RightArray: 5
n2: 12

c: 2 1: 1 0: 1

metric will then bemergedwith ‘‘Dataset-2’’, resulting in the creation of a new dataset called
‘‘Dataset-3’’. This new dataset, ‘‘Dataset-3’’, will encompass both the decomposed Halstead
base metric and the SFP metrics selected in ‘‘Dataset-2’’. Subsequently, a machine learning
algorithm will be employed to model the relationship between the independent variable

Khan and Nadeem (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1647 14/33

https://peerj.com
https://doi.org/10.7717/peerjcs.1647/fig-2
http://dx.doi.org/10.7717/peerj-cs.1647


Source code of the 
selected case studies

Metric
Extraction

Dataset 2

Public SFP dataset of the 
Selected casestudies

Halstead
Metrics Suite,
LoC, McCabe

MLML

Comparison

ML Model 2ML Model 1

McCabe, LoC
Derived Halstead

Dataset 1

Merging

Decomposed
Halstead Base

Metrics

Dataset 3
Decomposed

 Halstead 
Metric

Selection of 
Case Study 

Phase

Dataset
Development

Phase

Selection of 
ML Algorithm

Phase

Selection of 
Performance 
measure for  
Comparison 
and Analysis

Figure 3 Methodology.
Full-size DOI: 10.7717/peerjcs.1647/fig-3

(IV) and the dependent variable (DV) in both ‘‘Dataset-1’’ and ‘‘Dataset-3’’. Finally, the
performance of ‘‘MLModel-1’’ and ‘‘MLModel-2’’ will be compared and analyzed utilizing
various performance measures. In summary, the methodology comprises the following key
phases:
1. Selection of case studies
2. Datasets’ development
3. Selection of ML algorithm
4. Selection of performance measures for comparison and analysis

Selection of case studies
In this phase, a selection of case studies would be made, upon which subsequent processing
shall be performed. It is widely acknowledged that ML-based empirical studies exhibit a
high degree of bias due to the quality of data. This is largely attributed to the inadequacy
of data and the absence of systematic data collection procedures. It is noteworthy that
SFP has been executed using a diverse range of datasets, which may be classified into four
categories based on their availability, namely: private, partially private, partially public, and
public, as per Radjenović et al. (2013). In private datasets, neither the source code nor the
fault information is provided, rendering studies based on these datasets non-repeatable.
Partially private datasets offer access only to source code and/or metrics values, without
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Table 6 Types of datasets w.r.t. availability of metrics values, fault information, and source code.

Type of dataset Metrics’ values Fault information Source code

Private 7 7 7

Partially private 3 3 7

Partially public 7 3 3

Public 3 3 3

fault information. Partially public datasets typically provide access to both source code
and fault data, but not metrics values, which must be extracted from the source code
and mapped to fault data from the repository (Radjenović et al., 2013). Public datasets, on
the other hand, refer to datasets in which metrics values, source code, and fault data are
publicly available for all modules in a software system. Table 6 illustrates these five dataset
types.

Since we aim to evaluate the performance disparity between Halstead base metrics and
Decomposed Halstead base metrics, a suitable dataset for this task would be one that is at
least partially publicly accessible.

Datasets’ development
After the identification of the case studies during the phase of case study selection, the
subsequent task is dataset development. As previously discussed, the appropriate case
studies for our experiment should possess publicly available software metrics datasets
and their corresponding source code. In order to fulfill this requirement, we proceed to
construct Dataset-1 using the chosen public dataset, specifically selecting the Halstead
metric suite along with McCabe and LoC metrics. For the development of Dataset-2, we
select all SFP metrics from the public dataset, which were previously included in dataset-1,
excluding the Halstead base metrics. There is no publicly available dataset containing
information on decomposed Halstead base metrics. Therefore, we will employ a metrics
extractor on the source code of selected case studies to obtain these metrics. Existing
metrics extractors have been examined for the purpose of calculating the decomposed
Halstead base metrics. However, it has been noted that these existing extractors possess
three primary limitations:
1. The extractors have a lack of extensibility and, hence, may not be used to integrate with

