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ABSTRACT
Traffic classification is essential in network-related areas such as network management,
monitoring, and security. As the proportion of encrypted internet traffic rises, the
accuracy of port-based and DPI-based traffic classification methods has declined. The
methods based on machine learning and deep learning have effectively improved the
accuracy of traffic classification, but they still suffer from inadequate extraction of
traffic structure features and poor feature representativeness. This article proposes
a model called Semi-supervision 2-Dimensional Convolution AutoEncoder (Semi-
2DCAE). Themodel extracts the spatial structure features in the original network traffic
by 2-dimensional convolution neural network (2D-CNN) and uses the autoencoder
structure to downscale the data so that different traffic features are represented as
spectral lines in different intervals of a one-dimensional standard coordinate system,
which we call FlowSpectrum. In this article, the PRuLe activation function is added to
the model to ensure the stability of the training process. We use the ISCX-VPN2016
dataset to test the classification effect of FlowSpectrummodel. The experimental results
show that the proposed model can characterize the encrypted traffic features in a
one-dimensional coordinate system and classify Non-VPN encrypted traffic with an
accuracy of up to 99.2%, which is about 7% better than the state-of-the-art solution,
and VPN encrypted traffic with an accuracy of 98.3%, which is about 2% better than
the state-of-the-art solution.

Subjects Artificial Intelligence, Computer Networks and Communications, Network Science and
Online Social Networks, Security and Privacy, Neural Networks
Keywords Feature representation, Encrypted traffic classification, 2-Dimensional convolution
AutoEncoder, FlowSpectrum

INTRODUCTION
Traffic classification, as one of the fundamental problems in computer networks, is an
important part of network traffic analysis. Traffic classification is mainly used to associate
traffic into a specific class based on different requirements such as quality-of-service
(QoS), routing improvement, and billing systems (Azab et al., 2022). So far, various traffic
classification methods have been proposed. We can roughly classify these methods into

How to cite this article Cui J, Bai L, Li G, Lin Z, Zeng P. 2023. Semi-2DCAE: a semi-supervision 2D-CNN AutoEncoder model for fea-
ture representation and classification of encrypted traffic. PeerJ Comput. Sci. 9:e1635 http://doi.org/10.7717/peerj-cs.1635

https://peerj.com/computer-science
mailto:linzhigui@tiangong.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1635
https://creativecommons.org/publicdomain/zero/1.0
https://creativecommons.org/publicdomain/zero/1.0
https://creativecommons.org/publicdomain/zero/1.0
http://doi.org/10.7717/peerj-cs.1635


four types, including port-basedmethods, payload-basedmethods,machine learning-based
(ML-based) methods, and deep learning-based (DL-based) methods.

Initially, traffic classification was performed using the port-based approach (Moore
& Papagiannaki, 2005). Typically registered with IANA1 to represent well-known
services (Azab et al., 2022), such as the standard SSH port of 22; Telnet’s default port of
23, etc. This method is to extract the port number from the transport layer and determine
the type of traffic based on different port information. Although the port-based traffic
classification method is simple and fast, using known ports also vulnerable to attacks.
Therefore, more and more network communications are beginning to use methods such
as port masquerading, port randomization, and tunneling techniques to ensure their
security, which makes port-based traffic methods no longer applicable. The payload-based
traffic classification method is called deep packet inspection (DPI) (Khalife, Hajjar &
Díaz-Verdejo, 2017;Deri et al., 2014). DPI technology classifies network traffic by analyzing
the content of the payload portion of a data packet, which is more reliable than port-based
traffic methods of encrypted traffic (Bujlow, Carela-Español & Barlet-Ros, 2015; Lotfollahi
et al., 2017). In particular, many modern services use encryption technologies such as SSL
to encrypt communications to protect user privacy, which poses a significant challenge to
the application of DPI.

In recent years, researchers in the subject of traffic classification have given machine
learning (ML) technology a lot of attention. In the ML method, statistical characteristics
or time series characteristics (such as the number of data packets, average packet rate,
maximum/minimum data packets, etc.) are obtained by analyzing the statistical data of
the traffic. After acquiring the data features, ML models including K-nearest neighbors
(KNN) (Cover & Hart, 1967), decision trees (DT) (Quinlan, 1986), and support vector
machines (SVM) (Cortes & Vapnik, 1995) are used as classifiers for network traffic
classification. Although theML-based traffic classificationmethod does not involve privacy
security issues, there are still two shortcomings. First, large-scale traffic classification makes
ML methods highly complex in both time and space. Secondly, data features are selected
by researchers based on experience. These features not only require a large number of
artificial resources but also cannot be guaranteed to reflect all characteristics of network
traffic, which is time-consuming and prone to errors (Sheikh & Peng, 2022).

With the development ofML technology, a new generation of technology solutions–deep
learning (DL) methods, has emerged and gradually matured. Currently, DL has achieved
great success in applications such as computer vision (Simonyan & Zisserman, 2014; He
et al., 2016) and natural language processing (Peng et al., 2018; Yao, Mao & Luo, 2019).
Many researchers have begun to apply it to traffic classification, and have achieved good
results (Rezaei & Liu, 2019; Wang et al., 2019). Mature DL models include convolutional
neural networks (CNN) (Zeng et al., 2019; Wang et al., 2017a), recurrent neural networks
(RNN) (Lopez-Martin et al., 2017; Yao et al., 2019), AutoEncoder (AE) (Hinton &
Salakhutdinov, 2006; Bourlard & Kamp, 1988), etc. The DL model automatically learns
differentiated features from the original network flow, which saves a lot of artificial
resources and reduces the complexity of data processing. At the same time, when classifying
large-scale network traffic, the DL model reduces the temporal and spatial complexity.
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Figure 1 A simple comparison between light spectrum (A) and FlowSpectrum (B). In (A) ‘‘R’’, ‘‘O’’,
‘‘Y’’, ‘‘G’’, ‘‘B’’, ‘‘I’’, and ‘‘P’’ represent ‘‘Red,’’ ‘‘Orange’’, ‘‘Yellow’’, ‘‘Green’’, ‘‘Blue’’, ‘‘Indigo’’, and ‘‘Pur-
ple’’, respectively.

Full-size DOI: 10.7717/peerjcs.1635/fig-1

Although DL solves many shortcomings of ML in network traffic classification, there are
also new problems. First, DL is an end-to-end learning strategy, which makes the neural
network model a ‘‘black box’’ and poses a challenge for practical applications (Xie, Li
& Jiang, 2021). Moreover, DL models rarely represent traffic features, which means that
DL models are difficult to provide a basis for output results, which greatly hinders the
application of DL in practical environments.

The concept of FlowSpectrum was first proposed in Yang et al. (2022). Simply put, as
shown in Fig. 1A, Sunlight can be separated into different colors by a prism because different
colors of light have different wavelengths (λ). This creates a spectrum of light called the
light spectrum. Similarly, as shown in Fig. 1B, network flows are mapped into a spectral
line in a one-dimensional coordinate system through some kind of mapping, which we call
the FlowSpectrum. FlowSpectrum is a new scheme for characterizing network flow (Guo et
al., 2022). Its core is to construct a representation space of network behavior to represent
and describe the behavior of network flow. In Yang et al. (2022), researchers designed a
deep autoencoder model to extract, decompose, and reduce the dimensionality of statistical
features from the NSL-KDD dataset. Subsequently, the obtained features were represented
as spectra in a one-dimensional coordinate system, with different types of flow features
characterized within different spectral intervals. Finally, researchers use FlowSpectrum
to detect and classify network traffic types. The FlowSpectrum provides a new approach
for network flow analysis, which not only overcomes problems such as artificial feature
selection and high space–time complexity in ML but also takes into account the problem of
flow network characterization. However, the existing FlowSpectrum model still has some
problems, such as poor generalization ability, insufficient extraction of spatial structure
features of network flows, and low accuracy of network flow detection and classification.

