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ABSTRACT
Telematics will be one of the critical technologies in the future intelligent transportation
system and establish communication between vehicles and vehicles, vehicles and
networks, and vehicles and people. Thus, vehicles can sense mobile environments and
make rational driving decisions. Therefore, the safety and efficiency of traffic flow
would be enhanced. However, due to the unknown nature and higher complexity
of the connected network environments of vehicles, the utilization of conventional
optimization theory fails to generate satisfying results. To address the problem, this
article proposes a methodology for collaborative transmission for communication
regarding the Internet of Vehicles (IoV) with the help of advanced computational
algorithms. The article employs amulti-intelligence advanced computational algorithm
to construct a collaborative communication transmission mechanism in the telematics
communication system model. The proposed algorithm fully considers the vehicle
mobility and quality-of-service (QoS) of telematics services within the network slice.
It adjusts the slice’s radio resource allocation and parameter settings on an expanded
time scale to improve the QoS of telematics services and increase the system’s long-term
revenue. The simulation results show that the proposed algorithmhas amore significant
performance improvement than conventional algorithms using telematics information
transmission. For example, when the same load conditions are under consideration,
the total capacity of the vehicle-to-infrastructure (V2I) link optimized by the proposed
algorithm is still higher than that of the other three baseline strategies.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Autonomous Systems,
Computer Networks and Communications
Keywords Advanced computing scientific algorithms, Vehicular networks, Cooperative
communication, Communication transmission

INTRODUCTION
With the rapid advancement of the automotive industry and the continuous improvement
of the quality of life, customers have demanded higher requirements for in-car applications
since information and communication technology have also made substantial progress. In-
car communication technology can provide a comfortable and safe driving environment
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for in-car users and provide leisure and entertainment activities to enhance travelers’
experience. As a result, in-vehicle communication has become a hot research topic for
researchers and the industry globally since every achievement in this regard could make
humans’ lives very comfortable and convenient (Samir et al., 2019).

In the article, the term telematics refers to telematics technology broadly. Telematics
research often considers two wireless communication technologies: short-range
communication DSRC and cellular networks. It is a fact that a single wireless
communication method cannot meet the needs of telematics applications (Chen et al.,
2017a). On the other hand, the DSRC is qualified for real-time, short-range shop floor
information exchange but cannot guarantee network connectivity. In contrast, cellular
networks cover a wide range but have difficulty ensuring secure telematics applications
with strict latency requirements. So, most of the available telematics research focuses on
heterogeneous architectures based on cellular networks and DSRCs. In addition, with
the development of drone technology and its popularity in civilian sectors, drones are
expected to support the heterogeneous architecture of the telematics network to improve
network connectivity and expand base station coverage (Wang et al., 2017). Although
the heterogeneous architecture of telematics could support both secure and non-secure
applications, the increasing demand for data traffic in the era of big data poses a challenge
to the operation of the heterogeneous system. On the one hand, due to the system’s limited
capacity of the base stations, the quality-of-service (QoS) (Huang et al., 2020; Duan, Liu
& Wang, 2017) of telematics applications cannot be guaranteed when the data volume
increases. On the other hand, due to limited wireless resources, data delivery between
vehicles is more prone to interference and frequent message collisions, reducing the
delivery performance of secure messages, thus necessitating optimization of telematics
communication in heterogeneous architectures.

Telematics has been currently divided into broad and narrow telematics. The little
sense of telematics refers to information technology applied in human-vehicle interaction,
such as reversing radar, reversing camera (Tian et al., 2017), fixed speed cruise control,
road traffic sign recognition, and fatigue driving. It mainly uses Bluetooth, wired, and
other technology means of communication to interact with information in a small area
to help drivers during mobility. Telematics refers to information technology applied to
communication between vehicles and vehicles and between vehicles and base stations in
road traffic systems with broader system coverage, such as the 802.11p standard developed
by the Institute of Electrical and Electronics Engineering (IEEE). Broad vehicle networking
technology aims to enable information sharing between vehicles to improve road safety and
reduce the incidence of accidents. In the future, car ownership will boom rapidly. How to
use information technology (IT) (Ge et al., 2017), communication and other information
technologies in road traffic rationally and efficiently has become a hot research topic for
researchers.