existing frameworks/extractors.
2. The extractors are metrics-specific and may not extract new metrics. Hence they are

not easy to adapt to other metrics.
3. The extractors have an ambiguous interpretation of some metrics. Hence, more than

one variant of the same metric exists which is reported in Nilsson (2019).
Taking into consideration the constraints and requirements of our experimentation,

it is imperative to undertake the development of a custom-built extractor that possesses
the capability to extract Halstead base metrics from the given source code. The primary
function of our extractor involves parsing the source code of the designated case studies
with the objective of extracting decomposed Halstead base metrics. Throughout the
process of parsing the Decomposed Halstead metrics suite, a hierarchical tree, as illustrated
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in Fig. 1, will be employed. Where program statements will first be split into tokens, and
then classified into operands and operators. The process will be sequential, with operands
containing variables and constants being considered first, followed by operators. Within
the operators, assignment, arithmetic, logical, and relational operators will be identified,
while the remaining operators will be categorized as ‘‘others’’.

Once the decomposed Halstead base metrics have been extracted, they are to be merged
withDataset-2 in a formalmanner. During the parsing phase, it is imperative to preserve the
information pertaining to the ‘‘Complete path of the source code file’’ as well as the ‘‘Name
of Class’’ contained within that file. This information plays a crucial role in distinguishing
between similar class names across multiple files and different classes within the same file.
Dataset-2 also encompasses this essential information. The merging process culminates
in the creation of Dataset-3, which encompasses the parsed Decomposed Halstead base
metrics and the specifically chosen SFP metrics from Dataset-2. Subsequently, Dataset-1
and Dataset-2 will serve as inputs to the machine learning algorithm for the purposes of
model construction and the execution of SFP.

ML algorithm
Once the datasets have been developed, it is important to determine the suitable ML
algorithm for modeling. ML algorithms offer a range of options for various tasks. Even
in SFP literature, various ML algorithms have been employed with varying performance.
Linear regression and logistic regression are used for regression and binary classification,
respectively. Decision trees create a tree-like model for decision-making, while random
forests combine multiple decision trees. SVM finds hyperplanes for class separation, and
naïve Bayes applies probabilistic reasoning. K-Nearest Neighbors classifies instances based
on similarity, and neural networks learn complex patterns. Gradient boosting combines
weakmodels, while clustering algorithms group similar instances.Dimensionality reduction
techniques reduce features, and reinforcement learning involves agents maximizing
rewards. These algorithms represent a subset of ML methods, and selecting the right one
depends on the specific task and data constraints.

Selection of performance measures for comparison and analysis
The results of ML models are assessed by some performance measures. In classification,
various performance measures are employed based on the task and data. Accuracy
calculates the ratio of correct predictions, while precision focuses on the accuracy of
positive predictions. Recall measures the proportion of true positive predictions out of
all actual positives. The F1 score balances precision and recall. Specificity measures true
negatives, important in reducing false alarms. AUC-ROC evaluates binary classifiers’ ability
to rank instances correctly.

EXPERIMENTATION
Considering the methodology, our experiment encompasses four fundamental
components, namely, case studies, sets of variables (datasets), modeling algorithms,
and analysis of ML models using performance measures.
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Figure 4 Experimental design.
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1. Regrettably, the public datasets do not encompass any information pertaining to the
Decomposed Halstead base metrics. As a result, we undertake the task of constructing
datasets by meticulously extracting the requisite metrics and bug-related data from
the source code. Consequently, we carefully select five software projects, as expounded
upon in the ‘Case Study’ section, which possess both the source code and the necessary
fault information.

2. The evaluation of the Decomposed Halstead base metrics has been carried out through
the implementation of two experiments. Experiment 1 encompasses theHalsteadmetric
suite, coupled with the McCabe and Loc metrics. On the other hand, experiment 2
comprises the Decomposed Halstead base metrics, along with the Halstead derived,
McCabe, and LoC metrics.

