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ABSTRACT
Background:Ultrasound image segmentation is challenging due to the low signal-to-
noise ratio and poor quality of ultrasound images. With deep learning advancements,
convolutional neural networks (CNNs) have been widely used for ultrasound image
segmentation. However, due to the intrinsic locality of convolutional operations and
the varying shapes of segmentation objects, segmentation methods based on CNNs
still face challenges with accuracy and generalization. In addition, Transformer is a
network architecture with self-attention mechanisms that performs well in the field
of computer vision. Based on the characteristics of Transformer and CNNs, we
propose a hybrid architecture based on Transformer and U-Net with joint loss for
ultrasound image segmentation, referred to as TU-Net.
Methods: TU-Net is based on the encoder-decoder architecture and includes
encoder, parallel attention mechanism and decoder modules. The encoder module is
responsible for reducing dimensions and capturing different levels of feature
information from ultrasound images; the parallel attention mechanism is responsible
for capturing global and multiscale local feature information; and the decoder
module is responsible for gradually recovering dimensions and delineating the
boundaries of the segmentation target. Additionally, we adopt joint loss to optimize
learning and improve segmentation accuracy. We use experiments on datasets of two
types of ultrasound images to verify the proposed architecture. We use the Dice
scores, precision, recall, Hausdorff distance (HD) and average symmetric surface
distance (ASD) as evaluation metrics for segmentation performance.
Results: For the brachia plexus and fetal head ultrasound image datasets, TU-Net
achieves mean Dice scores of 79.59% and 97.94%; precisions of 81.25% and 98.18%;
recalls of 80.19% and 97.72%; HDs (mm) of 12.44 and 6.93; and ASDs (mm) of 4.29
and 2.97, respectively. Compared with those of the other six segmentation
algorithms, the mean values of TU-Net increased by approximately 3.41%, 2.62%,
3.74%, 36.40% and 31.96% for the Dice score, precision, recall, HD and ASD,
respectively.
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INTRODUCTION
As a medical imaging modality, ultrasound imaging has been widely applied in clinical
screening, diagnosis and treatment. Accurately segmenting ultrasound images is very
important for making subsequent diagnoses. Unlike computer tomography (CT) and
magnetic resonance imaging (MRI), ultrasound imaging is portable, cost-effective and uses
nonionizing radiation. Nevertheless, due to their coherent nature, ultrasound images are
impacted by speckle noise, missing boundaries and low signal-to-noise ratios (SNR).
Therefore, ultrasound images are more difficult to segment than other medical images
(Fiorentino et al., 2023; Wang et al., 2021). Some algorithms used in traditional image
segmentation have been applied to ultrasound images, but they have not improved
segmentation accuracy. With deep learning advancements, some approaches based on
convolutional neural networks (CNNs) have been widely used in the field of ultrasound
imaging. In particular, architectures based on the encoder-decoder architecture, such as U-
Net, have improved segmentation accuracy (Malhotra et al., 2022; Ronneberger, Fscher &
Brox, 2015). The encoder module is responsible for reducing dimensions and capturing
different levels of feature information. The decoder module is responsible for gradually
recovering dimensions and delineating boundaries of the segmentation target. In addition,
the skip connection between the encoder and decoder can compensate for the loss of
feature information caused by successive convolutions and pooling. However, due to the
intrinsic locality of convolution operations, these approaches are limited by global context.
The attention mechanism can be used as a resource allocation scheme, which is the main
method for addressing information overload and is applied in the computer vision field (de
Santana Correia & Colombini, 2022). Hence, some researchers have combined attention
mechanisms with CNNs to capture global feature information.