Recently, the development of wireless communication technology has provided the
theoretical basis and technical support for implementing future telematics technology. The
IEEE Standards group promulgated the 802.11p standard for in-vehicle communication
in July 2010 (Su et al., 2019), which works in the low-frequency band of 5.9 GHz (Zhang,
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Yang & Chen, 2018) with a communication rate of 10Mbps. However, for future telematics
systems with massive connectivity needs, the lower communication rate, higher latency,
and fewer communication nodes that could access the system could not meet future needs.

Nowadays, 5G technology has started to be commercially available on a large scale, and
its advantages, such as higher bandwidth and lower latency in the millimeter wave band,
have provided an improved idea to the telematics technology. Meanwhile, the 802.11ad/ay
standard developed by the IEEE standards group is a directional millimeter wave standard
technology working at 60 GHz. Its communication rate could reach gigabits, fully meeting
the massive connection demand of future telematics (Chen et al., 2017b). The 60 GHz
band is a free wireless local area network (WLAN) band; consumers do not need to pay
when using it. This shows that millimeter wave communication technology has many
natural advantages. However, as the electromagnetic waves in the 60 GHz band are in the
high-frequency millimeter wave band, the disadvantages of millimeter wave are severe road
loss, poorer penetration, and a smaller coverage area. To overcome these disadvantages,
millimeter wave communication employs beam-focusing technology, which requires the
utilization of large-scale antenna arrays. Millimeter wave terminal equipment is easy to
produce and apply due to the short millimeter wave wavelength and small antennas, which
can be easily integrated into communication nodes (Jameel et al., 2018). Through beam
assignment techniques, more stable directional communication beam pairs can be formed
between the system’s communication nodes, enhancing the link’s quality. Beam-tracking
techniques could enhance the robustness of the communication link. Although beam-
focusing techniques could improve the performance of high-frequency links, the enhanced
version of high frequencies, when compared to low frequencies, is still not convenient for
large-scale implementation in the telematics scenario due to the mobility characteristics.
Still, if the high and low frequencies could collaborate, it could double the benefits to the
system.

In communication systems, frames transmitted between communication nodes are
generally divided into control, management, and data frames. InWIFI, management frames
include Beacons, Association frames, and so on. Control frames include acknowledgment
(Ack), request to send (RTS) (Bayrakdar, 2020), clear to send (CTS) frames, etc. Data frames
represent data. Both management and control frames contain primarily management
control information, while data frames include the media information passed between
nodes. To ensure that both control and management frames are not easily lost, they
are generally modulated with a low-order modulation and coding scheme (MCS) for
transmission to provide a low bit error rate (BER), which makes the communication
rate relatively lower. On the other hand, data frames are modulated employing a high-
order MCS to transmit at the maximum possible communication rate allowed by the
standard (Niu et al., 2020). To give full play to the respective advantages of high and low
frequencies, a collaborative network architecture of high and low frequencies can be applied
to the telematics system, with data frames transmitted in the high-frequency band and
management and control frames transmitted in the low-frequency band, ensuring not only
the reliability and stability of the connection between nodes in the system but also the
efficiency of data transmission.
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While telematics has a range of characteristics such as high vehicle speeds, severe wireless
fading, and regularity of movement, this unique vehicle operating environment sets it apart
from other wireless networks. Also, it gives it a massive challenge in terms of various key
technologies (Ghafoor et al., 2019).

The research of adaptive collaborationmodes and relay selection algorithms in telematics
can effectively resolve the problem of reduced bandwidth utilization and increased latency
brought about by the introduction of collaborative communication technologies, thus
improving the reliability performance of the system. Therefore, a multi-intelligence
advanced computational algorithm is proposed to construct a cooperative communication
transmissionmechanism in the telematics communication systemmodel in the manuscript
and is simulated. The outcomes suggest that it has a better collaborative communication
transmission.

