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ABSTRACT
The burgeoning role of social network analysis (SNA) in various fields raises complex
challenges, particularly in the analysis of dark and dim networks involved in illicit
activities. Existing models like the stochastic block model (SBM), exponential graph
model (EGM), and latent space model (LSM) are limited in scope, often only suitable
for one-mode networks. This article introduces a novel fuzzy multiple criteria multiple
constraint model (FMC2) tailored for community detection in two-mode networks,
which are particularly common in dark networks. The proposed method quantitatively
determines the relationships between nodes based on a probabilistic measure and uses
distance metrics to identify communities within the network. Moreover, the model
establishes fuzzy boundaries to differentiate between the most and least influential
nodes. We validate the efficacy of FMC2 using the Noordin Terrorist dataset and
conduct extensive simulations to evaluate performance metrics. The results demon-
strate that FMC2 not only effectively identifies communities but also ranks influential
nodes within them, contributing to a nuanced understanding of complex networks. The
method promises broad applicability and adaptability, particularly in intelligence and
security domains where identifying influential actors within covert networks is critical.

Subjects Data Mining and Machine Learning, Data Science, Network Science and Online Social
Networks, Social Computing
Keywords Dark network, Social network analysis, Influential nodes, MCMC decision making,
Perception-based grading, Sensitivity analysis, Data science

INTRODUCTION
In an interconnected world, social networks serve as intricate tapestries where diverse
entities—ranging from individuals and organizations to digital domains—engage to realize
shared objectives. Social network analysis (SNA) has emerged as an indispensable tool
for decoding these complex webs, offering quantitative insights into the relationships and
interactions that define these networks (Everton & Roberts, 2011). Within the taxonomy
of SNA, networks can be broadly categorized into light, dim, and dark, each with distinct
characteristics and implications. Light networks are transparent and open, fostering
benign activities. Dim networks, while not overtly secretive, maintain a guarded interface
with external organizations. Dark networks (Milward & Raab, 2003; Rawat et al., 2021),
however, operate in the underbelly of society, facilitating illicit activities such as drug
trafficking, money laundering, and terrorism, and thus pose challenges for comprehensive
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analysis due to their concealed and dynamic nature. In the realm of intelligence analytics,
social network analysis (SNA) serves as a transformative lens, fundamentally altering how
analysts decipher intricate networks. While traditional networks are essentially extensions
of offline social circles—comprising individuals bound by pre-existing relationships and
shared activities—the landscape dramatically shifts when navigating dark networks. These
clandestine networks are nebulous entities, characterized by incomplete data, ambiguous
relationships, and a volatile structure, all of which defy straightforward analysis. Current
methodologies in SNA predominantly rely on statistical models (Kolaczyk, 2009) such
as the stochastic block model (SBM) (Holland, Laskey & Leinhardt, 1983), exponential
graph model (EGM), and latent space model (LSM). While SBM pioneered community
detection within networks, subsequent adaptations, notably in exponential random graph
models (Frank & Strauss, 1986; Robins et al., 2007), have refined the understanding of
dynamic networks. However, these models have been largely optimized for one-mode
networks and falter when applied to more complex structures.

In contemporary network science, a paradigm shift is observed where networks are
projected into latent spaces. This projection is primarily grounded on probabilistic
assessments of inter-node relationships, further refined by distance metrics (D’Angelo,
Alfò & Fop, 2023). Recent advancements in LSM have transcended static networks
to accommodate their dynamic evolution through iterative modifications in distance
measures (Handcock, Raftery & Tantrum, 2007; Sewell, Chen & Etal, 2017). However, these
innovations are predominantly tailored for one-mode networks, where nodes share
homogenous characteristics, thus limiting their applicability in more complex scenarios.

To address this gap, the present study introduces a novel fuzzy multiple criteria multiple
constraint model (FMC2), specifically designed for dissecting two-mode networks. The
methodology employs probabilistic estimations of node relationships coupled with distance
metrics to delineate communities within the network. Moreover, it establishes perceptual
boundaries to segregate best-case and worst-case nodes within these communities, thereby
identifying the most influential nodes in a hierarchical fashion. The efficacy of this
perception-based grading approach has been rigorously validated using the Noordin
Terrorist dataset, a publicly accessible benchmark. A series of simulations further
corroborate the model’s precision and robustness in both community identification
and influence ranking.