3. According to the literature review, the commonly employed ML algorithms are
identified, while the Halstead metric suite is utilized within the SFP context. These
aspects are further expounded upon in ‘ML modeling’ section.

4. The evaluation of the results has been carried out by using Accuracy, F-measure, and
AUC.
The graphical representation of our experiments is shown in Fig. 4.

Case study
For experimentation purposes, we selected the following five datasets for their public
source code along with fault information.
1. Apache Lucene 2.4 (lucene.apache.org)
2. Eclipse equinox framework 3.4 (www.eclipse.org/equinox/)
3. Eclipse JDT Core 3.4 (www.eclipse.org/jdt/core/)
4. Eclipse PDE UI 3.4.1 (www.eclipse.org/pde/pde-ui/)
5. Mylyn 3.1 (www.eclipse.org/mylyn/)
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These object-oriented based projects are developed in Java and are publicly available.
Tóth, Gyimesi & Ferenc (2016) assigned fault labels using a bug tracking system.

Apache Lucene is a Java-based text search engine library that offers exceptional
performance and comprehensive features. It is well-suited for a wide range of applications
that necessitate full-text search capabilities, particularly those that span multiple platforms.
Apache Lucene is an open-source project that can be freely downloaded.

Eclipse JDT Core is a component of the Eclipse Java Development Tools (JDT) project.
JDT is a collection of plug-ins for the Eclipse Integrated Development Environment (IDE)
that provides a comprehensive set of features for Java development. JDT Core specifically
focuses on the core functionality of Java development within Eclipse. It provides the
infrastructure and APIs necessary for working with Java source code, such as parsing,
analyzing, and manipulating Java code. It forms the foundation for many Java-related
features in Eclipse, including code editing, refactoring, debugging, and code generation.

Eclipse PDE UI provides a comprehensive set of tools to create, develop, test, debug and
deploy Eclipse plug-ins. PDE UI also provides multi-page editors that centrally manage all
manifest files of a plug-in or feature. It carries new project creation wizards to create a new
plug-in, fragment, feature, feature patch, and update sites.

Eclipse equinox is an implementation of the OSGi core framework specification, a set
of bundles that implement various optional OSGi services and other infrastructure for
running OSGi-based systems. It is responsible for developing and delivering the OSGi
framework implementation used for all of Eclipse. The Equinox OSGi core framework
implementation is used as the reference implementation. The goal of the Equinox project
is to be a first-class OSGi community and foster the vision of Eclipse as a landscape of
bundles.

Mylyn is the task and application life cycle management framework for Eclipse. It
provides a revolutionary task-focused interface and a task management tool for developers.

Set of variables
In our experimentation, the DV is a binary dichotomous fault label, i.e., fp and nfp. Since
the selected dataset contains the numerical fault label, we transformed it into binary using
the following rulings shown in Eq. (1).

Label =

{
fp No.of faults> 0

nfp otherwise
(1)

The distribution of fault/fault-free is shown in Fig. 5.
The IV comprise five metrics sets, i.e., Halstead base metrics, Halstead derived metrics,
LoC metric suite McCabe metric suites, and Decomposed Halstead base metrics. These
metrics set are placed in three distinct sets as follows:

Set 1: {Halstead base metrics}
Set 2: {McCabe, LoC , Halstead derived metrics}
Set 3: {Decomposed Halstead Base Metrics}

Khan and Nadeem (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1647 19/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1647


Figure 5 Distribution of fault and fault free in the five datasets.
Full-size DOI: 10.7717/peerjcs.1647/fig-5

Table 7 Metrics in set-1.

Metrics set Metric name Short form Description

Halstead- OPERATORS N1 Total operators
Base- OPERANDS N2 Total operands
Metric UNIQUE OPERATORS n1 Unique operators

UNIQUE OPERANDS n2 Unique operands

The first experiment comprises the elements of Set-1 and Set-2, while the second
experiment comprises the elements of Set-2 and Set-3. The detailed description and their
distribution in the experiments are shown in Tables 7, 8 and 9.