The rest of the article is outlined: ‘Related Works’ deals with the preliminary. ‘The
Proposed Method’ presents the proposed method. ‘Experimentation’ is allocated to
experiment and simulation with outcomes. ‘Conclusion’ concludes the research.

RELATED WORKS
Collaborative communication in vehicular networks
The basic idea of collaborative communication is based on a multiuser communication
environment. A single-antenna mobile user forms a virtual multi-antenna array by
sharing the antennas of multiple mobile terminals nearby, thereby gaining diversity
and effectively improving the reliability of information transmission (Dias et al., 2020).
The transmission method of collaborative communication is not a simple relay technology
or the previously applied spatial diversity technology but a fusion of the two technologies.
Therefore, collaborative communication technology has the advantages that both have. So,
communication coverage has been expanded and shadow fading, path loss, and multipath
effects have been effectively overcome. The introduction of collaborative communication
technology into telematics represents a virtualmulti-antenna environmentwhere the source
vehicle communicates directly with the destination vehicle. At the same time, the relay
vehicle also forwards information to the source (Zhang et al., 2018), which undoubtedly
brings diversity gains and extends the range of information transmission. However, such
a high-speed in-vehicle environment leads to problems. The introduction of relaying is
bound to cause more latency and reduced bandwidth utilization. Therefore, adaptive
collaboration models and relay selection algorithms in vehicular networking should receive
extensive attention.

The adaptive collaboration model in telematics consists of two levels of meaning. One of
which is the adaptive relay collaboration policy, i.e., the judgment of relay ‘‘collaboration
timing’’ (Fotohi, Nazemi & Aliee, 2020), which can effectively resolve the problem of ‘‘to
forward or not to forward’’ and ‘‘when to forward’’ for relay nodes. The second is the
adaptiveness of the relay forwarding policy, i.e., the choice of the relay node’s information
forwarding method when choosing a relay collaboration communication method between
vehicles. Amplify-and-forward and decode-and-forward are two of the simplest yet widely
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implemented fundamental forwarding strategies in collaborative communication systems.
The relay selection algorithm in telematics is employed to choose the best-performing
relay among all potential relay nodes when picking a relay collaboration method for
communication between vehicles (Rivoirard et al., 2018).

In summary, the research of adaptive collaborationmodes and relay selection algorithms
in telematics can effectively resolve the problem of reduced bandwidth utilization and
increased latency brought about by the introduction of collaborative communication
technologies, thus improving the reliability performance of the system.

Vehicles in telematics can support a range of secure and non-secure applications
with vehicle-to-vehicle and vehicle-to-infrastructure communications. Considering
that a single wireless communication method cannot simultaneously meet the QoS
requirements of multiple telematics applications. The current telematics research has
focused on heterogeneous architectures of telematics (Wang et al., 2022). In China, Dating
and Huawei have been improving and testing the V2X architecture based on LTE-V, which
is based on TD-LTE technology and supports both centralized LTE-V-Cell and distributed
LTE-V-Direct communication modes, which could reuse the available cellular network
infrastructure without allocating dedicated spectrum, and could effectively extend the
vehicle sensing range with the help of LTE-V-Direct and ensure network connectivity. The
LTE-V enables ubiquitous network coverage with cellular communications, enabling the
interconnection of vehicle-vehicle, vehicle-road, and vehicle infrastructure, thus effectively
supporting telematics applications.

Advanced computational algorithms in the vehicular networks
In recent years, vast amounts of data have been accumulated in various fields and the human
capacity used for collecting (Ismael et al., 2021), storing, transmitting, and processing data
has increased rapidly. These developments lead to advanced computational algorithms,
which are important in enabling revolutionary advances in artificial intelligence (AI).