In this article, we propose a Semi-2DCAE model for generating FlowSpectrum of
encrypted flows and classifying encrypted flows. Deviating from themethodology proposed
in Yang et al. (2022), our approach aims to capture more robust spatial structural features
of network flows by preserving the original byte sequences and transforming them into
two-dimensional images. To achieve this, we employ a 2D-CNN architecture within
our autoencoder model, enabling the extraction of salient features from the resulting
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two-dimensional representations. This approach effectively addresses the previous
limitations of FlowSpectrum models in extracting intrinsic structural characteristics of
network flows. Empirical evaluation validates the effectiveness of our model in accurately
classifying encrypted flows, outperforming previous FlowSpectrummodels in this domain.
Furthermore, we enhance themodel’s stability during the training process by incorporating
the PRule activation function. Specifically, our scheme is divided into two stages: the
training stage and the classification stage. In the training stage, firstly, we adopt the
AutoEncoder (AE) model architecture (Hinton & Salakhutdinov, 2006), which makes our
model capable of data dimensionality reduction. Then, in the AE structure, we add a
2-dimensional convolutional neural network (2D-CNN) layer, and then we process the
original network packet into an image and save the turner IDX file (the original data
is processed in session-level form) so that can then extract the original spatial structure
information features. Next, we appropriately designed a semi-supervised learning strategy
for deep learning (Glennan, Leckie & Erfani, 2016) to make the generated FlowSpectrum
effective for encrypted traffic classification. Finally, we use the softmax function to classify
the different spectral lines to form the FlowSpectrum. In the classification stage, we use a
Bayesian optimal classifier (Moore & Zuev, 2005) to classify the test set based on the known
FlowSpectrum. We can simply divide the task model into three components: encoder,
mapper, and decoder. The encoder encodes the input data, and we use it to enrich the
representation of the session-level input. Then, the mapper maps the encoded features
into a spectral map to generate the FlowSpectrum. Next, we use the decoder for error
reconstruction. Finally, using the generated FlowSpectrum as a criterion, we classify the
features of the test data by a Bayesian optimal classifier to obtain the classification results.

To design Semi-2DCAE, there are two main technical challenges:
• Extraction of spatial structural features. Preserving the privacy of encrypted traffic

prevents us from directly extracting information from the encrypted data. To address
the difficulty of extracting spatial structural features of network flows, we incorporate a
2D-CNN within autoencoder model. To enable the application of the 2D-CNN network,
we transform the original byte sequences of network flows into two-dimensional images.
• Stability of the FlowSpectrum model. Network flow data exhibits high complexity and

differs from pixel values in images. The data values of network flows span the entire real
number set, which can lead to instability during the model training process. To tackle this
issue, we experimentally select the PReLU activation function, which is better suited for
improving the stability of the model during the training process.

The contributions of this work can be summarized as follows:
• We propose a Semi-2DCAE model for generating a spectrum of encrypted flows

and analyzing their spectral features. The Semi-2DCAE model utilizes the spatial feature
extraction ability of 2D-CNN to form a semi-supervised autoencoder network. We use the
Semi-2DCAE model to characterize the features of encrypted flows in a one-dimensional
coordinate system for the first time, and it can be clearly seen that different encrypted flows
exist in different interval ranges in the coordinate system.
• Selection of activation function for the model. Our experimental results have

demonstrated that using the Prule activation function during the design process of deep
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learning models for flow classification can result in a more stable training process. The
Prule activation function retains values in the negative range, thereby avoiding unstable
training caused by data loss.
• We use encrypted FlowSpectrum for encrypted flow classification to improve the

accuracy of encrypted flow classification. In this article, we use the ISCX-VPN2016 dataset
to obtain the FlowSpectrum after first training the Semi-2DCAE model using the training
set, and then classifying the test set. The experimental results show that we improve the
accuracy of classifying non-VPN encrypted flows and VPN encrypted flows by about 7%
and about 2%, respectively, compared with the state-of-the-art methods.

The rest of this article is organized as follows. In ‘Introduction’, we introduce several
common technical solutions for traffic classification and the research status related to
FlowSpectrum. In ‘Related work’, we introduce the data types, the mechanism for flow
classification using the FlowSpectrum, and the framework of the FlowSpectrum model.
In ‘Methodology’, We have introduced the dataset used, experimental benchmarks, and
model parameter settings. In ‘Experiments’, we conductmultiple experiments and compare
the experimental results. Finally, we conclude this article and provided directions for future
work in ‘Results and discussion’.

RELATED WORK
In the past decade, various methods have been proposed to address the problem of traffic
classification. In this section, we will provide a detailed introduction to these methods.

DPI-based methods
As mentioned earlier, port-based traffic classification is vulnerable to attacks, prompting
the introduction of DPI technology. DPI has become one of the mature traffic classification
technologies in recent years, and there are many traffic classification solutions based on
DPI, including OpenDPI, nDPI, and Libprotoident.Hubballi & Swarnkar (2018) proposed
a bit-level DPI technique called BitCoding for generating signatures. BitCoding identifies
protocol types by using a small number of initial bits and using invariant bits as signatures.
At the same time, to prevent conflicts and cross-signature matching caused by the increase
in the number of signatures, the researchers use the Hamming distance variant to detect
signature similarity and suggest increasing the signature length of some protocols to avoid
overlap. The researchers conducted thorough experiments using three diverse datasets,
confirming BitCoding’s robust detection performance across various protocol types.
Alcock & Nelson (2012) developed a DPI library called Libprotoident, which is suitable for
application layer protocol identification of network flows. Libprotoident significantly saves
disk space during flow processing primarily because it only utilizes the first four bytes
of payload in each direction, packet size, and port number. Additionally, this approach
reduces privacy concerns to some extent when dealing with encrypted flows. Hubballi &
Khandait (2022) developed a DPI-based KeyClass traffic classifier that can classify network
flows in a single scan payload using keyword-based signatures. KeyClass rapidly identifies
potential applications by scanning a small number of initial bytes while continuously
optimizing the number of character comparisons, which greatly improves classification
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performance. The researchers tested the classification performance of KeyClass using two
large datasets, with an average classification accuracy of approximately 98%.

Although DPI is a powerful traffic classification technology, it still has many problems.
For example, DPI has a high computational complexity, potential privacy concerns during
payload analysis, and the inability to identify encrypted traffic. This limits the application
of DPI technology.