Data preprocessing
The data preprocessing comprises the following two steps
1. Conversion of numerical fault label to binary fault label as shown in Eq. (1).
2. Assessing the validation of data. In this activity, we analyse and ensure the absence of

missing values, out-of-range values, Null values, invalid values (like negative in total
operators), etc.

ML modeling
The literature review section highlights the frequent utilization and effectiveness of six
ML algorithms, establishing a foundation for incorporating these algorithms into our
experiments as well.
1. Logistic regression model is a statistical approach that estimates the likelihood of

one event occurring, given two possible outcomes. It achieves this by expressing the
log-odds (logarithm of the odds) of the event as a linear combination of one or
more independent variables (IV). Specifically, in binary logistic regression, there is a
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Table 8 Metrics in set-2.

Metrics set Metric name Short form Description

Assignment operators As Total assignment operators
Unique assignment operators as Unique assignment operators
arithmetic operators A Total arithmetic operators
Unique arithmetic operators a Unique arithmetic operators

Decomposed Relational operators R Total relational operators
Halstead- Unique relational operators r Unique relational operators
Base- Logical operators Log Total logical operators
Metrics Unique logical operators log Unique logical operators

Other operators O Total operators other than
arithmetic, logical, and relational
operators

Unique other operators o Unique operators other than
arithmetic, logical, and relational
operators

Variables Ver Total variable
Unique variables ver Unique variable
Constants C Total constant
Unique constants c Unique constant

Table 9 Metrics in set-3.

Metrics set Metric name Short form Description/Formula

Halstead Halstead length N N= N1 + N2
derived Halstead level L L= V*/V

Halstead difficulty D D= 1/L
Halstead volume V V= N * log2(n1+n2)
Halstead effort E E= V/L
Halstead prog time T T= E/18
Halstead error est B B= E2/3/1000

LoC Loc total LoC The total number of lines for a given
module

Metrics Loc executable LoEx The number of lines of executable
code for a module (not blank or
comment)

Loc blank LoB The number of blank lines in a
module

Loc comments LoCm The number of lines of comments in
a module

Loc code & comment LoCoCm The number of lines which contain
both code and comment in a module

McCabe Cyclomatic complexity v(G) v(G)= e - n + 2
Metrics Design complexity iv(G) The design complexity of a module

Essential complexity ev(G) The essential complexity of a module
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solitary dependent variable that takes on binary values, labeled as ‘‘0’’ and ‘‘1’’, and is
represented by an indicator variable. Meanwhile, the IV can be a continuous variable.

2. Multilayer perceptron (MLP) is a fully connected class of feed-forward artificial neural
network (ANN). An MLP consists of at least three layers of nodes: an input layer, a
hidden layer, and an output layer. Except for the input nodes, each node is a neuron
that uses a nonlinear activation function. MLP utilizes a supervised learning technique
called backpropagation for training. Its multiple layers and non-linear activation
distinguish MLP from a linear perceptron. It can distinguish data that is not linearly
separable. MLP is divided into an input layer, an output layer and a hidden layer. The
information is collected through the input layer, and the data is input into the hidden
layer for analysis and processing. This study uses an MLP model with a single hidden
layer, and the initial learning rate is 0.3. Pinkus (1999).

3. Naïve Bayes classifiers employ a probabilistic approach to classification. They exhibit
excellent scalability, with the number of parameters directly proportional to the
number of variables (features/predictors) in the learning problem. Training using
maximum-likelihood estimation can be efficiently achieved through a closed-form
expression, resulting in linear time complexity, unlike the computationally intensive
iterative approximation methods employed by various other classifiers. Garg (2013).