Transformers can capture global feature information with their long-range dependency
capabilities. Therefore, the Transformer-based model has achieved state-of-the-art
performance in natural language processing (NLP). The subsequently proposed Vision
Transformer (ViT) applied image recognition to improve results. ViT takes image patches
as input and uses self-attention to learn the global information of all image patches. Some
approaches based on ViT applied image segmentation and improved performance.
However, ViT focuses on global feature information and lacks localization information.
Similarly, some approaches based on encoder-decoder apply successive convolutions and
pooling, resulting in a lack of global feature information and spatial information. Due to
the various shapes, sizes and blurry boundaries of ultrasound images, segmenting objects is
difficult. Considering these issues, we propose a hybrid Transformer and U-Net with joint
loss (TU-Net) for the segmentation of ultrasound images. The contributions of this work
can be summarized as follows: (1) TU-Net can integrate local and global feature
information with CNNs and Transformers. (2) We adopt the parallel attention mechanism
in the proposed TU-Net. Among the attention mechanisms, the one based on CNNs can
extract multiscale local feature information of targets with varying shapes, and the one
based on Transformer can capture global feature information. (3) For segmentation
objects with blurry boundaries, we propose using the Dice and TopK joint loss to improve
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prediction accuracy. We validate the effectiveness of our proposed method; the proposed
method outperforms state-of-the-art methods on ultrasound images of the brachial plexus
(BP) and fetal head.

The remainder of the article is organized as follows. The related works are shown in
“Related Work”. The proposed method and implementation details are explored in
“Materials and Methods”. Extensive experiments are conducted to evaluate our proposed
methods in “Experimental Details”. In “Results” and “Discussion”, we discuss these results
and conclude this article.

RELATED WORK
Segmentation networks based on CNNs
With the advancement of deep learning, some approaches based on CNNs are widely used
in the field of ultrasound imaging segmentation. Based on U-Net, Zhou et al. (2019)
proposed using a series of dense skip pathways to capture more feature information from
images. This method can compensate for the loss of feature information caused by
successive convolutions and pooling. Due to the intrinsic locality of convolution
operations, approaches based on U-Net are limited by global context. Therefore, some
studies have adopted multiple-channel convolution to solve this problem. Mehta &
Sivaswamy (2017) proposed a novel network that used CNNs to combine and represent 3D
context information for brain structure segmentation (M-Net). Javaid, Dasnoy & Lee
(2018) proposed dilated convolution with U-Net to extract global feature information for
breast image segmentation (dilated U-Net). Zhang et al. (2020) proposed a multiple-
channel with a large kernel convolution network for ultrasound image segmentation (MA-
Net). When segmenting objects with various shapes and sizes, these approaches based on
CNNs have weak generalization.

Segmentation networks based on Transformer
The transformer model originally designed for NLP and the subsequently proposed ViT
applied image recognition to achieve better results. Meanwhile, some approaches based on
ViT have been applied in the field of image segmentation. Wang et al. (2022) proposed a
novel mixed transformer module for simultaneous intra- and inter-affinity learning for
medical image segmentation. Shen et al. (2022) applied Transformer with residual axial
attention for breast structure segmentation of ultrasound images. Gao, Zhou & Metaxas
(2021) proposed an efficient self-attention mechanism along with relative position
encoding for medical image segmentation. Chen et al. (2021) supported both Transformer
and U-Net for medical image segmentation. Zhang, Liu & Hu (2021) combined
Transformer and CNNs in parallel to capture global dependency and low-level feature
information. Inspired by these approaches, we propose a hybrid Transformer and U-Net
architecture with a parallel attention mechanism. It can integrate CNNs and Transformer
to better perform ultrasound image segmentation.
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MATERIALS AND METHODS
The proposed TU-Net includes encoder, parallel attention mechanism and decoder
modules. The structure of TU-Net is shown in Fig. 1. First, the ultrasound image is input
into a successive encoder module to obtain high-dimensional feature maps. Next, these
feature maps are input into the parallel attention mechanism to obtain global and
multiscale local feature information. Finally, the different level feature information in the
encoder module is connected to the decoder module by a skip pathway to generate the
segmentation mask.