The ensuing sections of this article are meticulously structured to furnish a
comprehensive understanding of the research underpinning. ‘Social Network Analysis’
delves into the foundational principles and metrics germane to social network analysis,
serving as a primer for the uninitiated. ‘Model Selection’ elucidates existing models, laying
the groundwork for an appreciation of the limitations that this research seeks to overcome.
‘Analytical Framework for Bipartite Insurgent NetworkDissection’ unveils the architectural
blueprint of the proposed methodology, providing an aerial view of the research landscape.
‘Comprehensive Execution of FMC2 Model for Analyzing Insurgent Networks’ offers
a granular walkthrough of the implementation steps for the novel FMC2 model-based
perception grading, explicating the mechanisms for community and influential node
identification. ‘Simulation Result’ presents empirical evidence, showcasing the results
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Figure 1 One-mode projection network.
Full-size DOI: 10.7717/peerjcs.1644/fig-1

derived from applying the proposed algorithm to real-world datasets, complemented by
performance metrics. Finally, ‘Conclusion and Future Work’ synthesizes the overarching
conclusions while charting a roadmap for future explorations in this intriguing domain.

SOCIAL NETWORK ANALYSIS
Social network analysis (SNA) is fundamentally a graph-theoretical method, wherein
vertices represent various types of actors—be they individuals, organizations, or other
entities—and edges encapsulate the relationships among these vertices. Typically, networks
can be categorized into one-mode and two-mode projections. In a one-mode projection,
the network is formally represented as SG ={V,E}, where V denotes the set of vertices and
E the set of edges. Such representations are commonly employed for modeling social media
interactions, such as friendships on Facebook, as illustrated in Fig. 1. In these networks,
nodes are labeled numerically as 1, 2, 3, up to 10, and edges are represented by lines that
connect these nodes.
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Figure 2 Two-mode projection network.
Full-size DOI: 10.7717/peerjcs.1644/fig-2

However, one-mode projections are ill-suited for capturing the nuances of specific
types of networks, such as scientific collaboration networks, where relational ties are more
complex. For instance, an edge may exist between two authors if they have co-authored a
paper. This leads to the concept of a two-mode, or bipartite, network. In such networks,
formally represented as BG ={U,V,E }, vertices are divided into two distinct sets U and V,
with edges E connecting vertices across these sets but not within them, as depicted in Fig. 2.
These bipartite structures are particularly apt for modeling affiliation and bibliographic
networks. This type of network is also called as affiliation network.

A multitude of metrics serve as the analytical linchpins in deciphering the complex
tapestry of network structures. Among these, centrality measures—encompassing degree,
closeness, betweenness, and hub scores—are particularly salient (Hansen et al., 2019). The
subsequent sections delve into the specific centrality metrics employed in this scholarly
inquiry, beginning with degree centrality. Degree centrality: regarded as a cornerstone
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metric, degree centrality is fundamentally a quantitative measure that enumerates the ties
a node maintains within the network. This attribute serves as an indicator of a node’s
relational intensity and is mathematically formalized in Eq. (1). The centrality measures
used for analysis in this research work are discussed below.

Degree centrality
Regarded as a cornerstonemetric, degree centrality is fundamentally a quantitative measure
that enumerates the ties a node maintains within the network. This attribute serves as an
indicator of a node’s relational intensity and is mathematically formalized in Eq. (1).

Cent iDeg = degree (i). (1)

Closeness
Closeness is the length-based measure which calculates the average shortest distance of the
node. The closeness centrality of a node i is shown in Eq. (2).

Cent iClo=
1∑

j dist
(
j,i
) (2)

where dist(j,i) is distance between the nodes i and j.

Betweenness
Betweenness is the quantity-based measure which calculates the number of times the
node acts a bridge along the shortest path between the nodes. The nodes which are most
influential will have the highest betweenness value. The betweenness centrality of a node i
is shown in Eq. (3).

Cent iBet =
∑

i6=j 6=k∈V

NSPik (V )
NSPik

(3)

where NSPik (V ) is the total number of shortest path from i to k.
NSPik is the number of paths through i.