4. Decision trees categorized instances through the arrangement of their feature values in
a process known as classification. This involves using a decision tree where each node
represents a feature in the instance being classified, and each branch corresponds to a
possible value of that node. Starting from the root node, the instances are classified and
sorted based on their feature values. Decision tree learning, which is a technique utilized
in datamining andmachine learning, makes use of a decision tree as a predictivemodel.
It connects information about an item to draw conclusions about the item’s target
value. Post-pruning techniques are commonly employed to improve the performance
of decision tree classifiers. These techniques involve evaluating the decision tree’s
performance using a validation set and removing any node that does not contribute
significantly. The removed node is then assigned the most frequent class among the
training instances associated with it. In this study, a model based on decision trees is
employed, using the C5.0 algorithmwith aminimum number of leaf nodes. This choice
addresses the problem of excessive branches that can occur with the ID3 algorithm.
Furthermore, during the construction of the decision tree, pruning is performed to
discretize continuous data, with the limit set to the maximum number of leaf nodes.

5. Random forests an ensemble learning technique used for classification, consists
of multiple decision trees whose outputs are combined through majority voting.
For regression tasks, the ensemble returns the mean or average prediction from
the individual trees. Random forests typically surpass decision trees in terms of
performance. Biau & Scornet (2016).

6. Support vector machines (SVMs) are closely connected to classical MLP neural
networks. SVMs are centered around the concept of a margin, which exists on either
side of a hyperplane that separates two classes of data. By maximizing this margin, the
goal is to create the largest possible distance between the separating hyperplane and
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the instances on both sides, which has been proven to reduce the upper bound on the
expected generalization error (Kotsiantis, 2007). The SVM-based model utilizes the
Gaussian inner product as the kernel function, known as SVM-Kernel. By iteratively
solving sub-problems, the prediction of large-scale problems is ultimately achieved. In
this particular model, the gamma parameter is set to 0.024.

y(x)=wT8(x)+ c (2)
where x is the input vector and y is the output vector. φ(x) is a polynomial kernel

function. w and c represent the adjusted weight vector and scalar threshold values,
respectively.

Evaluation measure
For evaluation purposes, we take three performancemeasures for the assessment of models.
These performance measures are Accuracy, AUC, and F-measure (Rizwan, Nadeem &
Sindhu, 2019).
1. Accuracy shows the correct predictions. It is a goodmeasure when the classes in the test

dataset are nearly balanced. It measures the ability of a classifier in correctly identifying
all samples, no matter if it is positive or negative.

Accuracy =
TP+TN
P+N

(3)

2. The F-measure is a harmonic mean of precision and recall. F-measure can
mathematically be written as follows

Fmeasure=
2×Precision×Recall
Precision+Recall

(4)

3. The AUC stands for Area under the Receiver Operating Characteristics Curve, which
is a curve that represents the probability and measures the level of separability. It
indicates the model’s ability to differentiate between classes. AUC values range from 0
to 1. A value of 0.0 for AUC indicates 100% incorrect prediction, while a value of 1.0
represents 100% accurate prediction.
The performance of the prediction models is validated using 10-fold cross-validation.

During cross-validation, the input dataset is divided into 10 equal-sized folds in a random
manner. Out of these, nine folds are utilized for training the model, while the remaining
fold is used for testing the model. This process is repeated 10 times, with each iteration
excluding a different fold for testing purposes.

RESULTS AND DISCUSSION
In this section, we shall present the findings of our two distinct experiments, namely
Experiment-1 and Experiment-2. The results of both experiments have been evaluated
based on three performance metrics, namely Accuracy, F-measure, and AUC. Notably,
the outcomes obtained in Experiment-2 are observed to be superior to those reported in
Experiment-1. This clearly indicates a significant improvement in the performance of fault
prediction using Decomposed Halstead base metrics. In terms of algorithms SVMperforms
well in three datasets, i.e., Apache Lucene, Eclipse JDT Core, and Equinox framework. The
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obvious reason is the clear margin of separation between classes in these datasets. Along
with high dimensional spaces and the least difference in the number of dimensions and the
number of samples. NB performs well in the rest of two datasets, i.e., Eclipse PDE UI and
Mylyn. This is due to the reason that there exists the least correlation between features.
Moreover, there are fewer training examples, i.e., less than 1,000 samples in Eclipse PDE
and less than 1,400 samples in Mylyn. Likewise, there exists well-formed discretization of
our numerical data in these two datasets, which makes NB perform better than the rest
of the algorithms. The results have been shown in three different ways, i.e., weightage of
individual metric with information gain (Table 10), detail results (Tables 11, 12 and 13),
and difference in the results (Figs. 6, 7 and 8).