Machine learning-based methods
In the last decade, there has been a significant amount of research conducted on the
utilization of ML for traffic classification (Shafiq, Yu & Wang, 2018). ML-based methods
differ fromDPI in that they classify encrypted traffic by obtaining statistical features of data
packets. When using ML for traffic classification, researchers first need to obtain features
according to specific requirements (such as citation type/traffic type/protocol type). Then,
flow features are input into algorithm models to obtain classification results. Draper-Gil
et al. (2016) investigated the effectiveness of flow-based time-correlated features (e.g.,
stream duration, bytes of streams a second, time before and after arrival, etc.) in classifying
VPN flows. The researchers used two machine learning algorithms, DT and KNN, to test
the accuracy of traffic classification based on time-correlated features. The experimental
results showed an accuracy of over 80% for classifying VPN traffic. Yamansavascilar et al.
(2017) evaluated the performance of four learning algorithms such as J48, random forest,
K-NN, and Bayes Net for application identification and network traffic classification using
the UNB-ISCX dataset and their internal dataset. The researchers used 111 features from
the ISCX dataset in their experiments and eventually reduced the number of features in
the feature set to 12 features. The experimental results show that the K-NN algorithm
was able to achieve 93.94% accuracy on the ISCX dataset. Wang (2015) employed three
ML algorithms, namely artificial neural network, DT, and SVM, for classifying network
traffic and conducted a comparative analysis. Firstly, the researchers produced datasets
by capturing online network traffic from seven different applications such as DNS, FTP,
TELNET, P2P, WWW, IM, and MAIL. Then, they used the NetMate tool to extract the
features of the captured packets. Finally, the extracted packet features were processed by
three ML algorithms to classify the network traffics. The results of this experiment showed
that the DT algorithm achieved a classification accuracy of 97.57%.

Although ML algorithms can address some issues encountered in DPI, including
data privacy protection, they also introduce new challenges. Firstly, the classification
performance ofML algorithms for network flows heavily relies on the crucial step of feature
selection. Correctly identifying and extracting features relevant to traffic classification is
paramount for algorithm performance. However, determining the optimal feature set
presents a challenge, requiring domain expertise and experimental adjustments, which
increases the resource overhead for traffic classification. Secondly, the high computational
complexity of machine learning algorithms results in significant delays during the training
and testing phases, impacting their practical application in traffic classification. Lastly,
traditionalML algorithms (e.g., KNN,DT, SVM, etc. mentioned above) are of the supervised
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learning type and require a large number of traffic labels to be added manually, which
likewise increases the difficulty of applying ML to traffic classification.

Deep learning-based methods
The difference between DL-based andML-based methods is that DL-based methods do not
require manual feature selection. They are end-to-end automatic learning processes that
eliminate the feature selection stage, making them more convenient and efficient traffic
classification solutions. Wang et al. (2017b) proposed a method for classifying malware
traffic using traffic data as images based on 2D-CNNnetworks. Instead of designing features
manually, the method directly feeds the raw data flows into the model as the input data
of the classifier for classification. The experimental results show an average classification
accuracy of 99.41%, demonstrating the effectiveness of the method in malicious traffic
classification. Wang et al., (2017a) proposed an end-to-end encrypted traffic classification
method using one-dimensional convolutional neural networks (1D-CNN). This approach
integrates feature extraction, feature selection, and classifier into a unified framework,
enabling the automatic learning of nonlinear relationships between the raw input and its
corresponding output. This marks the first application of an end-to-end deep learning
model in the field of encrypted traffic classification. The team processed the original
network flows at both the flow level and session level. Experimental results demonstrate
that the end-to-end 1D-CNN model effectively enhances the accuracy of encrypted traffic
classification, with the session-level classification outperforming the flow-level classification
in terms of accuracy. Xie, Li & Jiang (2021) proposed a self-attention model called SAM for
traffic classification. The SAM model comprises four components: an embedding layer, a
self-attention layer, a 1D-CNN network layer, and a classifier. The research team conducted
experiments using three different types of datasets, including theWIDE dataset for protocol
classification, the UNIBS dataset for application classification, and the ISCX dataset for flow
type classification. Among these, the experimental results revealed a classification accuracy
of 90.3% for the ISCX dataset. Furthermore, the research team employed the self-attention
mechanism to allocate attention weights to network flow features used for classification,
providing insights into the discriminative basis of the DLmodel. Lopez-Martin et al. (2017)
proposed a combined CNN and RNN (specifically LSTM) model for Internet of Things
(IoT) traffic classification. The research team utilized the RedIRIS dataset and extracted the
first 20 packet information from each network flow with the same five-tuple (source port,
destination port, source IP, destination IP, and protocol). Instead of relying on payload
data, the team extracted data based on advanced headers, which reduced model training
latency and decreased the volume of data features. Experimental results demonstrate that
the model effectively classifies IoT traffic without requiring any feature engineering during
the process. Höchst et al. (2017) proposed an unsupervised traffic classification method
that leverages statistical features of traffic and a dimensionality reduction scheme based
on AE. The research team employed a time interval-based feature vector construction
method and a semi-automatic clustering labeling approach. The evaluation was conducted
on approximately four months of real data captured from around 25 mobile devices.
Experimental results demonstrate that the proposed method successfully detects seven
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different types of network flows, achieving an average accuracy of 80% and an average recall
rate of 75%. Li et al. (2018) proposed an improved Stacked AutoEncoder (SAE) approach
to learn complex relationships among multiple source network flows for classification.
By stacking multiple basic Bayesian AutoEncoders, the research team achieved network
flows classification. The proposed method was evaluated on synthetic datasets based on
the MAWI and DARPA99 datasets. The experimental results demonstrated a classification
accuracy of 83.2%.

Due to the ability of DL models in traffic classification to automatically learn feature
representations from flow data without relying on handcrafted features, DL models have
simplified the application of traffic classification. Furthermore, DL models can extract
more abstract and useful features from raw network flows, better capturing the intrinsic
structural characteristics of the flows compared to ML models. Additionally, unsupervised
traffic classification models based on DL (Höchst et al., 2017; Li et al., 2018) reduce the
dependency on labels, leading to substantial savings in labor and resources compared to
supervised traffic classification models based on DL and ML. However, there are some
challenges in this regard. Firstly, in the process of traffic classification, unsupervised
classification models such as AE and SAE have lower accuracy compared to supervised
classification models. Secondly, flow representation, as a crucial task for simplifying
network analysis, requires the characterization of network flows in a simplified domain.
Unfortunately, we have observed that both ML-based and DL-based traffic classification
approaches have paid little attention to this critical task of flow representation.