Encoder and decoder modules
Networks based on the encoder-decoder architecture have been widely used in image
segmentation. The encoder module is responsible for reducing dimensions and capturing
different levels of feature information of ultrasound images. The decoder module is
responsible for gradually recovering dimensions and delineating the boundaries of the
segmentation target. In the proposed TU-Net, ResNet-50 is used as the encoder to capture
the feature information of the input image. The decoder module consists of an upsampling
layer and two successive convolution layers, which are used to recover spatial dimensions
and boundary information. Due to the loss of feature information caused by successive
convolutions and pooling, we adopt skip pathways to deliver feature information captured
by the encoder to the decoder (Drozdzal et al., 2016).

Parallel attention mechanism module
Many networks based on the attention mechanism have been widely applied in the field of
image segmentation. The attention mechanism can avoid using multiple similar feature
maps and focus on the most salient and informative features without additional
supervision. Recently, ViT has achieved excellent performance in many computer vision
tasks using a self-attention mechanism. However, it focuses on global feature information
and neglects localization information. Similarly, some approaches based on encoder-
decoder apply successive convolutions and pooling, resulting in a lack of global feature
information and a loss of spatial information. Therefore, we adopt the self-attention
mechanism of Transformer to capture the global feature information and use a series of
atrous convolution and pyramid pooling to capture multiscale local feature information.

In traditional segmentation networks based on ViT, Transformer is directly used as an
encoder to extract feature information from images. As shown by some experiments and
studies by other researchers, this method cannot improve segmentation accuracy (Chen
et al., 2021). Therefore, we utilize the high-dimensional feature maps from the successive
encoder module as the input of the transformer module. We first reshape the input feature
maps into a sequence of flattened two-dimensional (2D) patches. Each patch is of size P ×
P (P = 16), and the number of image patches is N = H × W/P2 (H and W specify the
dimensions of feature maps). Second, we use a trainable linear projection to map the
patches into a latent D-dimensional embedding. To retain the positional information of
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the patches, we use position embeddings that are added to the embeddings of the patches.
The self-attention mechanism of TU-Net consists of L (L = 12) transformer modules. Each
transformer module consists of a multihead self-attention (MSA) layer and a multilayer
perceptron (MLP) layer (Dosovitskiy et al., 2020). These layers are connected in turn. The
output of each transformer module can be written as follows:

zl
0 ¼ MSA LN zl�1ð Þð Þ þ zl�1 l ¼ 1 . . . :L (1)

zl ¼ MLP LN zl
0ð Þð Þ þ zl

0 l ¼ 1 . . . :L (2)

where LN(.) denotes the layer normalization operator, and Zl is the transformer image
representation. The structure of the transformer module is illustrated in Fig. 2.

To address boundary information loss and segmentation objects with various sizes, we
adopt a series of atrous convolution and pyramid pooling modules to capture multiscale

Figure 1 Architecture of TU-Net. H ×W × C represents the dimensions of each module (C = 1, 64, 128, 256, 512, 1,024). Image source credit: van
den Heuvel et al. (2018a). Automated measurement of fetal head circumference using 2D ultrasound images (Data set). Zenodo. https://doi.org/10.
5281/zenodo.1327317, https://hc18.grand-challenge.org. Full-size DOI: 10.7717/peerj-cs.1638/fig-1
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local feature information. The architecture of the atrous convolution module is shown in
Fig. 3A. It has four cascade atrous convolution branches. The four atrous convolutions
have different sampling strides (r = 1, 3, 5 and 7). In the end, four atrous convolution
branches are combined as the input of the pyramid pooling module. Subsequently, we
adopt the pyramid pooling module to detect objects with various sizes. The architecture of
the pyramid pooling module is shown in Fig. 3B. First, the module has four cascade
pooling layers with four receiving fields of 2 × 2, 4 × 4, 8 × 8 and 16 × 16. Second, the
output of each pooling layer goes through a 1 × 1 convolution to reduce the dimensions of
the feature maps. Subsequently, the upsampling layer is used to restore the feature map to
its original size. Finally, four outputs of the upsampling layers are combined as the input of
the decoder module.