The data presented in Table 10 reveals distinct patterns in terms of information
gain among various metrics. Notably, both the McCabe and LoC metrics stand out by
demonstrating notably better information gain compared to the others. Concurrently, the
Halstead decomposed metrics also showcase a relatively high level of information gain,
capturing attention. In contrast, the metrics derived from the Halstead approach exhibit
the lowest information gain among all the metrics under consideration. This observation
aligns closely with the consensus within the broader research community. It underscores
the idea that metrics such as McCabe, LoC, and the decomposed Halstead metrics play a
significant role in providing valuable information and meaningful insights. Meanwhile,
metrics stemming from the Halstead-derived methods appear to offer comparatively
limited utility when it comes to facilitating substantial information gain.

In Tables 11, 12 and 13 the first column identifies the datasets, and the subsequent
columns present the algorithms used for model building in Experiment 1 and 2. Each row
contains the result of the datasets in the corresponding algorithm. The maximum Accuracy
achieved, according to Table 11, 0.97 in Apache Lucene 2.4, 0.89 in Eclipse equinox
framework 3.4, 0.97 in Eclipse JDT Core 3.4 using SVM, 0.98 in Eclips PDE UI 3.4.1,
and 0.95 in Mylyn 3.1 has been observed using NB. The maximum F-measure achieved,
according to Table 12, 0.96 in Apache Lucene 2.4, 0.98 in Eclipse equinox framework 3.4,
0.99 in Eclipse JDT Core 3.4 using SVM, 0.98 in Eclips PDE UI 3.4.1 and 0.99 in Mylyn 3.1
using NB have been observed. The maximum AUC achieved, according to Table 13, 0.98
in Apache Lucene 2.4, 0.97 in Eclipse equinox framework 3.4, 0.95 in Eclipse JDT Core 3.4
using SVM, 0.96 in Eclipse PDE UI 3.4.1 and 0.99 in Mylyn 3.1 using NB.

The difference in the performance observed in the two experiments is shown in figures,
i.e., Figs. 6, 7 and 8. The bars in the positive axis indicate the improvement achieved in
Experiment-2.

In terms of Accuracy, the minimum difference is 0.025, which has been observed in the
Eclipse equinox dataset using MLP. Whereas the maximum difference has been observed
in the Eclipse PDE dataset, i.e., 0.31 using DT.

Khan and Nadeem (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1647 24/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1647


Table 10 Information gain of the metrics in the datasets.

Metrics Apache
lucene

Eclipse
equinox
framework

Eclipse
JDT
core

Eclipse
PDE
UI

Mylyn

v(g) 0.72 0.77 0.62 0.71 0.63
iv(g) 0.74 0.67 0.77 0.64 0.61McCabe

ev(g) 0.70 0.53 0.55 0.68 0.50
LoC 0.58 0.41 0.60 0.40 0.51
LoEx 0.63 0.53 0.48 0.54 0.60
LoB 0.46 0.38 0.24 0.47 0.32
LoCm 0.28 0.41 0.25 0.44 0.22

LoC

LoCoCm 0.55 0.61 0.53 0.41 0.53
Halstead N 0.72 0.55 0.62 0.57 0.62
Derived L 0.55 0.62 0.47 0.56 0.42

D 0.55 0.69 0.42 0.52 0.63
V 0.65 0.55 0.43 0.69 0.42
E 0.47 0.53 0.62 0.52 0.42
T 0.42 0.53 0.48 0.31 0.43
B 0.52 0.52 0.46 0.55 0.32