FlowSpecturm-based methods
FlowSpectrum, as introduced in the first section, is a novel approach to traffic analysis
that provides a specific representation method for discernible features of network traffic in
the cyberspace. The core of FlowSpectrum theory lies in simplifying the analysis of sparse
high-dimensional network traffic features through a simplified domain representation.
This simplification enhances the performance of network flow classification, threat attack
detection, and interception of anomalous traffic, thereby enabling service providers to
maintain high quality of service (QoS) and service availability. Yang et al. (2022) proposed
the FlowSpectrum theory for the first time and designed a neural network architecture based
on semi-supervised AutoEncoder for network flow data decomposition and dimensionality
reduction. Specifically, the research team utilized the semi-supervised AutoEncoder model
to decompose and reduce the features of the NSL-KDD dataset, mapping them onto a
one-dimensional standard coordinate system to form feature spectra. Different types of
flow features are reflected in different intervals within the coordinate system. The team
tested the feature representation and intrusion detection capability of FlowSpectrum
using the NSL-KDD intrusion detection dataset, achieving a preliminary correspondence
between network behavior and spectral domain, as well as intrusion detection capability.
In Guo et al. (2022), extended the FlowSpectrum theory by proposing fundamental
methods to map network flow data from the original flow space to the FlowSpectrum
space. This included supplementary mathematical theories of FlowSpectrum and the
basic principles of constructing FlowSpectrum models. Additionally, the research team
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conducted experiments using the UNSW-NB15 dataset based on the FlowSpectrum
theory. For the first time, they mapped the features of nine types of attack traffic from the
UNSW-NB15 dataset onto a two-dimensional coordinate system and classified the nine
types of flows, achieving a classification accuracy of 67.72%. It is evident that designing
a stable, highly generalized, and effective FlowSpectrum mapping model crucially relies
on the model’s ability to extract spatiotemporal features of network flows and perform
dimensionality reduction. Fu et al. (2022) designed an online attack detection model called
Whisper, which uses the discrete Fourier transform (DFT) algorithm to successfully map
network flows to an effective frequency domain space. Experimental results show that
this method has an accuracy rate of over 95.00% in detecting threat attacks. Bouzida et
al. (2004) proposed a PCA-based (Tipping & Bishop, 1999) network data dimensionality
reduction method and used it for threat attack detection. Hu, Gu &Wei (2021) designed
a CLD-Net model that reduces high-dimensional features learned by neural networks to
eight dimensions to distinguish eight different types of network encryption traffic through
feature reduction. Shi et al. (2018) proposed a feature optimization method based on DL
and feature selection (FS) technology. Based on real traffic trajectory data, experimental
results show that the proposed method can not only effectively reduce the dimensionality
of the feature space but also overcome the negative effects of multi-class imbalance and
concept drift on ML technology. He et al. (2022) proposed a Boruta-ET model based on
Boruta and extreme tree (ET) algorithms, which uses Boruta-based algorithms to reduce
network flow features. The goal of Boruta dimensionality reduction is to extract all features
related to the dependent variables with global dimensions and find the best subset of
features containing the most information. Finally, the optimal feature subset is used as
an input parameter for the ET algorithm model for training and testing. Imran et al.
(2012) used linear discriminant analysis (LDA) and genetic algorithms (GA) for feature
transformation and optimal subset selection.

In general, there are some limitations in the current FlowSpectrum research.
Firstly, FlowSpectrum models exhibit weak generalization capability and low
detection/classification accuracy. For example, the model proposed in Yang et al. (2022)
is not suitable for encrypted flows, and the classification accuracy of the nine types of
attack traffic in Guo et al. (2022) is only 67.72%. Secondly, the research has overlooked
the structural characteristics of network flow space. In complex network environments,
the spatial structural features of network flows often carry crucial information. However,
existing FlowSpectrum models cannot extract the original structural features of network
flow space.

To address the limitations of different approaches in network flow classification and
improve and expand existing FlowSpectrum techniques, this study proposes a Semi-2DCAE
model. The model is designed to generate FlowSpectrum for encrypted flows and utilize
these FlowSpectrum for flow classification. Our approach has two main advantages. First,
we process the original network traffic into two-dimensional graphs at the session level
and extract their spatial features using a 2D-CNN network’s spatial feature extraction
capability. Overall, we generate encrypted traffic spectra through the Semi-2DCAE model
and represent the spatial features of Non-VPN encrypted traffic and VPN encrypted traffic
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in a one-dimensional coordinate system, which provides a basis for the classification results.
Second, our model utilizes the PReLU activation function, making it more suitable for
processing network flow data and improving its stability. Third, we classify the network
traffic in the test set using these spectra and achieve higher accuracy than state-of-the-art
methods for classifying encrypted traffic.

METHODOLOGY
As mentioned, the Semi-2DCAE model aims to map network traffic into FlowSpectrum
and classify encrypted traffic. To achieve this, we propose utilizing a 2-dimensional
convolutional autoencoder network to reduce the dimensionality of the network traffic
and extract meaningful information. In this section, we will cover the choice of input
data type in ‘Input type’, then explain the FlowSpectrum mechanism in ‘FlowSpectrum
Mechanism’, and finally introduce the entire framework structure of Semi-2DCAE in
‘Frame Design’.

Input type
In the study of network traffic analysis, the most common representations of traffic are
divided into the following three categories:

(i) Packet-level based;
(ii) Flow-level based;
(iii) Session-level based.
As shown in Fig. 2, a packet-level representation based onXie, Li & Jiang (2021)primarily

extracts information for each packet in a network flow, such as bytes from the data link,
IP, TCP/UDP, and application layers. However, this approach ignores the directional
information between flows and hosts. As shown in Fig. 3A, flow-level representation (Fu et
al., 2022) mainly involves counting packets between unidirectional source IP, source port,
destination IP, destination port, and transport protocol. Figure 3B shows session-level
representation (Wang et al., 2017a), which is similar to flow-level representation, but with
the difference that session-level representation is a bidirectional representation of a flow,
ensuring the flow direction. Session-level representation enhances the correlation between
original packets, greatly increasing the richness of extracted features, and improving
the accuracy of traffic classification. Therefore, in this study, we adopt the session-level
representation to represent network flows and describe our data handling approach in the
following section.

During data preprocessing, we represent the raw network flows as sessions and extract
features from each packet. To enable the use of a CNN as the first layer, it is necessary to
ensure that each input data has the same size. We adopt the suggestion from Wang et al.
(2017b) and extract the first 784 bytes of each packet, converting the data into grayscale
images of size 28 × 28 for final representation. As shown in Fig. 4, the original pcap files
are initially segmented into discrete session files. Subsequently, incomplete or duplicate
packets are removed from the cleaned files, and the resulting file is then cropped to 784
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Figure 2 The four-layer structure model for IP packets.
Full-size DOI: 10.7717/peerjcs.1635/fig-2

Figure 3 Schematic diagram of network flow and network session. (A) Shows the diagram of a flow.
Where ‘‘A’’ and ‘‘B’’ indicate two IP addresses and ‘‘×’’ means no access; (B) a diagram of a session.

Full-size DOI: 10.7717/peerjcs.1635/fig-3

bytes. If a file is smaller than 784 bytes, it is filled with 0 × 00. Finally, the files with a
standardized size of 784 bytes are saved in IDX format.

FlowSpectrum mechanism
As described in ‘Introduction’ and ‘Related work’, the FlowSpectrum is a scheme for
characterizing network flow features. Generating FlowSpectrum using a FlowSpectrum
model and classifying network flows based on them is the application of this article.

Representation of FlowSpectrum
We first define the set of network flow features as the vector EF =

{
f1,f2,...,fm

}
, here fi is the

eigenvalue, i∈ [1,m]. For each instance flow, we define this as Ex ={x1,x2,...,xm}, here xi is
the instance flow point value, corresponds to the value of fi in EF . We define a set of instance
flows as X = { Ex1, Ex2,..., Exn}, here Exw ⊆X ⊆Rm,X is an object in cyberspace, R is a real
number space object,w ∈ [1,n]. Also, we define the instance output set asL={t1,t2,...,tk},
here each t indicates an output type. We create a set D=

{
( Ex1, EL1),( Ex2, EL2),...,( Exm, ELm)

}
,
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Figure 4 Input data pre-processing diagram.
Full-size DOI: 10.7717/peerjcs.1635/fig-4

which is the corresponding set of input instances Ex and output instances EL, ELw ∈L. We
denote by µt (Ex) the probability that the output type of Ex is t . Expressed in the formula as
follows:

µt (Ex)= P {Y = t || X = Ex} (1)

where Y and X are respectively a random variable in L and X . Finally, we define an F(Xt )
to denote the set of feature values of the network space flow mapping to the real number
space (i.e., X→R):

F(Xt )=


d ( Ex1) :µt ( Ex1),
d ( Ex2) :µt ( Ex2),

··· ,

d ( Exn) :µt ( Exn)

 (2)

where d( Exn) is the value in the real number space R. We call F(Xt ) the FlowSpectrum. As
shown in Fig. 5, we provide a FlowSpectrum mechanism flowchart.