Eigen vector centrality
A sophisticated metric, Eigenvalue centrality serves as a gauge for a node’s propensity
to wield influence within a network structure. Perhaps the most emblematic application
of Eigenvalue centrality variations is Google’s PageRank algorithm, a seminal technique
in search engine optimization. Mathematically, the Eigenvalue centrality of a node i is
delineated in Eq. (4) as follows:

Cent xEig (i)=
1
α

∑
j∈N (x)

xj (4)

where N(x) represents the ensemble of neighboring nodes connected to x , and α is a
constant scaling factor.
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MODEL SELECTION
Community detection is a sophisticated endeavor aimed at identifying nodes with elevated
degrees of connectivity and assessing the extent of their influence within the network
fabric. The crux of this exploration hinges on a model-based approach designed to
delineate clusters or communities, anchored by their interrelational ties.

Conventional model for two-mode networks
The two-mode network has the data in the m x n matrix with the occurrences of
observationij, where m individuals and n events. The observationij is the binary variable,
where Oij = 1, if tie exist and Oij = 0, otherwise. Assumption of starting with X number
of individuals in the community having the community extent ce = (ce1, ce2, . . . , ce
X). The method will group the individuals having the common tie with the events. The
conventional model is best suited only for the networks which are mutually exclusive and
satisfies the following conditions as discussed by Aitkin, Vu & Francis (2017).

Condition 1: cex ≥ 0, for each x
Condition 2:

∑X
x=1cex = 1.

Multiple criteria model (MCM) framework
The multiple criteria model (MCM) serves as an intricate framework optimized for
decision-making in scenarios fraught with multidimensional events and heterogenous
observations, each characterized by a diverse array of attributes and parameters. Requiring
domain-specific expertise, the MCM exhibits multidisciplinary versatility. Within the
context of social network analysis, the MCM emerges as a robust tool, uniquely qualified
to architect networks by navigating a plethora of observational choices. It adeptly identifies
influential nodes, prioritizing them based on a pre-determined set of criteria. Notably, the
scholarly landscape is replete with a variety of MCM paradigms, each tailored for specific
decision-making applications.

ELECTRE (Saracoglu, 2015) and PROMETHEE P (Velasquez & Hester, 2013) serve as
cornerstone methodologies in the realm of multi-criteria decision-making, operating on
the principle of outranking. These paradigms are particularly apt for scenarios characterized
by a limited set of criteria but an expansive array of alternatives. Conversely, the analytical
hierarchy process (AHP) (Rios & Duarte, 2021) adopts a structured approach, employing
pairwise comparisons to discern themost advantageous alternative. The Pughmethod (Zhu
et al., 2022), also known as the decision matrix method (DMM), takes a qualitative stance,
benchmarking alternatives against a datum option. In the quantitative spectrum, the
Statistical Design Institute (SDI) (Miranda, Antunes & Gama, 2022) computes scores for
each design option. Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) (Ogonowski, 2022) emerges as an alternative to ELECTRE, specifically designed
to pinpoint alternatives that closely approximate an ideal solution.

The quest to identify influential nodes within networks introduces a complex multi-
criteria decision-making conundrum, rooted in the interplay between nodal influence
weights and intricate topological attributes. This intricate dilemma serves as the intellectual
impetus behind the development of our pioneering approach. Employing a fuzzy-based
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Figure 3 Schematic diagram of proposed approach for insurgent network analysis.
Full-size DOI: 10.7717/peerjcs.1644/fig-3

multiple criteria and multiple constraint level paradigm, this methodology innovatively
harnesses grading techniques and community detection algorithms for the precise
identification of influential nodes.

ANALYTICAL FRAMEWORK FOR BIPARTITE INSURGENT
NETWORK DISSECTION
The methodology advanced herein focuses on the intricate analysis of two-mode insurgent
networks, mathematically captured as a bipartite graph Gb = {T,E,R}, where T constitutes
the ensemble of terrorists, E the array of events, and R the relational linkage intertwining
T and E. Figure 3 elucidates the structural blueprint of this novel proposition.

The analytical ingress point is a data matrix, its rows personifying individuals purporting
to be insurgents and its columns enumerating events in which these individuals partake.
Matrix entries denote the individual’s engagement in a specific event. The inaugural phase
entails the transformation of this data matrix into a bipartite graph. Subsequently, network
attributes are calculated leveraging the Jaccard coefficient, a measure elucidating the
neighborhood similarity between vertices, thereby enhancing object detection fidelity.
Building on this foundation, the proposed multi-criteria and multi-constraint level
approach is employed for node ranking through similarity score computations. Fuzzy-based
clustering techniques are applied to demarcate communities, guided by the aforementioned
metrics. Culminating this analytical odyssey, individual nodes are hierarchically positioned
within these communities based on the gradings computed. Finally, the ascertained
influential nodes, characterized by their community-specific gradings, offer invaluable
insights into the behavioral patterns of the involved insurgents.

