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ABSTRACT
Credit card fraud can lead to significant financial losses for both individuals and
financial institutions. In this article, we propose a novel method called CTCN, which
uses Conditional Tabular Generative Adversarial Networks (CTGAN) and temporal
convolutional network (TCN) for credit card fraud detection. Our approach includes
an oversampling algorithm that uses CTGAN to balance the dataset, andNeighborhood
Cleaning Rule (NCL) to filter out majority class samples that overlap with the minority
class. We generate synthetic minority class samples that conform to the original
data distribution, resulting in a balanced dataset. We then employ TCN to analyze
transaction sequences and capture long-term dependencies between data, revealing
potential relationships between transaction sequences, thus achieving accurate credit
card fraud detection. Experiments on three public datasets demonstrate that our
proposed method outperforms current machine learning and deep learning methods,
as measured by recall, F1-Score, and AUC-ROC.

Subjects Data Mining and Machine Learning, Data Science, Neural Networks
Keywords Credit card fraud detection, Neighborhood cleaning rule, Conditional tabular
generative adversarial network, Temporal convolutional network

INTRODUCTION
Currently, credit card payment has become an important consumption method in
modern life. However, with the rapid development of the credit card industry, fraudulent
transactions have emerged as a significant problem. Credit card fraud not only results in
financial losses but also damages the reputation of financial institutions, causing people
to lose trust in credit card payments. Therefore, credit card fraud detection has become a
crucial task for financial institutions.

Identifying credit card fraud quickly and effectively is a challenging problem. Machine
learning methods have been applied in the field of credit card fraud detection to discover
patterns hidden behind a large amount of data. Themachine learningmodels used for credit
card fraud detection include support vector machines (SVM), Random Forest (RF), logistic
regression (LR), and Decision Tree (DT) (Zhang et al., 2021; Xuan et al., 2018; Trivedi et
al., 2020; Save et al., 2017). Compared to rule-based expert knowledge systems, machine
learning-based fraud detection solutions have stronger data representation capabilities
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and can discover more fraud transaction patterns (Arora et al., 2022; Alfaiz & Fati, 2022).
However, traditional machine learning methods did not consider the changing trends in
consumer spending behavior, that is, they did not consider the sequential nature of credit
card transaction data, leading to low detection accuracy. Fraud detection is essentially a
sequential classification problem, and this characteristic is crucial for discovering more
fraud transaction patterns and improving detection accuracy.

Deep Learning is a branch of machine learning that uses artificial neural networks as an
architecture, which is similar to the human brain in processing data and making decisions.
Deep learning has been applied to credit card fraud detection to discover the correlation
between data. Currently, deep learning detectionmodels that consider the sequential nature
of transaction data include convolutional neural network (CNN), recurrent neural network
(RNN), long short-term memory (LSTM), and Gate Recurrent Unit (GRU) (Vardhani,
Priyadarshini & Narasimhulu, 2019; Asha & KR, 2021). These models regard transaction
data as a sequential sequence, can discover the potential relationship between consumer
spending behaviors, and thus improve the accuracy of fraud detection. However, credit card
transactions are a type of time series and have both short-term and long-term memories.
Learning both memories is essential for accurate analysis and prediction. The above deep
learning models are insufficient in learning long-term memory (dependence) (Li & Ning,
2020; Fan et al., 2021). CNNs can only observe data within a historical linear size window,
whereas recurrent neural networks such as LSTMs do not address the issue of gradient
vanishing and gradient explosion problems.

Moreover, credit card transaction data suffers from a severe class imbalance problem,
with the majority of transactions being normal data and only a small portion being
fraudulent. The imbalance of credit card transaction data biases the detection results
towards the majority class samples, reducing the detection performance of the model.
Although there are severalmethods for dealing with imbalanced data, such as oversampling,
undersampling, cost-sensitive learning, and ensemble learning (Leevy et al., 2018), they
often lead to new problems. Oversampling introduces a large amount of redundant
data, while undersampling is prone to losing information on normal transaction data.
Cost-sensitive functions are not very applicable, and ensemble learning is susceptible
to noise data (Huang & Dai, 2021; Puri & Gupta, 2021). A generative adversarial network
(GAN) (Goodfellow et al., 2014), as a deep generation technology, can learn the distribution
of complex data and generate new samples that conform to the original data distribution,
improving the classification performance of imbalanced data as an oversampling algorithm.
However, GAN does not consider the class overlap phenomenon in imbalanced data, which
can lead to fuzzy classification boundaries and affect the performance of the detection
model.