FlowSpectrum applied to traffic classification
The process of generating FlowSpectrum belongs to the decomposition and representation
of network flows. As described in Section 1 FlowSpectrum generation is part of the training
phase, while flow classification belongs to the classification phase. In the classification
phase, the classifier we use is the Bayesian optimal classifier. First, we create the test flows
set X ′ = { Ex1, Ex2,..., Exn}, where the probability value of instance Ex1 belonging to a certain
category is set to P( Ex1||X

′

). Then, the FlowSpectrum of the test flows is as follows:

F
(
X ′
)
=


d ( Ex1) : P

(
Ex1||X

′
)
,

d ( Ex2) : P
(
Ex2||X

′
)
,

··· ,

d ( Exn) : P
(
Ex2||X

′
)


(3)
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Figure 5 Input data pre-processing diagram.
Full-size DOI: 10.7717/peerjcs.1635/fig-5

And then, the similarity probability of the FlowSpectrum is found by clicking the formula
as follows:

F(X ′) ·F(Xt )= P{Y = t || X ∈X ′} (4)

where P{Y = t || X ∈ X ′} is the probability that X ′ belongs to Xt . Finally, the final
classification result is found by finding the maximum likelihood estimate ŷ . This is
expressed as follows:

ŷ = arg maxP
{
Y = t‖‖X ∈X ′

}
= arg maxF

(
X ′
)
·F(Xt ). (5)

when there are uncharacterized spectral values in X ′ , we need to calculate the minimum
distance between the spectral lines to determine the type of unknown spectral lines. We
use the calculation method of exponential decay proposed in Yang et al. (2022), as follows:

Ex ′ = arg min
Ex ′∈xt

∥∥∥d(Ex)−d( Ex ′)∥∥∥ (6)

µt (Ex)=µt

(
Ex ′
)
e−

∥∥∥d(Ex)−d( Ex ′)∥∥∥ (7)

where Ex ′ is the test instance flow.

Frame design
As shown in Fig. 6, Semi-2DCAE mainly consists of encoder, mapper, and decoder, where
the encoder is composed of the input layer, 2D-CNN, and MaxPooling2D; the mapper is
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Figure 6 Semi-2DCAEmodel structure.
Full-size DOI: 10.7717/peerjcs.1635/fig-6

composed of flatten layer, Dense layer, Concatenate layer, Reshape layer, and finally using
softmax function for classification; the decoder is composed of 2D-CNN, UpSampling2D
and output layer.

Encoder
The encoder consists of an input layer, 2D convolutional layer, PRelu layer, and pooling
layer, and its function is to extract features from the network flow. The model receives
28x28 byte flow images and trains 2D convolutional kernels in the convolutional layer. The
convolutional layer is represented as follows:

H j
= f

(
bj+

∑
i

w ij
∗xi

)
(8)

H j and xi are the jth output mapping and the ith input mapping respectively. w ij denotes
convolution filter weights. ‘‘∗’’ indicates convolution, bj is the deviation parameter of the
jth mapping. f denotes the activation function. For this convolutional layer, the PRelu
activation function is used to prevent overfitting and to fully explore the correlations
between features (we will provide a detailed introduction to activation functions in
‘Comparison of feature representation of encrypted traffic’).We then applied amaxpooling
layer to reduce redundant data and compress it. Pooling also increases the receptive field,
making the pooled data features translation invariant. Overall, we represent the encoder as
E, with the input network flow as Ex and Eed defined as the encoded network flow. Then,
the encoder is represented in the following formula:

Eed = E[H (Ex)]. (9)
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Mapper
Themapper consists of a flattening layer, fully connected layer, reshaping layer, and Softmax
classifier, and its function is to generate FlowSpectrum by representing the network flow
features as spectral lines. After encoding, the high-dimensional data features become
multidimensional vector features in the form Eed . Then, the feature maps are smoothed
and mapped to two real-valued numbers using two fully connected layers. We use the
notation ET to represent the feature that can be characterized and EF to represent the feature
that cannot be characterized, which correspond to the two real-valued numbers. And then,
we input the representable feature ET into the Softmax function to get the probability value
that the flow belongs to a certain category, and take the category with the largest probability
value as the final classification result. The formula of the Softmax function is shown below:

pi=
eTi∑k
i=0eTi

=
ed(xi)∑k
i=0ed(xi)

(10)

where pi is the probability that the input sample belongs to category i, Ti ∈ ET is a real
number in the range, i is the encrypted flows category index, and k is the total number of
encrypted flows categories. Here, we have d (xi)=Ti, i.e., our FlowSpectrum set d (x)= ET .
After obtaining the classification results, we use the categorical cross-entropy function to
calculate the Loss1:

Loss1=−
∑{

Xn
i log2

(
pni
)}

(11)

where n is the sample label index. In addition, we use the representable features ET and
non-representable features EF as the input of the decoder after concatenation and shaping.

Overall, we denote the mapper as M. By continuously training Loss1 value decreases,
we finally get the FlowSpectrum of representable features. Denote Med as the mapping
output and ⊕ as the concatenated shaping operator. Then the mapper is represented by
the following equation:

Med = ET⊕ EF (12)

Decoder
Also known as the reconstructor, after the mapper outputs Med , the decoder is used to
reconstruct the original network flows to obtain the corresponding reconstructed value.
We use the mean square error function to calculate the Loss2:

Loss2=
1
n

n∑
i=1

‖x̂i−xi‖2 (13)

where x̂i is the element value of the reconstructed network flows x̂ .
Overall, we denote the decoder asD. Then in the decoder is represented by the following

equation:

x̂ =D(Med) (14)
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The loss value of our whole framework design is set to Loss, then that Loss is the sum of
the Loss weights of the mapper and decoder.

EXPERIMENTS
In order to demonstrate the performance of the Semi-2DCAE FlowSpectrum model, we
evaluated our scheme through comprehensive experiments. In ‘Dataset’, we first introduce
the data set used in the experiment; In ‘Scheme and indicators’, we set the benchmark of
the experiment and the evaluation index; Finally, we describe our model setting parameters
in ‘Parameter selection’, and prove the advantages of using the PRule activation function.

Dataset
In terms of encryption traffic classification, we use the original data packets of the ISCX-
VPN2016 dataset (Draper-Gil et al., 2016), which contains Non-VPN encryption traffic
and VPN encryption traffic. Each encryption type includes six types of traffic: chat, Email,
File, P2P, Streaming, and VoIP. Note that we have deleted the packets without specific
labels, so it is less than one described in Draper-Gil et al. (2016). In addition, we also used
the NSL-KDD data set(CSV file) (Tavallaee et al., 2009), which contains five types of traffic:
normal, DOS, Probing, U2R, and R2L. The NSL-KDD data set is manually processed, and
each type of traffic has labels, so it is significantly different from the ISCX-VPN2016 data
set we use. Note that we only use the NSL-KDD data set to compare with the article (Yang
et al., 2022). To illustrate that there are spatial structure features in the original network
data, our model can capture this feature.