Finally, from the set of influential nodes with the grading of nodes in community helps
to track the nature of insurgents involved in the activity.
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Figure 4 Implementation procedure of FMC2model for insurgent network analysis.
Full-size DOI: 10.7717/peerjcs.1644/fig-4

COMPREHENSIVE EXECUTION OF FMC2 MODEL FOR
ANALYZING INSURGENT NETWORKS
This section meticulously delineates the procedural architecture underpinning the
implementation of our avant-garde fuzzy multiple criteria multiple constraint model
(FMC2) tailored for insurgent network scrutiny. Figure 4 provides a graphical exposition
of the sequential steps implicated in the deployment of the FMC2 framework.

The fulcrum of the proposed model is to engender a hierarchical taxonomy of nodes,
contextualized by their event-centric involvements, thereby facilitating the demarcation
of insurgents into top, middle, and bottom tiers. The analytical journey commences
with the construction of a bipartite graph derived from the input network dataset.
Algorithm 1, encapsulating the FMC2 methodology, ingests this graph to compute the
Jaccard coefficient; this is conditioned by the bipartite partitioning values, which are
in turn modulated by event-specific involvements. Concomitantly, a compendium of
network centrality measures—degree, closeness, betweenness, and eigenvector centrality—
is calculated, each nuanced by the Jaccard coefficient. Following this, an evaluation matrix
(EMatrix) is synthesized, encapsulating these computed metrics as criteria against a
predefined set of alternatives. This matrix undergoes a weighted average normalization
procedure, subsequent to which the extremal alternatives (best- and worst-case scenarios)
are determined via shortest-path computations. Distances for each alternative are then
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quantified, serving as the basis for similarity score calculations that ultimately grade these
alternatives.

At this juncture, the influential network nodes are discernibly identified via the computed
metrics. The algorithm uniquely accommodates multiple criteria and constraints in a
unified analytical framework. Finally, EMatrix is reevaluated, and fuzzy memberships µi

and fuzzy centers are iteratively computed until the objective function converges, subject
to n observations and k clusters. Additionally, dsim(i,j) signifies the dissimilarity measure
between observations, and e represents the membership exponent

Algorithm 1: FMC2 Method
Input:
Bg- bipartite graph
Output:
Comm –Set of Clusters
Comm_infl –Community wise Influential nodes in hierarchical position
Method:
procedure FMC2Approach (Bg)
{
Bp =bipartite_partition_binary(Bg)
for each vertex in Bp{
set Bp11 = x, Bp10 = y, Bp01 = z
JS[i]= x

x+y+z
if(JS[i]> 0.95)

pJaccard[i] = 1
else

pJaccard[j] = 0
diagonal of pJaccard = 0
Cent iDeg = degree (i)

Cent iClo =
1∑

jdist
(
j,i
)

Cent iBet =
∑

i6=j 6=k∈V

NSPik (V )
NSPik

Cent xEig (i)=
1
α

∑
j∈N (x)

xj

}
Generate EMatrixnxm
Calculate EMatrix_Normnxm for each choice nij =

EMatrixij√∑
EMatrix2ij

W =
(
wij
)
nxm =

(
ajnij

)
nxm

Sw = distance

Sb = distance

iw =
Sw

Sw +Sb
Comm_infl = Grade (iw
Comm = Fmin=

∑k
c=1

∑n
i,j=1µ

e
icµ

e
jcdsim(i,j)

2
∑n

j=1µ
e
jc

}
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SIMULATION RESULT
In this section, simulation carried out using ‘R’ (Murdoch, 2017) for the proposed work is
discussed and the results are reported.

Dataset utilization: analyzing noordin top’s terrorist network
In the present study, we employ the Noordin Top Terrorist Network dataset (International
Crisis Group, 2006), a publicly accessible corpus curated by the International Crisis Group.
This dataset encapsulates data on 79 individuals implicated in extremist activities, with a
specific focus on operations staged in Jakarta and Bali, Indonesia, in the year 2011. The
dataset is comprehensive, encompassing a total of 568 distinct events, some of which
wield significant influence on the affiliative dynamics within extremist organizations. The
scope of affiliations scrutinized in our analysis spans a diverse range of institutions—
educational establishments (schools and colleges), commercial enterprises, and religious
organizations—as well as an array of relational dimensions such as classmate interactions,
familial ties, friendships, co-religious affiliations, and other logistical support networks
involved in training, terrorist activities, and strategic assemblies..