Advanced computational algorithms (Bangui & Buhnova, 2021) are classified in terms
of dataset labeling: unsupervised, semi-supervised, supervised, and reinforcement learning
algorithms (Prasad et al., 2021). Where supervised learning algorithms master a prediction
function from a training dataset and estimate the output based on the new dataset.
Commonly employed supervised learning algorithms include regression analysis and
statistical classification methods. The training set for supervised learning algorithms
consists of feature inputs and target outputs, where humans annotate the targets and all
training data has annotation information. In contrast to supervised learning algorithms,
unsupervised learning algorithmsmodel the features of the training set directly and identify
the underlying class rules based on the same features and targets of the training set. The
difference comes from whether humans annotate the targets of the training set. Training
sets of the unsupervised learning algorithms (Islam et al., 2021) have no human annotation
information and common unsupervised learning algorithms are used for visualization,
cluster analysis, and density estimation.

On the other hand, semi-supervised learning algorithms are somewhere between
supervised and unsupervised learning algorithms, using partially labeled and partially
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unlabeled data to master predictive functions. Finally, reinforcement learning algorithms
are about achieving a goal, gradually adjusting behavior as the environment changes,
and evaluating whether the feedback obtained after each action is positive or negative.
Reinforcement learning algorithms are classified as instantaneous difference, dynamic
programming, and Monte Carlo methods. There is still much room for research into
the generalizability of those algorithms, i.e., their ability to generalize needs further
improvements (Al-Shareeda et al, 2022).

In recent years, many technologies have contributed significantly to the development of
connected vehicles, where autonomous driving by computer is an ideal solution in the field
of connected vehicles. Abstract autonomous driving is an advanced computational-based
research, where the inputs are various types of information received by multiple onboard
sensors that sense and acquire information on vehicle conditions in real-time, and the
outputs are control actions such as throttle, direction, braking, and other functions. Also,
due to the cyclical nature of urban traffic flows, data traffic in telematics has a regularity
in the spatio-temporal dimension (Ashish & Prakash, 2021). When vehicles are associated
with base stations of heterogeneous networks, one of the most important issues is to exploit
the regularity of vehicle traffic data for load balancing between these base stations. For
certain tasks, the collected data is stored and processed into the training and test sets,
respectively, and the error is calculated separately. The error of the test set is then employed
to represent the generalizability of the model and algorithm and the optimal strategy is
again mastered to prove the algorithm’s effectiveness.

When the performance of telematics is analyzed, collaborative communication
technology involves algorithms of advanced computations. Middleware technology is
the core technology in the current software development field, which realizes the middle
program of data transmission, data filtering, format conversion, and other operations
between radio frequency identification (RFID) hardware equipment and the user’s
application system and imports various data information read by RFID reader into
telematics application through the operation of software extraction, decryption, filtering,
format conversion and so on, and makes it available to telematics users through the user
interface of application system (Adnan et al., 2021). Specifically involved are middlewares
such as vehicle path navigation, emergency event handling, vehicle-assisted driving,
and traffic signal control. Each one is developed regarding the standards for telematics
application services. Convolutional neural networks (CNN), which are sweeping the
autonomous driving technology and connected vehicle fields, employ a greedy layer-by-
layer training approach to master deeply, perform feature extraction, estimate unknown
functions, and utilize multiple convolutional layers to generate deeper feature maps to
reach more accurate estimates of network functions. The main applications based on deep
learning techniques are neural network models, sensor fusion methods, and path planning
methods (Hossain et al., 2021). The reinforcement learning-based distributed machine-
to-machine communication packet scheduling algorithm is employed in telematics
communication to support million-level connectivity requirements, and the accuracy
of the algorithm’s predictions is evaluated using Pearson’s linear correlation coefficient
to measure the degree of relationship in the training set. While objective evaluation
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algorithms are measured, the degree of deviation of subjective evaluation algorithms is a
function of the root mean square error (RMSE). Using different advanced computational
algorithms for different telematics needs to study the behavior of vehicle-vehicle (Elgendy
et al, 2021), vehicle-roadside unit, and vehicle-pedestrian interactions in telematics and
learning and exploring the overall perceptual environment of telematics. All involve the
effective application of advanced computations.

The introduction of a collaborative communication system in telematics, while bringing
diversity gains and improving the system’s reliability, faces the problem of introducing
relaying that will inevitably lead to more delays and a reduction in bandwidth utilization.
In addition, the adaptive nature of the relay forwarding strategy, i.e., the relay selects
the forwarding method based on the channel transmission characteristics of the source-
relay when a relay collaborative communication method is chosen between vehicles.
Thus, amplify-and-forward and decode-and-forward are two of the simplest yet widely
implemented fundamental forwarding strategies in collaborative communication systems.