Figure 2 Architecture of the transformer module. The self-attention mechanism consists of L (L = 12)
transformer modules. Full-size DOI: 10.7717/peerj-cs.1638/fig-2
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Joint loss
Image segmentation is used to determine whether a pixel belongs to the foreground or
background of an image. The Dice coefficient is the most commonly used segmentation
evaluation metric in the field of image segmentation. This coefficient represents the
overlapping region of the ground truth and the prediction. The Dice coefficient is given as:

Dice ¼ 2 X \ Yj j
Xj j þ Yj j (3)

where |X| indicates the ground-truth pixels, |Y| represents the value predicted pixels and
jX \ Y j is the value of shared pixels in |X| and |Y|.

The Dice loss function is defined as follows:

Diceloss ¼ 1� Dice (4)

However, the size of the regions of interest in different ultrasound images greatly vary.
Thus, the learning process can become trapped in local minima of the loss function,
resulting in the predictions of the network being strongly biased towards the background
and missing or only partially detecting the foreground. Meanwhile, most labelled pixels
can easily be discriminated against others and further research on these pixels will not
improve the accuracy. Therefore, we add TopK loss in the process of training. TopK loss is
also a variant of cross entropy, which is used to force networks towards hard samples and
automatically balance biased training data during processing (Ma et al., 2021).

The TopK loss function is defined as:

LTopK ¼ � 1
N

Xc

c¼i

X
i2K gci log s

c
i (5)

where gi and si denote the ground truth and predicted segmentation of voxel i, respectively.
C is the number of classes, and N is the number of voxels. K is the set of the k% worst
pixels. In TU-Net, the TopK loss with k = 10% is the default setting.

Figure 3 (A) Architecture of the atrous convolution module. (B) Architecture of the pyramid
pooling module. Full-size DOI: 10.7717/peerj-cs.1638/fig-3
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In the proposed TU-Net, we adopt joint loss to optimize learning and improve
prediction accuracy. Ltotal is the sum of the Dice and TopK loss functions. The joint loss
function is given as:

Ltotal ¼ LDice þ LTopk (6)

where LDice and LTopk are the Dice and TopK loss functions, respectively.

Evaluation metrics
We also use precision, recall, Hausdorff distance (HD) and average symmetric surface
distance (ASD) as evaluation metrics in addition to the Dice scores. Precision and recall are
defined according to Eqs. (7) and (8), respectively.

precision ¼ TP
TP þ FP

(7)

recall ¼ TP
TP þ FN

(8)

where TN, TP, FN and FP are the true-negative, true-positive, false-negative and false-
positive values, respectively (Chang et al., 2009). Because there are considerable noise and
outliers in the ultrasound images, we also include metrics based on the surface distance.
The HD represents the maximum value of misalignment between two objects, which is
mainly used to evaluate the structural difference between two targets. Smaller HD values
represent higher segmentation accuracy (Zhang et al., 2020).

The sets of points of A and B are S(A) and S(B), respectively. The shortest distance of S
(A) to an arbitrary point v is given by:

d S Að Þ; vð Þ ¼ min
SA2S Að Þ

kSA � vk (9)

The shortest distance of S(B) to an arbitrary point v is given by:

d S Bð Þ; vð Þ ¼ min
SB2S Bð Þ

kSB � vk (10)

where k�k represents the Euclidean distance. The HD is defined as:

HD A;Bð Þ ¼ max max
v2S Að Þ

min
SB2S Bð Þ

jjSB � vjj; max
v2S Bð Þ

min
SA2S Að Þ

jjSA � vjj
� �

(11)

The ASD represents the average value of surface distances of A to B and B to A.
Similarly, smaller ASD values represent higher segmentation accuracy. The ASD is defined
as:

ASD A;Bð Þ ¼ 1
S Að Þj j þ S Bð Þj j

X
SA2S Að Þ d SA; S Bð Þð Þ þ

X
SB2S Bð Þ d SB; S Að Þð Þ

� �
(12)
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EXPERIMENTAL DETAILS
PyTorch 1.7.0 was applied as the framework to train TU-Net. The optimizer adopts mini-
batch stochastic gradient descent (SGD) with a weight decay of 0.0001 and momentum of
0.9. The initial learning rate was set to 0.01 and fine-tuned every 100 epochs. The
workstation used to train TU-Net was a 2080Ti graphic card with 11 GB of memory. The
proposed TU-Net is compared with other image segmentation algorithms, including U-
Net (Ronneberger, Fscher & Brox, 2015), U-Net++ (Zhou et al., 2019), M-Net (Mehta &
Sivaswamy, 2017), dilated U-Net (Javaid, Dasnoy & Lee, 2018), MA-Net (Zhang et al.,
2020) and TransUNet (Chen et al., 2021). These algorithms are derived from their
applications in the original works, and the hyperparameters used for training are given in
Table 1. In addition, the Friedman test is applied as a statistical analysis to evaluate the
segmentation performance of the algorithms. In this analysis, 5% is a significant level.

RESULTS
To demonstrate the superiority of TU-Net segmentation performance, we compare it to
other segmentation algorithms, including U-Net, U-Net++, M-Net, dilated U-Net, MA-
Net and TransUNet. We use the mean value and standard deviation of Dice scores,
precision, recall, HD and ASD to evaluate algorithm performance. Finally, SPSS 23.0 is
used for statistical analysis of the above algorithms.

Branchia Plexus datasets
Because BP is an important motor and sensory nerve of the upper limb, blocking BP can
relieve much pain in upper limb surgery. Therefore, accurately segmenting the structure of
BP is very important for anaesthesia during upper limb surgery. The BP datasets of
ultrasound images are taken from the 2016 Kaggle competition (Montoya et al., 2016;
Zhang & Zhang, 2022). This dataset includes segmentation objects with various sizes.
Because the test datasets were not released in the competition, the collected training
datasets are randomly divided into training datasets and test datasets in our experiments.
The training dataset includes 1,710 samples, and the test dataset includes 448 samples.
Because the number of training samples is small, we apply horizontal flipping, vertical
flipping, random scaling and rotation to increase the number of training samples.
Ultimately, the number of training samples is 8,550. Meanwhile, all samples are cropped to
320 × 320 for our experiments.

Table 1 The hyperparameters of algorithms.

Hyper parameter U-Net U-Net++ M-Net Dilated U-Net MA-Net TransUNet TU-Net

Loss functions Dice Dice & CE Dice & CE CE Dice & CE Dice & CE Dice & TopK

Batch size 8 4 4 10 4 24 10

Optimizer SGD Adam Adam Adam SGD SGD SGD

Learning rate 0.001 3E−4 0.00001 0.001 0.001 0.01 0.01

Momentum 0.95 None None None 0.9 0.9 0.9

Note:
CE and Dice represent the cross-entropy and dice loss functions, respectively.
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Table 2 shows the mean and standard deviation of five evaluation metrics for different
segmentation algorithms. TU-Net achieves a value of 79.59 ± 0.16 for Dice (%), 81.25 ±
0.17 for precision (%), 80.19 ± 0.18 for recall (%), 12.44 ± 11.23 for HD (mm) and 4.29 ±
2.57 for ASD (mm). The segmentation accuracy of our proposed method is better than that
of the other methods. The segmentation results of the seven networks are shown in Fig. 4.

Fetal head datasets
Genetic factors and nutrition intake can affect the growth of fetus. Obstetricians generally
monitor fetal health and development by measuring the head circumference of foetuses
from ultrasound images. Therefore, the accuracy of head structure segmentation affects the
accuracy of head circumference measurement. In the subsequent experiments, the fetal
head image datasets are from the medical image segmentation challenge (van den Heuvel
et al., 2018b). It contains 788 ultrasound images of fetal heads at various stages. These
images are randomly divided into training and test datasets. The training datasets include
718 samples, and the test datasets include 70 samples. Because the number of training
samples is small, we apply horizontal flipping, vertical flipping, random scaling and
rotation to increase the number of training samples. Ultimately, the number of training
samples is 3,590. Meanwhile, all samples are cropped to 320 × 320 for our experiments.