SNA metric evaluation—quantifying node attributes in the network
Table 1 delineates a suite of computational metrics—namely, degree, betweenness,
closeness, and eigenvector centrality—applied to the 79 nodes constituting the network
under study. The ‘‘degree’’ serves as an indicator of a node’s connectivitywithin the network,
quantifying the number of edges emanating from or converging to it. ‘‘Betweenness’’
furnishes insights into a node’s role as a connective bottleneck or gateway, bridging
disparate clusters within the network. The ‘‘closeness’’ metric elucidates the extent to
which a node is intimately connected to others in the network, essentially serving as a
measure of its reachability. Lastly, ‘‘eigenvector centrality’’ offers a nuanced understanding
of a node’s influence, taking into account not merely the quantity but the quality of its
connections.

FMC2 based perception grading method
The similarity score computed by applying the proposed FMC2 method and the grade
based on the computed score are depicted in the Table 2.

The scores, delineated in Fig. 5, manifest as fuzzy-based values in the interval [0,1][0,1],
serving to classify the nodes on a continuum from least to most influential. The x-axis
enumerates the Node IDs, while the y-axis represents the corresponding grade values.
Notably, Node 59 emerges as an apex entity, registering a grade value of 1. Contrary to
initial impressions, it should be emphasized that within the context of this network, a lower
grade value paradoxically indicates heightened influence as opposed to a higher grade
value.

Fuzzy clustering
Fuzzy clustering, leveraging the output from the FMC2 model, initiates with a bifurcated
cluster framework and iteratively expands to three clusters. Table 3 encapsulates the
nuanced metrics: Dunn_Coeff , representing the partition coefficient of the clustering, is
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Table 1 Summary of centrality measures of the noordin data set.

Person ID Degree Betweeness Closeness Eigen centrality

1 222 272.8423 0.0029 0.8294
2 212 272.5252 0.0028 0.7642
3 220 272.7874 0.0028 0.8136
4 219 272.6826 0.0028 0.8093
5 243 275.1958 0.0030 0.9489
6 216 272.6378 0.0028 0.7870
7 210 272.5108 0.0028 0.7517
8 214 272.5477 0.0028 0.7767
9 214 272.5717 0.0028 0.7803
10 209 272.5063 0.0028 0.7453
11 214 272.5676 0.0028 0.7754
12 209 272.5063 0.0028 0.7460
13 220 272.7990 0.0028 0.8128
14 214 272.5717 0.0028 0.7803
15 234 273.9582 0.0030 0.8983
16 217 272.6415 0.0028 0.7992
17 209 272.5063 0.0028 0.7449
18 217 272.6627 0.0028 0.7970
19 214 272.5647 0.0028 0.7792
20 215 272.5992 0.0028 0.7864
21 214 272.5635 0.0028 0.7800
22 216 272.6213 0.0028 0.7889
23 244 275.4381 0.0030 0.9532
24 232 273.7902 0.0029 0.8823
25 209 272.5063 0.0028 0.7460
26 216 272.6120 0.0028 0.7911
27 211 272.5188 0.0028 0.7603
28 212 272.5249 0.0028 0.7645
29 213 272.5467 0.0028 0.7727
30 218 272.7110 0.0028 0.8044
31 226 273.1580 0.0029 0.8485
32 213 272.5510 0.0028 0.7726
33 210 272.5108 0.0028 0.7517
34 212 272.5339 0.0028 0.7648
35 214 272.5728 0.0028 0.7796
36 220 272.8028 0.0028 0.8170
37 216 272.5846 0.0028 0.7910
38 209 272.5063 0.0028 0.7452
39 224 272.9949 0.0029 0.8361
40 209 272.5063 0.0028 0.7446
41 216 272.6311 0.0028 0.7927
42 217 272.6648 0.0028 0.7983

(continued on next page)
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Table 1 (continued)