The research of adaptive collaborationmodes and relay selection algorithms in telematics
can effectively resolve the problem of reduced bandwidth utilization and increased latency
brought about by the introduction of collaborative communication technologies, thus
improving the reliability performance of the system. Therefore, a multi-intelligence
advanced computational algorithm is proposed to construct a joint communication
transmissionmechanism in the telematics communication systemmodel in the manuscript
and is simulated. The outcomes suggest that it has a better cooperative communication
transmission.

THE PROPOSED METHOD
In a real-world telematics scenario, while general-purpose mobile communication systems
represent low-bandwidth, wide-coverage wireless access, wireless LANs represent high-
bandwidth, narrow-coverage wireless access. Thus, a representative heterogeneous wireless
network is constituted. The IEEE802.11p protocol (Elaziz, Abualigah & Ibrahim, 2021),
currently widely employed in vehicular networking, supports short-rangeDSRC technology
for inter-vehicle and inter-vehicle-road communication. However, the communication
range of roadside unit (RSU/OBU) is generally 100 to 200 m, which is relatively short when
compared to the workshop distance, making it challenging to ensure the connectivity
of the communication network at higher vehicle speeds and efficiently leading to
complex expansion of traffic messages. Suppose there is no other relay vehicle within
the communication range of the vehicle. In that case, the vehicle must store the current
data information until a relay vehicle is found that can forward the necessary information.
This situation is prone to soft actor-critic (SAC) time delays. To disseminate breaking
news with strict real-time requirements, the traffic messaging network must be improved
to increase information reliability and real-time transmission.

A communication model of vehicular networks
Telematics is essentially a multi-source, multi-relay, multi-destination, and multiuser
network. Still, analyzing the three types of nodes concurrently when they are moving

Cui and Chen (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1643 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1643


r1 s

r3 r5

r2 r4

ri r5

d

rn r6

Set of potential relays
 

Figure 1 A communicationmodel of vehicular networks.
Full-size DOI: 10.7717/peerjcs.1643/fig-1

simultaneously is very complex, down to the data link layer, network layer, and other
protocols. Only the physical layer performance analysis is considered here to incorporate
collaborative communication techniques, and the system model is shown in Fig. 1. A
two-hop transmission model consisting of a source end s, several relay ends r, and a
destination end d is only considered.
First, the source broadcasts a message to the destination and the relay, and the received

signals ys,d ys,r for both are calculated in Eqs. (1) and (2).

ys,d =
√
Pshs,dx+zs,d (1)

ys,r =
√
Pshs,rx+zs,r (2)

Then, the instantaneous channel transmission characteristics of the source–destination,
source-relay, and relay–destination channels are taken into account to determine how
the source–destination carries out information transmission, i.e., it shows when to use the
collaborative communication model and when to use the direct transmission model. When
the direct transmission model is employed, the relay is not involved in the communication
transmission, and the instantaneous received signal-to-noise ratio of the system is calculated
in Eq. (3).

rd =
P
N0
|hs,d |2. (3)

When the collaborative communication mode is implemented, the relay end is involved in
the communication transmission. Assuming that the maximum ratio merging method is
used at a destination end, the instantaneously received signal-to-noise ratio of the system
at this time is calculated in Eq. (4).

r
′

=
Ps
N0
|hs,d |2+

Ps
N0
|hr,d |2 (4)

Advanced computational algorithms when multi-agent exists
The manuscript employs a multi-intelligence advanced computational algorithm to
construct a collaborative communication transmission mechanism in the telematics
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Figure 2 The framework of the model.
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communication system model. The framework of the model consists of K intelligence. A
deep deterministic policy gradient algorithm implements each of these, and the framework
is shown in Fig. 2.