Scheme and indicators
To demonstrate our FlowSpectrum characterisation capabilities and the effectiveness of
cryptographic traffic classification, We have established three types of baselines:

(i) Machine learning-based: we choose the popular SVM (Cortes & Vapnik, 1995).
(ii) Deep learning-based: we choose the 1D-CNN model (Wang et al., 2017a) and

CNN+RNN (Yao et al., 2019).
(iii) FlowSpectrum-based: we choose the Semi-AE model, which first proposed the

FlowSpectrum theory and model (Yang et al., 2022), and we also build a new self-built
FlowSpectrum model–Semi-1DCAE, which mainly uses 1D-CNN as a semi-supervised
autoencoding network.

All these methods were run on a server with 8CPUs x Intel(R) Xeon(R) Platinum 8375C
CPU @ 2.90 GHz and RTX 3090 Ti GPU. python version 3.9.0.

In order to evaluate the performance of different methods, we use four indicators:
accuracy (ACC), Precision, Recall and F1 score(F1) as experimental evaluation. Each value
is calculated as follows:

ACC =
TP+TN

TP+FP+FN +TN
(15)

Precision=
TP

TP+FP
(16)

Cui et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1635 16/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1635


Recall =
TP

TP+FN
(17)

F1=
2Recall ∗Precision
Precision+Recall

(18)

Among them: TP, the number of traffic correctly allocated to a specific category; FP, the
number of traffic incorrectly allocated to a specific category; FN, the number of traffic that
belongs to a specific category but is allocated to other categories; TN, the number of traffic
that not belongs to a specific and is allocated to other categories.

Parameter selection
Hyperparameters
In the Semi-2DCAE model, the size of convolution cores in the convolution layer is 3,
the number of convolution cores used in the first and second convolution is 32 and 64,
respectively, and the size of the maximum pooling layer is 2. It should be noted that we use
L2 regularization in the encoder to prevent over-fitting, and the regularization rate is 0.01.
Epoch is set to 300, Batch_size is 64, and the learning rate is 0.0005.

Activate the function
Our model selects the random linear rectification activation function PRelu (Kannari,
Shariff & Biradar, 2021) with leakage, whose expression is:

f (x)=

{
x x > 0
λx x ≤ 0

,λ∈∪(L,u),L< u,u∈ [0,1) (19)

x is the transmission data of neurons, λ is the gradient function of PRelu when the input
value is a negative value range, and ∪(L,u) represents the continuous uniform distribution
function probability model. λ is a random variable drawn from ∪(L,u). Through formula
(19), we can find that PRelu can update the weight normally when the neuron output data
is greater than zero, while the weight can also be updated slightly when the neuron output
data falls within the negative range of zero. As shown in Figs. 7 and 8, during the model
training phase (note that during the training phase, we divide the training dataset into
training and validation sets in a 2:1 ratio.), we provided the training accuracy and training
loss of the model using two different activation functions, PRelu and Relu. From Figs. 7A
and 8A, it can be observed that when Relu is used as the activation function for the model,
oscillations occur during the training process. This phenomenon arises due to the output
of the activation function being zero, preventing the update of weights when data values fall
within the negative range, coupled with the presence of a large learning rate. Paradoxically,
reducing the learning rate hampers the model’s ability to converge to the global minimum.
However, from Figs. 7B and 8B, it is evident that when PRelu is employed as the activation
function, our model exhibits greater stability during the training process, leading to an
improvement in training accuracy. By choosing PRelu as the activation function, ourmodel
effectively mitigates the learning rate issue, ensuring convergence to the global minimum
and preventing overfitting.
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Figure 7 Training accuracy of Semi-2DCAEmodel. Among them, ‘result_acc’ represents the accuracy
on the training set, and ‘val_result_acc’ represents the accuracy on the validation set.

Full-size DOI: 10.7717/peerjcs.1635/fig-7

Figure 8 Training loss of Semi-2DCAEmodel. Among them, ‘result_loss’ represents the loss on the
training set, and ‘val_result_loss’ represents the loss on the validation set.

Full-size DOI: 10.7717/peerjcs.1635/fig-8

RESULTS AND DISCUSSION
To demonstrate the performance of Semi-2DCAE, we evaluate our scheme through
comprehensive experiments. In this chapter, we give the experimental results and make
a comparative analysis. First of all, in comparison of ‘FlowSpectrum prototype data’, we
compared and analyzed the performance of our Semi-2DCAE model and the Semi-AE
model in Yang et al. (2022) on the NSL-KDD dataset through experiments. In ‘Comparison
of feature representation of encrypted traffic’, a comparative analysis was conducted
between the proposed Semi-2DCAE model and two baseline models (Semi-AE and
Semi-1DCAE) to assess their effectiveness in feature representation for encrypted traffic.
In ‘Comparison of encrypted traffic classification’, the results of different models for
encrypted traffic classification were presented, followed by a detailed comparative analysis
of these results.
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Figure 9 FlowSpectrum of the statistical features of the NSL-KDD dataset based on the Semi-AE
model and Semi-2DCAEmodel.

Full-size DOI: 10.7717/peerjcs.1635/fig-9

Table 1 Comparison of recall rate of NSL-KDD data set.

Type Semi-AE Semi-2DCAE

Normal 0.980 1.000
Dos 0.996 0.941
Probe 0.617 0.552
Average 0.864 0.831

Comparison of FlowSpectrum prototype data
We performed classification on the NSL-KDD dataset using the Semi-2DCAE model and
the Semi-AE model described in Yang et al. (2022). Because the NSL-KDD data set is a
statistical feature after manual filtering, it can be compared with the original network flow
feature directly extracted in this article. As shown in Fig. 9, we obtained FlowSpectrums for
the NSL-KDD dataset using both the Semi-2DCAE and Semi-AE models. From Fig. 9B, It
can be observed that the FlowSpectrum lines generated by our Semi-2DCAE model exhibit
overlaps (e.g., Normal, DoS, and Probe lines). Additionally, as presented in Table 1, we
compared the recall rates of the NSL-KDD dataset using the Semi-2DCAE and Semi-AE
models (notably, the R2L and U2R data were excluded due to their minimal proportions,
as specified in Yang et al., 2022). The average recall rates for the Semi-2DCAE and Semi-AE
models were 83.1% and 86.4%, respectively. Overall, our Semi-2DCAEmodel demonstrates
relatively weak representation capability for the manually selected statistical features in
the NSL-KDD dataset. However, in terms of recall rates, our model is closely aligned with
the flow-based Semi-AE model. Furthermore, in the subsequent experimental analysis of
encrypted traffic classification, we anticipate entirely different results when extracting and
classifying the raw data features of encrypted traffic. It should be pointed out that based on
the source code and data provided in Yang et al. (2022), we did not obtain a result with an
average recall rate of 95.13% in Yang et al. (2022). Although we attempted to modify the
source code to improve the recall rate, we were unsuccessful.
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Figure 10 FlowSpectrum based on Semi-2DCAEmodel. (A) Non-VPN. (B) VPN.
Full-size DOI: 10.7717/peerjcs.1635/fig-10