Figure 4 Segmentation results of different algorithms on BP datasets.
Full-size DOI: 10.7717/peerj-cs.1638/fig-4

Table 2 The mean and standard deviation of five evaluation metrics for BP datasets.

Method Dice (%) Precision (%) Recall (%) HD (mm) ASD (mm)

U-Net 74.53 ± 0.19 74.73 ± 0.19 77.66 ± 0.22 16.70 ± 14.85 5.78 ± 5.92

U-Net++ 74.76 ± 0.19 75.48 ± 0.19 77.03 ± 0.22 16.53 ± 14.36 5.69 ± 5.77

M-Net 75.94 ± 0.19 78.11 ± 0.19 76.16 ± 0.21 14.48 ± 14.03 5.45 ± 7.49

dilated U-Net 75.89 ± 0.19 79.16 ± 0.19 75.18 ± 0.21 14.57 ± 13.21 5.27 ± 5.54

MA-Net 77.55 ± 0.17 78.65 ± 0.18 78.82 ± 0.19 13.59 ± 13.03 4.82 ± 4.57

TransUNet 79.15 ± 0.16 80.40 ± 0.17 79.93 ± 0.18 12.89 ± 11.96 4.51 ± 2.87

TU-Net 79.59 ± 0.16 81.25 ± 0.17 80.19 ± 0.18 12.44 ± 11.23 4.29 ± 2.57

Note:
The best result is highlighted with bold.
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Table 3 shows the mean and standard deviation of five evaluation metrics for different
segmentation algorithms. TU-Net achieves a value of 97.94 ± 0.01 for Dice (%), 98.18 ±
0.01 for precision (%), 97.72 ± 0.01 for recall (%), 6.93 ± 2.15 for HD (mm) and 2.97 ± 0.94
for ASD (mm). Our proposed method significantly improves segmentation accuracy. The
segmentation results of the seven networks are shown in Fig. 5.

Ablation study
To evaluate the effectiveness of each module in TU-Net, we conducted ablation studies on
the two types of datasets. Dice scores are used as the evaluation metric of the following
experiments.

Joint loss
Using different loss functions with the same architecture of the network greatly impacts
segmentation performance. Therefore, we adopt joint loss to optimize learning efficiency
and improve segmentation accuracy. We test different combinations of loss functions to
determine the optimal joint loss in the experiments (e.g., Dice, Dice & CE, Dice & Focal,
Dice & CE & TopK and Dice & TopK). Figure 6 displays boxplots for the mean Dice scores
of different loss functions in TU-Net. These plots indicate that the median of our proposed

Table 3 The mean and standard deviation of five evaluation metrics for the fetal head datasets.

Method Dice (%) Precision (%) Recall (%) HD (mm) ASD (mm)

U-Net 92.67 ± 0.07 98.03 ± 0.01 88.66 ± 0.11 56.62 ± 41.26 12.50 ± 7.93

U-Net++ 93.59 ± 0.05 98.12 ± 0.01 90.00 ± 0.09 50.85 ± 40.95 11.26 ± 7.83

M-Net 95.68 ± 0.03 96.96 ± 0.02 94.70 ± 0.05 19.26 ± 21.96 5.51 ± 3.56

Dilated U-Net 96.76 ± 0.02 97.09 ± 0.02 96.54 ± 0.04 16.48 ± 19.24 5.24 ± 3.59

MA-Net 97.26 ± 0.01 96.79 ± 0.02 97.78 ± 0.02 10.92 ± 5.49 4.15 ± 1.62

TransUNet 97.73 ± 0.01 98.15 ± 0.01 97.35 ± 0.02 7.99 ± 2.84 3.29 ± 1.19

TU-Net 97.94 ± 0.01 98.18 ± 0.01 97.72 ± 0.01 6.93 ± 2.15 2.97 ± 0.94

Note:
The best result is highlighted with bold.