The deep deterministic policy gradient (DDPG) algorithm (Bao et al., 2021) combines
the benefits of policy gradients and DQNs. It consists of two types of neural networks: a
policy-based actor-network and a value-based critic network. The actor-network collects
the state of the environment and then performs the appropriate action based on the policy.
The Critic network employs a state-action value function to evaluate the goodness of the
action chosen by the actor-network based on the policy Qk(·).Skt represents the input
state of the intelligence k, γ denotes the discount factor of the immediate reward Rk

t . The
state-action value function of the DDPG algorithm is calculated in Eq. (5).

Qk(Sk,Ak)= E[Rk
+γQ(Sk

′

,Ak ′)] (5)

As a policy gradient algorithm, the main idea of DDPG is to obtain an optimal policy
π∗k and learn the state-action value function corresponding to the optimal policy π∗k until
convergence occurs. DDPG’s Actor-Critic network employs a dual network structure. One
for the evaluation network and the other for the target network are employed, where the
θυk and θQk of the evaluation network are updated in real time. The update process starts
with a small randomly selected sample of experiences from the experience pool and feeds
them into the intelligence one by one. In the training phase, the Actor and Critic networks
update the parameters of the evaluation network based on small batches of samples for each
input. The Critic network adjusts the parameters of the evaluation network by reducing
the losses, and the loss function is calculated in Eq. (6).

L(θQk )= E[(Rk
t +γQ

′

k(S
k ′
t ,A

k ′
t |θ

Q′
k )−Qk(Skt ,A

k
t |θ

Q
k ))

2
] (6)
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When the Actor makes an action decision for each observation and each intelligence aims
to maximize the cumulative payoff. The evaluation network parameters of the Actor are
updated by maximizing the policy objective function, which is calculated in Eq. (7).

J (θυk )= E[Qk(Skt ,A
k)|Ak

= υ(Skt )] (7)

where uk(·) denotes an Actor evaluation network function for a deterministic strategy πk
of state-mapped actions. Since the action space is continuous, J (θuk ) is continuously
differentiable and θuk can adjust the direction of gradient descent ∇θuk J (θ

u
k ). As the

parameters θuk and θQk of the evaluation network are continuously updated, the parameters
θu
′

k and θQ
′

k of the target network are updated using a soft update as follows:

θυ
′

k = τθ
u
k + (1−τ )θ

u′
k (8)

θ
Q′
k = τθ

Q
k + (1−τ )θ

Q′
k (9)

Power distribution
When a transmitting node sends a message to a receiving node, the transmitting node
generates channel contention. Only some nodes can communicate with the receiving node,
at which point the other nodes are treated as interfering nodes. The power allocation in
a collaborative communication system is divided into two steps: the determination of
the collaborative transmitting node i that communicates with the receiving node r and
the optimization of the power of the transmitting node s and the collaborative node i to
increase the channel capacity of the receiving node r.

Here, the SINR capture effect model is implemented to select collaborating nodes. When
the ratio of node signal i strength to node s channel strength is greater than the threshold
value β, node r can receive the transmit signal from node i. Then, such transmit node i is
defined in Eq. (10).

{Cr |SINR= (pCRi,rGCRi,r )/(pi,rGs,r )≥β} (10)

where Cr denotes the set of collaborating nodes and Zr denotes the set of all vehicle nodes
that cause interference to the receiving node r, except Cr .

In summary, the amount of interference the receiving node receives can be expressed in
Eq. (11).

I =
∑
j∈Zr

N∑
k=1,k 6=r

Gj,rPj,k+n0. (11)

In a collaborative communication system,when a receiving node is close to a transmitting
node, its SINR is easily satisfied by that transmitting node, and the power relationship
between pi,r of other collaborative transmission nodes and that transmitting node can be
expressed in Eq. (12).