Person ID Degree Betweeness Closeness Eigen centrality

43 211 272.5153 0.0028 0.7591
44 214 272.5754 0.0028 0.7763
45 230 273.5313 0.0029 0.8718
46 237 274.4094 0.0030 0.9111
47 212 272.5317 0.0028 0.7671
48 210 272.5105 0.0028 0.7531
49 214 272.5717 0.0028 0.7803
50 225 273.0542 0.0029 0.8451
51 214 272.5533 0.0028 0.7769
52 219 272.7466 0.0028 0.8074
53 212 272.5198 0.0028 0.7655
54 211 272.5193 0.0028 0.7598
55 217 272.6642 0.0028 0.7987
56 228 273.3755 0.0029 0.8623
57 223 272.9501 0.0029 0.8346
58 212 272.5322 0.0028 0.7666
59 252 276.8691 0.0031 1.0000
60 216 272.5995 0.0028 0.7902
61 211 272.5198 0.0028 0.7586
62 212 272.5317 0.0028 0.7671
63 224 273.0142 0.0029 0.8393
64 227 273.2198 0.0029 0.8546
65 215 272.5992 0.0028 0.7864
66 213 272.5506 0.0028 0.7729
67 210 272.5063 0.0028 0.7527
68 215 272.6024 0.0028 0.7832
69 209 272.5063 0.0028 0.7460
70 224 273.0291 0.0029 0.8370
71 213 272.5520 0.0028 0.7707
72 208 272.5063 0.0027 0.7384
73 214 272.5753 0.0028 0.7762
74 213 272.5411 0.0028 0.7734
75 209 272.5063 0.0028 0.7451
76 212 272.5322 0.0028 0.7666
77 211 272.5154 0.0028 0.7580
78 210 272.5109 0.0028 0.7516
79 210 272.5110 0.0028 0.7513
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Table 2 Summary of similarity score and grade evaluated for Noordin network.

ID Score Grade ID Score Grade ID Score Grade

1 0.3343 16 28 0.0956 58 55 0.2194 24
2 0.0948 59 29 0.1238 49 56 0.4631 8
3 0.2793 18 30 0.2412 22 57 0.3549 15
4 0.2609 20 31 0.4129 10 58 0.1010 54.5
5 0.7984 3 32 0.1235 50 59 1.0000 1
6 0.1824 32 33 0.0483 67.5 60 0.1904 30
7 0.0483 67.5 34 0.0963 57 61 0.0732 63
8 0.1412 43 35 0.1486 40 62 0.1023 52.5
9 0.1505 37 36 0.2880 17 63 0.3746 12
10 0.0248 74 37 0.1924 29 64 0.4361 9
11 0.1380 46 38 0.0245 75 65 0.1734 33.5
12 0.0265 72 39 0.3666 14 66 0.1245 48
13 0.2775 19 40 0.0229 78 67 0.0510 66
14 0.1505 37 41 0.1968 27 68 0.1652 35
15 0.6001 5 42 0.2182 25 69 0.0265 72
16 0.2206 23 43 0.0745 62 70 0.3689 13
17 0.0238 77 44 0.1404 44 71 0.1188 51
18 0.2150 26 45 0.5024 7 72 0.0000 79
19 0.1478 41 46 0.6560 4 73 0.1400 45
20 0.1734 33.5 47 0.1023 52.5 74 0.1256 47
21 0.1498 39 48 0.0521 65 75 0.0242 76
22 0.1869 31 49 0.1505 37 76 0.1010 54.5
23 0.8176 2 50 0.3967 11 77 0.0716 64
24 0.5446 6 51 0.1418 42 78 0.0482 69
25 0.0265 72 52 0.2563 21 79 0.0473 70
26 0.1926 28 53 0.0981 56
27 0.0776 60 54 0.0763 61

normalized and designated as Normalized . Obj_Func signifies the nadir of the objective
function achieved through relative convergence tolerance, while the iterative count and
average cluster width are also detailed.

Figure 6 delineates three distinct clusters, boasting cluster widths of 0.2555, 0.62588,
and 0.53196, respectively. The constituent entities in these clusters are 16 for Cluster 1, 33
for Cluster 2, and 30 for Cluster 3.

The ramifications of this clustering paradigm manifest as overlapping zones within the
clusters, introducing what we term as ‘confusing actors’ in network analytics. These actors
present a deceptive semblance of influence owing to the specific nature of their network
ties, thereby complicating the analytical landscape.
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Figure 5 Grade distribution.
Full-size DOI: 10.7717/peerjcs.1644/fig-5

Table 3 Summary of fuzzy clustering.