Figure 11 FlowSpectrum based on Semi-AEmodel and Semi-1DCAEmodel. (A) Non-VPN. (B) VPN.
Full-size DOI: 10.7717/peerjcs.1635/fig-11

Comparison of feature representation of encrypted traffic
In the ISCX-VPN2016 dataset, there are two types of encrypted traffic: Non-VPN
encryption and VPN encryption. Each encryption type further consists of six different
traffic types, namely Chat, Email, File, P2P, Streaming, and VoIP. For each traffic type,
we have generated FlowSpectrum, which represents the low-dimensional features of the
network flows. Our objective is to analyze the characteristics of different types of network
flows based on the FlowSpectrum. Figure 10 illustrates the range of feature representation
spectra for Non-VPN encrypted flows and VPN encrypted flows generated by the Semi-
2DCAE model proposed in this article. From Fig. 10, it can be observed that different types
of traffic correspond to different intervals on the spectra. For instance, in the Non-VPN
encrypted traffic, the FlowSpectrum intervals of chat flows are mostly distributed in the
range of (8, 14), while the range of (20, 40) represents the concentration of email flows. In
the case of VPN encrypted traffic, the FlowSpectrum of chat traffic mainly falls within the
interval of (−5,−10), while the range of (0,−2) represents the distribution of email traffic.
Figure 11 illustrates the range of feature representation spectra for Non-VPN encrypted
flows and VPN encrypted flows generated using two benchmark models, namely Semi-AE
and Semi-1DCAE. From Fig. 11, it can be observed that there is a significant amount of
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Table 2 Spectral line interval based on different FlowSpectrummodels.

Nonvpn_chat Nonvpn_email Nonvpn_file Nonvpn_p2p Nonvpn_streaming Nonvpn_voip

Semi-2DCAE [8.620, 13.953] [19.282, 38.120] [−12.341,−7.198] [2.165, 3.442] [−2.782,−0.775] [−24.549,−15.813]

Semi-1DCAE [−27.591,−4.223] [−32.851,−18.023] [0.686, 5.242] [−4.785, 0.877] [−2.162, 2.743] [1.594, 10.248]

Semi-AE [0.347, 7.457] [9.394, 22.308] [−73.894,−33.535] [14.079, 88.715] [−10.455, 0.109] [−30.963,−8.650]

vpn_chat vpn_email vpn_file vpn_p2p vpn_streaming vpn_voip

Semi-2DCAE [−9.276,−4.831] [−1.912,−0.365] [1.460,5.195] [−3.471,−1.944] [−0.356, 1.024] [14.299, 19.061]

Semi-1DCAE [−0.514, 1.765] [−1.809, 0.353] [−4.103,−0.229] [−2.077,−0.448] [−1.870,−0.292] [3.219, 5.612]

Semi-AE [13.173, 34.872] [−9.157,−1.847] [−50.462,−11.081] [−6.193,−0.364] [−22.469,−6.964] [0.7946, 7.900]

overlap between different types of FlowSpectrum. For example, in Fig. 11A, there are file,
streaming, and VoIP traffic types distributed within the interval (−40, 0). In Fig. 11C,
the chat, email, file, P2P, streaming, and VoIP traffic types are all distributed within the
range of (−2, 2). Indeed, it is evident that there is a substantial overlap in the feature
representation spectra of encrypted flows generated by the benchmark models, Semi-AE
and Semi-1DCAE. The specific numerical values of the FlowSpectrum interval generated
by the Semi-2DCAE, Semi-AE, and Semi-1DCAE models are presented in Table 2. From
the Table 2, it is evident that only the Semi-2DCAE model is capable of distinguishing
different types of traffic into distinct ranges, while the other models fail to fully separate
them. The Semi-2DCAE model demonstrates satisfactory results in representing encrypted
flow features, as the FlowSpectrum of different types correspond to different intervals in the
one-dimensional coordinate system. This confirms the effectiveness of our Semi-2DCAE
model in capturing, decomposing, and reducing the dimensional representation of the
original spatial structural features of encrypted network flows. In contrast, the Semi-AE
and Semi-1DCAE benchmark models exhibit limitations in this regard.

To further analyze the effectiveness of FlowSpectrum in representing the low-
dimensional features of encrypted network flows, we employed the Semi-2DCAE, Semi-
AE, and Semi-1DCAE models to visualize the ISCX-VPN2016 dataset. As described in
‘Mapper’, the information contained in the raw network flow data can be divided into
representable feature ET and non-representable feature EF . Based on our Semi-2DCAE
model, the two-dimensional visualization of the ISCX-VPN2016 dataset is presented in
Fig. 12, where the vertical and horizontal axes represent ET and EF , respectively. From Fig. 12,
it is evident that data points of different types are separable along the vertical axis. However,
the distribution of data points along the horizontal axis appears to be chaotic. This provides
convincing evidence that the representable feature ET and the non-representable feature EF
have been successfully separated, thus demonstrating the effectiveness of our Semi-2DCAE
model. For comparison, we have reproduced the visualization results of encrypted flows
based on the Semi-AE and Semi-1DCAE models. The visualization results are shown in
Figs. 13 and 14. From these figures, it can be observed that both of these models exhibit
poor separation of representable features in encrypted flows.

In summary, after comparing the FlowSpectrum, spectrum interval values, and two-
dimensional data visualization of the Semi-2DCAE, Semi-AE, and Semi-1DCAE models, it
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Figure 12 Two-dimensional visualization of traffic features based on Semi-2DCAEmodel. (A) Non-
VPN. (B) VPN. The labels ‘‘0.0’’, ‘‘1.0’’, ‘‘2.0’’, ‘‘3.0’’, ‘‘4.0’’ and ‘‘5.0’’ respectively represent chat, email,
file, p2p, streaming, and voip flow types.

Full-size DOI: 10.7717/peerjcs.1635/fig-12

Figure 13 Two-dimensional visualization of traffic features based on Semi-1DCAEmodel. (A) Non-
VPN. (B) VPN. The labels ‘‘0.0’’, ‘‘1.0’’, ‘‘2.0’’, ‘‘3.0’’, ‘‘4.0’’, and ‘‘5.0’’ respectively represent chat, email,
file, p2p, streaming, and voip flow types.

Full-size DOI: 10.7717/peerjcs.1635/fig-13

can be determined that the FlowSpectrum generated by the proposed Semi-2DCAE model
provides the best representation of the features in encrypted flows.

Comparison of encrypted traffic classification
As shown in ‘Comparison of feature representation of encrypted traffic’ above, the
FlowSpectrum characterising encrypted flows based on different FlowSpectrummodels. In
this section, we will classify the encryption using the FlowSpectrum and do a comparative
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Figure 14 Two-dimensional visualization of traffic features based on Semi-AEmodel. (A) Non-VPN.
(B) VPN. The labels ‘‘0.0’’, ‘‘1.0’’, ‘‘2.0’’, ‘‘3.0’’, ‘‘4.0’’, and ‘‘5.0’’, respectively represent chat, email, file,
p2p, streaming, and voip flow types.

Full-size DOI: 10.7717/peerjcs.1635/fig-14

Table 3 Spectral line interval based on different FlowSpectrummodels.