Figure 5 Segmentation results of different algorithms on fetal head datasets. Image source credit: van
den Heuvel et al. (2018a). Automated measurement of fetal head circumference using 2D ultrasound
images (Data set). Zenodo. https://doi.org/10.5281/zenodo.1327317, https://hc18.grand-challenge.org.

Full-size DOI: 10.7717/peerj-cs.1638/fig-5
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methods is the maximum median. Meanwhile, we observe that segmentation performance
is strongly dependent on the combination loss function and that the Dice-related
compound loss function has better segmentation accuracy than the other functions.
Therefore, the compound loss function of Dice and TopK is the optimal loss function.
Compared with other loss functions, our proposed method can improve the mean Dice
values of the BP and fetal head datasets by approximately 1.08% and 0.17%, respectively.

Parallel attention mechanism module
TU-Net adopts a parallel attention mechanism to capture the global and multiscale local
feature information of ultrasound images. The parallel attention mechanism consists of a
transformer module and a series of atrous convolution and pyramid pooling modules. To
demonstrate the advantages of the parallel attention mechanism in TU-Net, we conduct
the following experiments on the BP and fetal head datasets. First, we remove the parallel
attention mechanism from TU-Net (U-Net). Similarly, we remove the transformer module
from the parallel attention mechanism in TU-Net (AU-Net). Finally, we remove the atrous
convolution and pyramid module from the parallel attention mechanism in TU-Net (T-
Net). Figure 7 displays boxplots for the mean Dice scores of different attention mechanism
modules. Figure 7 indicates that the median of our proposed methods is the maximum and
our proposed method can improve segmentation accuracy. These experiments indicate
that the parallel attention mechanism module can improve the mean Dice scores of the BP
and fetal head datasets by approximately 0.80% and 0.13%, respectively.

Input feature
Traditionally, ViT takes image patches as the input of Transformer to learn the global
relation of all image patches. In TU-Net, we first obtain high-dimensional feature maps
from the successive encoder module. Next, these feature maps are input into the parallel
attention mechanism to obtain global and multiscale local feature information. Finally, the

Figure 6 Boxplots of dice scores for different joint losses on BP and fetal head datasets. The central mark indicates the median, the bottom and
top edges of the box indicate the interquartile range and the whiskers indicate the minimum and maximum.

Full-size DOI: 10.7717/peerj-cs.1638/fig-6
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skip connection between the encoder and decoder compensates for the loss of feature
information caused by successive convolutions and pooling. Therefore, to demonstrate the
advantages of high-dimensional feature maps, we conduct the following experiment. We
remove the encoder and decoder modules and use image patches instead of high-
dimensional feature maps as the input of the Transformer module (T-Net). Figure 8
displays boxplots for the mean Dice scores of the above experiment. This indicates that the
median of our proposed methods is the maximum and that using high-dimensional feature
maps as the input of Transformer can improve segmentation accuracy. Meanwhile, we
observe that segmentation performance of different input types largely differ on different
types of ultrasound images. Compared with T-Net, our proposed network can improve the
mean Dice scores of the BP and fetal head datasets by approximately 13.01% and 1.96%,
respectively.

Figure 7 Boxplots of dice scores for different attention mechanisms on BP and fetal head datasets. The central mark indicates the median, the
bottom and top edges of the box indicate the interquartile range and the whiskers indicate the minimum and maximum.

Full-size DOI: 10.7717/peerj-cs.1638/fig-7

Figure 8 Boxplots of dice scores for different input types on BP and fetal head datasets. The central mark indicates the median, the bottom and
top edges of the box indicate the interquartile range and the whiskers indicate the minimum and maximum.