Pi,r = Pm,rGi,r/Gm,r (12)

Cui and Chen (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1643 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1643


EXPERIMENTATION
Simulation environment
The telematics wireless communication scenario presented in the article helps define the
telematics simulator in the city, including vehicles, lanes, and a wireless communication
networkmodel. One of theV2V links corresponds to one of theV2I links. Each intelligence’s
Actor and Critic networks consisted of three fully connected hidden layers containing 256,
64, and 16 neurons, respectively. The activation function is a modified linear unit, and an
adaptive moment estimation optimizer is employed to train the weights of the updated
neural network iteratively. The algorithm is trained for 2,000 episodes, adding a variable
Gaussian noise to the actions selected by the intelligences. The probability of exploration
is handled by a linear annealing algorithm, starting from 1 and annealing to 0.02 at 1,600
episodes, with the likelihood of exploration remaining constant in the subsequent training
steps. In the article, a V2V link load of 1,060 megabytes is chosen for the algorithm’s
training phase, and a different load size is utilized when compared with other benchmark
algorithms to verify the algorithm’s robustness.

Simulation results
The convergence of the algorithm
Figure 3 shows the variation of rewards with an episode, which can observe the convergence
performance of the multi-antenna deep deterministic policy gradient (MADDPG)
algorithm. In the article, 100 training steps are set in each episode, and the cumulative
reward sum of all training steps is utilized as the reward. The analysis shows that the reward
score gradually increases as the training iterations increase. The proposed algorithm starts
to converge when the training reaches 500 episodes, where the network topology changes
rapidly due to the higher mobility of the vehicles. The channel fading fluctuates, leading to
numerical fluctuations in the convergence of the proposed algorithm.

The channel capacity at different nodes
Figure 4A represents the relationship between transmit node power and channel capacity
for different communication schemes based on when vehicle nodes n= 20 are picked.
The optimized channel capacity for collaborative power allocation and the allocation
of cooperative communication power decrease as the power of the transmitting node
increases, and the channel capacity with no collaboration keeps increasing with the power
of the transmitting node. However, the channel capacity of the first two still far exceeds
that of the latter. As the power of the transmitting node increases, the gap between the
collaborative power allocation’s channel capacity and the collaborative communication’s
optimized power allocation keeps decreasing. Figure 4B indicates that the channel capacity
of the cooperative power allocation is slightly better than the cooperative communication
power optimization allocation when the transmit node power is 5-6 dBm when the vehicle
node n= 40 is chosen. However, when the transmit power exceeds 7 dBm, the channel
optimized capacity by collaborative communication power allocation gradually exceeds
that of cooperative power allocation. The channel capacity without collaboration is still
much smaller than the first two. Figure 4C indicates that the communication quality
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Figure 3 The convergence graph of the proposed algorithm.
Full-size DOI: 10.7717/peerjcs.1643/fig-3

of the optimized allocation of collaborative communication power is consistently more
significant than that of the cooperative power allocation when the vehicle node n= 60 is
picked.

Transmission success rates under different loads
Figure 5 shows the performance of each algorithm in optimizing V2I link capacity and
performance under different V2V link payloads. The experimental results show that
as the V2V link payload size increases, all algorithms’ optimized V2I capacity and
performance show a decreasing trend. To increase the probability of a successful V2V
payload transmission, the increase in V2V payload leads to more substantial interference
on the V2I link for a longer period, thus jeopardizing its capacity performance. Thus, an
increase in the V2V link load will result in a longer time for the V2V link to transmit
data and a higher transmit power, leading to more interference with the V2I link and
consequently causing a lower capacity. Under the same load conditions, the total capacity
of the V2I link optimized by the proposed algorithm is still higher than that of the other
three baseline strategies. As the load increases, the total V2I link capacity of the three
baseline strategies tends to decrease continuously. At the same time, the performance of
the proposed algorithm shows a slight fluctuating decrease with better robustness.

Figure 6 shows the relationship between the transmission success probability of the
V2V link and the V2V link transmission load size. The likelihood of the transmission
success of all four optimization strategies decreases as the load increases since the amount
of transmission load is fixed at the same transmission rate and the same transmission
time slot, while the larger the total load size required for the V2V link is, the lower the
transmission success probability of the V2V link load would be.