NonVpn Vpn

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 79± 0.75% 84± 0.45% 83± 0.71% 83± 0.21% 95± 0.21% 95± 0.44% 88± 0.74% 91± 0.80%
1D-CNN 72± 0.73% 74± 0.28% 76± 0.18% 74± 0.68% 85± 0.10% 75± 0.38% 60± 0.70% 65± 0.16%
CNN+RNN 90± 0.15% 90± 0.57% 90± 0.73% 90± 0.47% 96± 0.71% 97± 0.30% 96± 0.21% 96± 0.51%
Semi-AE 81± 0.85% 85± 0.19% 81± 0.86% 79± 0.92% 95± 0.32% 95± 0.62% 95± 0.33% 95± 0.25%
Semi-1DCAE 80+ 0.04% 80± 0.51% 80+ 0.04% 79± 0.31% 83± 0.96% 84± 0.23% 84± 0.15% 82± 0.87%
Semi-2DCAE 99± 0.17% 99± 0.23% 99± 0.17% 99± 0.17% 98± 0.25% 98± 0.05% 97± 0.30% 97± 0.21%

analysis with the other five benchmark (Semi-AE, Semi-1DCAE, 1DCNN, SVM and
CNN+RNN) models.

As shown in Table 3, it is the average of the results after 10 classification of Non-VPN
encrypted flows and VPN encrypted flows. Among them, when classifying non-VPN
encrypted flows, the classification result based on our model reaches 99.2%, which is the
best, and the classification result based on 1D-CNN is 72.7%, which is the worst. In the
classification results of VPN encrypted flows, our model’s classification result reached
98.3%, which is also the best. The classification result based on Semi-1DCAE model is
84.0%, which is the worst. Table 3 shows the effectiveness of our FlowSpectrum model.
Our classification scheme is better than ML and DL based classification schemes on the
whole.

The above presents a comparison of each model’s overall performance. We now analyse
the classification performance of the six schemes for different flow types on the two types
of encryption. Therefore, we illustrate the confusion matrices of these methods on the two
types of encrypted streams in Figs. 15 and 16. These results also confirm the superiority
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Figure 15 Confusionmatrix of Non-VPN encrypted traffic based on different classification models.
(A) Semi-2DCAE, (B) Semi-AE, (C) Semi-1DCAE, (D) CNN+RNN, (E) 1D-CNN, (F) SVM. The abscissa
represents the prediction and the ordinate indicates the true label. The darker color of the elements on the
main diagonal, the better performance.

Full-size DOI: 10.7717/peerjcs.1635/fig-15

of encrypted traffic classification based on Semi-2DCAE. In Figs. 15A and 16B, we can see
that the main diagonal is the darkest in colour. Moreover, we find that in Fig. 16A, there
is a shadow at the intersection of P2P and Chat. This is that part of P2P data is predicted
to be Chat data. We think that the reason for this situation is that the features in P2P and
the features in the Chat flow partially overlap, resulting in classification errors.

CONCLUSION
As an emerging technology for network flow representation, FlowSpectrum is a method
of mapping high-dimensional features of network space flows into low-dimensional
representations. Using FlowSpectrum, various network flow analyses such as network flow
classification can be performed.

In the early days, network flow classification relied mainly on port numbers or DPI
technology. However, with the development of networks and the increasingly pressing
issue of network security, these methods have encountered significant challenges, as ports
are often abused and encryption is increasingly used in communications. In recent years,
the rise of machine learning and deep learning has provided more solutions for network
flow classification. In ML-based classification, network flow features need to be filtered
manually, and then ML models (SVM, DT, KNN) are used as classifiers for classification.
In the classification based on DL models (CNN, RNN), the end-to-end mode is used to
replace manual feature selection. However, while ML and DL have greatly improved the
accuracy and efficiency of network classification, little research seems to have focused
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Figure 16 Confusionmatrix of VPN encrypted traffic based on different classification models. (A)
Semi-2DCAE, (B) Semi-AE, (C) Semi-1DCAE, (D) CNN+RNN, (E) 1D-CNN, (F) SVM. The abscissa rep-
resents the prediction and the ordinate indicates the true label. The darker color of the elements on the
main diagonal, the better performance.

Full-size DOI: 10.7717/peerjcs.1635/fig-16

on the characterization of features by these methods, or on describing features as well
as providing interpretability, especially in end-to-end DL. As a new scheme of network
flow analysis, the FlowSpectrum theory solves the above problems well. However, existing
FlowSpectrum models still face many challenges such as poor generalization ability, weak
model feature extraction ability, and low classification accuracy for encrypted traffic.

In this article, we propose a Semi-supervision 2D-CNN AutoEncoder (Semi-2DCAE)
method to address these challenges. First of all, in order to make the FlowSpectrum more
characterize characteristics of encrypted flows, we use the method of full-layer information
extraction of data packets and generate IDX files that can be processed by 2D-CNN during
data processing. After that, we use the Semi-2DCNNmodel to extract and reduce the spatial
structure features of the data, and then establish a standard one-dimensional coordinate
system to characterize the features extracted from the model as spectral lines, which we call
FlowSpectrum. Finally, the FlowSpectrum is utilized to classify the test data. Experimental
results demonstrate that compared to existing schemes, the FlowSpectrum generated based
on Semi-2DCNN successfully characterizes different types of encrypted flows and achieves
higher accuracy in their classification.

In the future, our work will be focused on three main areas.
(i) FlowSpectrum characterisation
The key to the quality of FlowSpectrum for characterising network flows is in the

extraction and representation of representable information. The flows in the network
space are complex and varied, with thousands of features, and finding a more appropriate
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Figure 17 Classification delay of different models.Note that here the left vertical axis is in seconds (S)
and the right vertical axis is in milliseconds (ms).

Full-size DOI: 10.7717/peerjcs.1635/fig-17

mapping approachmay allow better andmore characterisation of the network flow features.
We argue that the mapping approach is not just a mapping of time and space, as in Fu
et al. (2022) where the network flows are extracted through Fourier variation to extract
the frequency domain features of the flows, and in Agrawal & Tapaswi (2020) where the
researchers use Fast Hartley Transform (FHT) to extract the frequency domain features
of the flows. As mentioned above, the mapping of network flows into one-dimensional
coordinates in our model is a series of transformations to obtain one-dimensional features
from the spatial features of the flows. In the future, we will explore multi-dimensional
spectral line features including two-dimensional and three-dimensional.

(ii) Online analysis
In the future, we will utilize FlowSpectrum for the online classification of network

flows. One of the key challenges in online network flow analysis is classification latency.
In reference (Xie, Li & Jiang, 2021), the latest online analysis approach was employed, and
according to the article’s data, the online classification latency was approximately 2 ms. In
reference (Fu et al., 2022), researchers conducted online attack detection on network flows
using an online packet-capturing tool. Figure 17 illustrates the latency of our Semi-2DCAE
model and five other benchmark models for encrypted traffic classification. Specifically,
the FlowSpectrum classification latency based on the Semi-2DCAE model is 9.226 ms,
which provides possibilities for our future work on online traffic analysis. (iii) Unknown
network flow classification

At present, we can only classify network flow types that are known to us. However, we
are unable to identify flow types that are unknown. Therefore, our future research will
primarily focus on classifying unknown network flows.
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