Full-size DOI: 10.7717/peerj-cs.1638/fig-8
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Statistical analysis
We apply statistical analysis to evaluate the performance of different networks. Since the
Dice scores are not a Gaussian distribution, we use the nonparametric Friedman test to
evaluate segmentation performance (Friedman, 2012). The mean rank and p-value are
shown in Table 4. A p-value less than 0.05 was considered to indicate a significant
difference across the compared algorithms. Higher mean rank values indicate higher
segmentation performance. The results of the statistical analysis are shown in Table 4.
These results show that TU-Net significantly improves segmentation performance
compared with other algorithms.

DISCUSSION
In this article, we propose a hybrid Transformer and U-Net with a joint loss algorithm for
the segmentation of ultrasound images. The proposed algorithm is based on the encoder-
decoder architecture and includes encoder, parallel attention mechanism and decoder
modules. Meanwhile, we adopt a compound loss function with Dice and TopK to optimize
learning efficiency and improve segmentation accuracy. Finally, we use comparison
experiments and ablation studies to verify our proposed algorithm on two types of
ultrasound image datasets.

In the comparison experiments, we compare two types of segmentation algorithms: one
is segmentation algorithms based on CNNs, and the other is segmentation algorithms
based on hybrid CNNs and Transformer. Figure 9 shows the bar plots of the mean metric
scores of the seven algorithms. It can be observed that the hybrid CNNs and Transformer
algorithms perform better than other algorithms based on CNNs because CNNs and
Transformers can capture local and global feature information, respectively. This fusion of
local and global feature information can improve segmentation accuracy. Meanwhile, in
the ablation studies, we find the key components for improved segmentation performance.
First, the high-dimensional feature maps obtained by the encoder module can be used as
the input of the parallel attention mechanism to improve segmentation accuracy. Second,
the parallel attention mechanism can capture the global and multiscale local feature
information of ultrasound images. This method can address segmentation targets with
various sizes, improving the generalization of the algorithm. Third, the Dice-related
compound loss function has better segmentation accuracy than the other loss functions.
However, our proposed method outperforms other methods on the segmentation tasks of
ultrasound images, and the number of trainable parameters significantly increases. The bar
plots of various algorithm parameter sizes are shown in Fig. 10. Therefore, we require more

Table 4 The mean rank of the dice scores of different networks on BP and fetal head datasets.

Datasets Mean rank p-value

U-Net U-Net++ M-Net Dilated U-Net MA-Net TransUNet TU-Net

BP 3.43 3.62 4.15 4.06 4.20 4.25 4.30 1.96E−13

Fetal head 1.86 2.03 3.21 4.40 4.69 5.60 6.21 5.27E−45

Note:
The best result is highlighted with bold.
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computational resources for training the algorithms. However, we believe this problem can
be alleviated as modern GPUs rapidly develop.

CONCLUSIONS
In this article, we propose a hybrid Transformer and U-Net with joint loss to segment
ultrasound images. TU-Net is based on the encoder-decoder architecture and includes
three modules: the encoder, parallel attention mechanism and decoder modules. We use
two types of ultrasound image datasets to verify our proposed method. As shown by
comparative experiments, TU-Net significantly improves segmentation performance.

Figure 9 Bar plots of evaluation metrics for seven segmentation algorithms. The coloured bar represents the mean Dice scores, precision, recall,
HD and ASD of each algorithm on the BP and fetal head datasets. Full-size DOI: 10.7717/peerj-cs.1638/fig-9

Figure 10 Bar plots of parameter sizes for seven segmentation algorithms.
Full-size DOI: 10.7717/peerj-cs.1638/fig-10
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Compared with the other six algorithms, on average, TU-Net shows improvements of
approximately 3.89%, 1.03%, 4.31%, 39.97% and 32.06% for Dice scores, precision, recall,
HD and ASD, respectively. In addition, we verify the performance of different algorithms
using the Freidman test of nonparametric statistical analysis. TU-Net obtains the best
mean rank in this test. This result indicates that the different algorithms significantly differ.
Meanwhile, we conducted a series of ablation studies to verify the effectiveness of the TU-
Net. These experimental results show that the parallel attention mechanism, joint loss and
input of feature maps can effectively improve segmentation accuracy.
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