Cui and Chen (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1643 12/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1643/fig-3
http://dx.doi.org/10.7717/peerj-cs.1643


5 10 15 20 25

20

40

60

80

100

120

C
h

a
n

n
el

 c
a

p
a

ci
ty

 /
(b

it
 s

-1
 H

z-1
)

power (dBm-1)

 XZ

 YH

 WC

 

5 10 15 20 25

0

20

40

60

80

100

120

140

160

180

200

C
h

a
n

n
el

 c
a

p
a

ci
ty

 /
(b

it
 s

-1
 H

z-1
)

power (dBm-1)

 XZ

 YH

 WC

 

(a) n=20                            (b) n=40 

5 10 15 20 25

0

50

100

150

200

250

300

C
h

a
n

n
el

 c
a

p
a

ci
ty

 /
(b

it
 s

-1
 H

z-1
)

power (dBm-1)

 XZ

 YH

 WC

 
 

00 0

0

Figure 4 The channel capacities for different values of vehicle node n.
Full-size DOI: 10.7717/peerjcs.1643/fig-4

Simulation results and analysis of connectivity
To evaluate the connectivity of collaborative communication transmission in-vehicle
networks with the introduction of advanced computational algorithms in the article, a
simulation scenario is set up to analyze algorithms dealing with the connectivity of different
mobile access point selections, in which vehicles obey a Poisson point process with a density
of 0.02 m-1 on a 10 km road, and the speed follows a uniform distribution within [50,
80] km/h. The speed of each vehicle remains constant during the simulation. Assume
that the communication channel obeys Rayleigh fading, the path loss index is assigned
to 4, the transmit power of the mobile access point is assigned to 2W, and the vehicle
receives an additive noise power of −100 dBm. In the simulation, mobile access points
are selected according to different selection algorithms, and adjacent mobile access points
communicate with the vehicles in between, employing a collaborative communication
mode. The impact of different mobile access point selection algorithms is evaluated by
comparing the received signals with the interference-to-noise ratio (SINR) and the SINR
threshold to calculate the overall probability of the downlink connectivity.

Figure 7 shows the relationship between the probability of the downlink connectivity
PC and the SINR’s threshold β received by the vehicle when communicated collaboratively
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Figure 5 A comparison of the total link capacity under different loads.
Full-size DOI: 10.7717/peerjcs.1643/fig-5

with two collaborating mobile access points. Three different mobile access point selection
methods are compared in the simulation: independent random, sequential, and distance-
based selections. The simulation results also show that the sequential and distance-based
selection methods are better adapted to the actual distribution of vehicles, and their
connectivity is significantly better than that of independent random selection.

CONCLUSION
With the rapid development of intelligent transportation systems facilitating the
construction anddevelopment of smart cities inwhich habitants travel effectively, telematics
plays an increasingly important role. However, telematics is still in the early stages of its
development and has many issues to be dealt with. Due to the high-speed mobility of
vehicles, conventional mobile computing methods face challenges such as efficient and fast
resource scheduling and power allocation. Inter-vehicle access network services are one
of the most important methods for providing communication services in the vicinity of
vehicles.

The research in the article is of great importance for network planning, topology control,
and user experience in telematics. In addition, as a distributed wireless network, the link
between terminals could be constructed without passing through the base station and
transmitting data to the target terminal, reducing the relay burden of the base station.

In the article, a new collaborative communication transmission algorithm for vehicular
networking is proposed using advanced computational algorithms, and connectivity is
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Figure 7 The connectivity probability with different mobile access point options.
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used as a fundamental but important metric for vehicular networking to evaluate the
performance of the proposed algorithm. To evaluate the connectivity of collaborative
communication transmission in-vehicle networks with the introduction of advanced
computational algorithms, simulations are conducted.

When connectivity is a concern, the sequential and distance-based selection methods are
better adapted to the actual distribution of vehicles, and their connectivity is significantly
better than that of independent random selection. In addition, as the power of the
transmitting node increases, the gap between the channel capacity of the collaborative
power allocation and the optimized power allocation of the collaborative communication
keeps decreasing. Finally, as the load increases, the total V2I link capacity of the three
baseline strategies tends to decrease continuously, while the performance of the proposed
algorithm shows a slow fluctuating decrease with better robustness.
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