Halstead N1 0.66 0.53 0.61 0.64 0.62
Base n1 0.51 0.67 0.46 0.55 0.62

N2 0.66 0.59 0.66 0.52 0.42
n2 0.47 0.52 0.42 0.68 0.43

Decomposed As 0.72 0.62 0.74 0.69 0.62
Halstead as 0.56 0.68 0.51 0.62 0.53

A 0.53 0.57 0.69 0.57 0.53
a 0.59 0.43 0.63 0.59 0.42
R 0.79 0.71 0.71 0.74 0.72
r 0.62 0.57 0.46 0.53 0.62
Log 0.63 0.64 0.72 0.68 0.63
log 0.53 0.67 0.59 0.57 0.52
O 0.77 0.62 0.79 0.58 0.62
o 0.79 0.54 0.61 0.51 0.62
Ver 0.63 0.68 0.65 0.67 0.62
ver 0.54 0.62 0.51 0.58 0.53
C 0.56 0.52 0.57 0.59 0.52
c 0.47 0.44 0.43 0.44 0.41

In terms of F-measure, the minimum difference is 0.07, which has been observed in the
Apache Lucene dataset using LR. Whereas the maximum difference has been observed in
the Eclipse PDE dataset, i.e., 0.26 using RF.

In terms of AUC the minimum difference is 0.07, which has been observed in Apache
Lucene dataset using RF. Whereas the maximum difference has been observed in Eclipse
Equinox dataset, i.e., 0.25 using DT.
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Table 11 Accuracy in experiment 1 and 2.

Dataset LR NB DT MLP RF SVM

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Apache Lucene 2.4 0.75 0.83 0.66 0.88 0.75 0.91 0.7 0.91 0.76 0.94 0.82 0.97
Eclipse equinox framework 3.4 0.71 0.83 0.72 0.82 0.69 0.79 0.65 0.91 0.76 0.83 0.79 0.89
Eclipse JDT Core 3.4 0.73 0.93 0.68 0.89 0.66 0.91 0.79 0.82 0.67 0.94 0.81 0.97
Eclipse PDE UI 3.4.1 0.72 0.88 0.79 0.98 0.65 0.86 0.69 0.92 0.65 0.9 0.76 0.87
Mylyn 3.1 0.66 0.83 0.8 0.95 0.72 0.8 0.66 0.82 0.73 0.84 0.76 0.87

Table 12 F-measure in experiment 1 and 2.

Dataset LR NB DT MLP RF SVM

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Apache Lucene 2.4 0.78 0.86 0.76 0.8 0.66 0.87 0.74 0.91 0.69 0.86 0.8 0.96
Eclipse equinox framework 3.4 0.7 0.91 0.72 0.95 0.75 0.92 0.75 0.92 0.75 0.96 0.79 0.98
Eclipse JDT Core 3.4 0.72 0.96 0.79 0.95 0.68 0.88 0.7 0.89 0.69 0.91 0.82 0.99
Eclipse PDE UI 3.4.1 0.74 0.91 0.82 0.98 0.65 0.95 0.76 0.88 0.67 0.95 0.78 0.93
Mylyn 3.1 0.74 0.87 0.81 0.99 0.7 0.9 0.73 0.87 0.71 0.92 0.79 0.88

Table 13 AUC in experiment 1 and 2.

Dataset LR NB DT MLP RF SVM

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Apache Lucene 2.4 0.79 0.94 0.71 0.85 0.66 0.8 0.77 0.96 0.74 0.81 0.82 0.99
Eclipse equinox framework 3.4 0.74 0.94 0.67 0.83 0.68 0.93 0.69 0.84 0.71 0.94 0.79 0.97
Eclipse JDT Core 3.4 0.74 0.88 0.7 0.88 0.73 0.9 0.73 0.86 0.76 0.91 0.81 0.95
Eclipse PDE UI 3.4.1 0.77 0.84 0.81 0.96 0.61 0.86 0.77 0.87 0.66 0.86 0.73 0.88
Mylyn 3.1 0.68 0.86 0.79 0.99 0.57 0.82 0.8 0.96 0.67 0.85 0.68 0.87

Eventually, it has been observed that the results have been improved significantly by
inducing Decomposed Halstead base metric into the conventional metrics.