Number of
cluster

Dunn_Coeff Normalized Obj Func Iterations Average
width

2 0.99185 0.98371 184.9 30 0.704906
3 0.98789 0.98184 133.9 22 0.5152

Figure 7 offers a visual representation of node clustering, wherein nodes are spatially
organized based on their computed grades, set against their respective clusters.

Table 4 promulgates the hierarchical ranking of nodes within these clusters, serving as a
testament to the efficacy of the proposed method.

Table 4 illuminates a structured hierarchy of insurgent actors, providing an intricate
mapping of their relative import within terrorist activities in Indonesia. Arising from the
application of our avant-garde methodology, we delineate the terrorist network into three
concentric tiers:

(a) The central nexus comprises the preeminent figures whowield unparalleled authority
and orchestrate the attacks with dictatorial command.

(b) The intermediate echelon consists of influential personas functioning as conduits
between the central authority and the periphery. They are tethered to the central figures
via operational and relational channels.
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Figure 6 Clusters of k = 3.
Full-size DOI: 10.7717/peerjcs.1644/fig-6

(c) The peripheral cadre, while less influential, serve as the logistical backbone to the
operation and lack direct affiliations with the central authority.

Figure 8 graphically encapsulates this hierarchical stratification, offering a visually
compelling elucidation of the intricate layers of insurgent influence.

Performance analysis: empirical evaluation on the Noordin top
terrorist dataset
Table 5 furnishes a rigorous quantitative assessment of our proposed algorithm’s efficacy in
identifying influential nodes and effecting data clustering within the Noordin Top Terrorist
Network dataset. The performance indicators encapsulated therein include sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV).

Sensitivity : This metric quantifies the algorithm’s proficiency in accurately pinpointing
nodes of genuine influence within the network.

Specificity : Complementary to sensitivity, this measure assesses the algorithm’s capability
to correctly identify nodes that are not influential, thereby mitigating the risk of false
positives. Positive predictive value (PPV) & negative predictive value (NPV): These values
offer an enhanced understanding of the algorithm’s predictive precision, calibrated against
the overall prevalence of influential nodes within the network.
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Figure 7 Structuring of cluster.
Full-size DOI: 10.7717/peerjcs.1644/fig-7

CONCLUSION AND FUTURE WORK
In this article, we have introduced a groundbreaking methodology leveraging a fusion of
fuzzy-based multi-criteria and multi-constraint mechanisms for grading nodes, thereby
enabling the identification of influential actors in insurgent networks. Employing a suite of
social network analysis metrics—namely, degree, betweenness, closeness, and eigenvector
centrality—our approach harmonizes these conventional measures with fuzzy membership
and modularity metrics to formulate a sophisticated community detection model. This
facilitates the nuanced clustering of nodes within the complex structure of insurgent
networks.

Our fuzzy multiple criteria multiple constraint level approach (FMC2) serves
as the computational backbone for this undertaking. By computing similarity
measures through a distance-based MC2 method, the FMC2 framework yields
graded values that not only identify but also hierarchically classify influential
nodes within the network. Furthermore, our methodology incorporates fuzzy
boundaries in centrality-based measures, enhancing the precision of the resultant
clusters.

This innovative approach is explicitly tailored for two-mode insurgent networks,
accommodating multiple criteria and constraints concurrently for a more com-
prehensive analysis. However, its applicability is not confined to this specific type
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Table 4 Summary of grade for nodes in clusters.

Cluster 1 Cluster 2 Cluster 3

Node Grade Node Grade Node Grade

59 1 13 10 74 26
23 2 52 11 29 27
46 3 55 12 71 28
24 4 42 13 47 29
45 5 18 14 27 30
64 6 26 15 43 31
50 7 37 16 61 32
70 8 60 17 77 33
39 9 22 18 48 34

68 19 67 35
19 20 7 36
51 21 33 37
8 22 78 38
44 23 12 39
73 24 25 40
11 25 69 41

10 42
38 43
75 44
17 45
72 46

Table 5 Performance of the categorization of persons in the Noordin network.

Data set Sensitivity Specificity Positive
predicted
value

Negative
predicted
value

Terrorist Not terrorist

Terrorist 46 4Implementation
result Not terrorist 1 28

0.9787 0.875 0.92 0.92

of network; it can be readily extended to other two-mode network structures.
Looking ahead, future variations of this work could integrate machine learning
techniques into our existing framework, offering yet another dimension of analytical
depth.
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Figure 8 Hierarchies of insurgents.
Full-size DOI: 10.7717/peerjcs.1644/fig-8
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