THREATS TO VALIDITY
The results of our experiment allow us to associate Decomposed Halstead base metrics with
SFP. Nevertheless, before we could accept the result, we would have to consider possible
threats to its validity.

Internal validity
Internal validity refers to the potential risks to the data used in the experiment (Jimenez-
Buedo & Miller, 2010). Concerning the size of the projects, sufficient comprehensible
project size is taken. The projects of a very large size or very small size were ignored. The
reason was the unavailability of either project’s source code or fault information. Therefore,
such very large size or small size projects may differ in the results reported.
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Figure 6 Difference in accuracy by introducing decomposed Halstead base metric.
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Figure 7 Difference in F-measure by introducing decomposed Halstead base metric.
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External validity
External validity refers to the extent to which research findings can be generalized
beyond the specific context of the study (Jimenez-Buedo & Miller, 2010). Regarding our
experiments, the selected open-source projects are developed in Java, which sufficiently
justifies the objective of the experiment and successfully demonstrates the experimental
methodology. However, since the Decomposed Halstead base metric varies in different
programming languages. The results may vary when using projects developed in languages
other than Java.

Construct validity
Construct validity implies the degree to which a measurement or assessment accurately
captures and represents the underlying theoretical concept or construct it is intended to
measure (O’Leary-Kelly & Vokurka, 1998). In our experiments, we include the coverage of
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decomposed operators in our experiments, we may missed some buitin functions for such
arithmetic operations. If we do so, the results will even be more promising. Hence, the
impact of decomposed operators in SFP remains unrevealed.

Conclusion validity
Conclusion validity refers to the certainty and accuracy of the inferences and conclusions
drawn from the results (García-Pérez, 2012). The effectiveness of the decomposed Halstead
base metric was evaluated based on the performance measures recorded in our study. The
results we obtained are specifically related to the selected performance measures, namely
Accuracy, F-measure, and AUC. The interpretations and explanations we provided are
dependent on the defect labels assigned to the datasets we selected for our experiments. It
is important to note that the results may vary when performing experiments on different
datasets with varying distributions. Different datasets may exhibit different characteristics
and defect distributions, which can influence the performance of the decomposed Halstead
base metric. Therefore, caution should be exercised when generalizing the findings of our
study to other datasets or scenarios.

CONCLUSION AND FUTURE WORK
In this study, we conducted two experiments aimed at evaluating the performance of
decomposed Halstead base metrics. The first experiment involved the utilization of the
Halstead metrics suite in combination with McCabe, and LoC, as predictors. In the second
experiment, we employed decomposed Halstead base metrics as predictors along with the
Halstead derived, McCabe, and LoC metrics. The results have been reported in terms of
Accuracy, F-measure, and AUC. The results obtained in Experiment-2 exhibited superior
performance compared to the results reported in Experiment-1. Specifically, in terms of
Accuracy, the maximum achieved value for the Lucene dataset was 0.97 when including the
Decomposed Halstead base metric. Regarding F-measure, the maximum achieved value
for Apache Lucene was 0.96. Furthermore, the maximum achieved AUC value was 0.98
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for Lucene when considering the AUC metric. This clearly demonstrates the enhanced
fault prediction capabilities achieved through the utilization of decomposed Halstead
base metrics. This study focuses on the utilization of decomposed Halstead base metrics;
however, further decomposing Halstead operands, variables and constants on behalf of
their data types, can prove to be a prudent choice for exploitation. Additionally, apart from
SFP, the Decomposed Halstead base metric can be applied in various other areas, including
design patterns, impact analysis, software quality assessment, maintenance cost evaluation,
productivity analysis, software vulnerability identification, changeability assessment, and
more. Finally, it is worth noting that there are numerous other metrics that can also benefit
from decomposition to enhance their efficiency. For instance, Cyclomatic complexity can
be decomposed based on conditionals and decisions, while the Lines of Code metric can
be decomposed into the number of literals, among other possibilities.
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