To address the issue of imbalanced data affecting fraud detection performance, we
propose a credit card fraud detection method based on Conditional Tabular Generative
Adversarial Networks (CTGAN) and temporal convolutional network (TCN). Firstly, we
design an oversampling algorithm based on CTGAN to construct a balanced dataset.
CTGAN (Xu et al., 2019) is a GAN-based oversampling method that can learn the
distribution of complex data and generate fraudulent transaction samples that conform
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to the real data distribution. To ensure the quality of the generated samples, we filter
the original dataset with the Neighborhood Cleaning Rule (NCL) algorithm to remove
overlapping samples in the dataset. Then, fraud transactions are efficiently and accurately
detected through TCN. TCN (Bai, Kolter & Koltun, 2018) has a flexible receptive field,
which can learn long-termdependencies by controlling the size of the receptive field, solving
the problemof poor long-termdependency relationships in existing fraud detectionmodels.
Moreover, TCN allows for parallel computation, which can ensure training efficiency while
learning long-term dependency relationships. Our main contributions are summarized as
follows:

• We present an innovative approach for detecting credit card fraud, known as CTCN.
This methodology unveils latent connections among consumer expenditure patterns,
thereby enhancing the discernment precision within the underrepresented sample
category. Consequently, it contributes to the overall accuracy augmentation in the
identification of deceptive transactions.
• To uphold the intrinsic attributes of the primary dataset more effectively, we opt for a
profound generative model as opposed to conventional oversampling techniques. This
deep generative model adeptly assimilates the distribution of minority class instances,
enabling the synthesis of analogous instances that faithfully mirror the authentic dataset
distribution, thereby facilitating the construction of a balanced dataset.
• Within the realm of credit card datasets, a challenge emerges due to class overlapping.
Employing the NCL approach to enhance CTGAN, we strategically employ the NCL
algorithm to filter the foundational dataset. The objective is to excise instances entangled
through overlap, concurrently ensuring the caliber of instances generated by CTGAN.

The rest of this article is organized as follows: ‘Related work’ introduces existingmethods
for imbalanced data processing and credit card fraud detection. ‘Preliminary knowledge’
describes the basic principles of relevant technologies. ‘Proposed credit card fraud detection
method’ proposes our specific approach. ‘Experiments and analysis’ evaluates the approach
through experiments and analyzes the results. Finally, ‘Conclusion’ summarizes the work
of the entire article.

RELATED WORK
The design of a credit card fraud detection method needs to consider two aspects (Rtayli &
Enneya, 2020): firstly, solving the problem of class imbalance in the dataset to ensure the
performance of the detection method; secondly, selecting a suitable classifier to improve
the accuracy of fraud transaction detection.

Currently, methods for handling imbalanced data mainly include data-level methods
and algorithm-level methods (Das, Mullick & Zelinka, 2022). Algorithm-level methods
require a deep understanding of classification algorithms and loss functions. In this article,
we focus on data-level methods. Common data-level methods include oversampling
and undersampling methods. Singh, Ranjan & Tiwari (2022) analyzed the impact of
various data-level class balancing methods on different classification algorithms, such as
SMOTE, adaptive synthetic sampling (ADASYN), random oversampling (ROS), random
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undersampling (RUS), Tomeklinks, cluster centroids undersampling technique, AIIKNN,
SMOTE + Tomek (SMOTETomek), and SMOTE + ENN (SMOTEENN). The study
showed that both oversampling and undersampling methods can solve the problem of
imbalanced data. However, undersampling can lead to the loss of information in majority
class samples , making it difficult for the model to fully utilize the existing information.
The samples generated by oversampling lack diversity, which can cause overfitting to
some extent (Puri & Gupta, 2021). GAN, as a new type of oversampling method, can also
be used to solve the problem of imbalanced data. To this end, Engelmann & Lessmann
(2021) proposed a Conditional Wasserstein GAN-based oversampling method for credit
scoring. The results showed that this method can effectively model tabular data to solve the
problem of imbalanced data. However, GAN-based oversampling methods do not consider
the problem of class overlap in imbalanced data, which can cause blurry classification
boundaries and thus affect the detection performance of the model.

In the past decade, machine learning and deep learning methods have been widely
used in credit card fraud detection (Carcillo et al., 2021). Li et al. (2021a) established an
optimal credit card fraud prediction model based on SVM by comparing and studying
four different kernel functions and three parameter optimization methods. Wang & Han
(2019) proposed a credit card fraud prediction model based on clustering analysis and
ensemble SVM. They combined K-means clustering with AdaBoost ensemble to improve
SVM’s classification and prediction ability on imbalanced datasets. These methods can
discover more fraud patterns by learning effective features from the data. However,
they only analyze individual transaction information (such as amount and time) and do
not consider the sequential information between consumer spending behaviors. Fraud
transaction detection is essentially a sequential classification problem, and Zhang et al.
(2018) proposed a CNN model based on feature ranking for fraud transaction detection.
This method can achieve better performance by using only original features for training
and saves a lot of calculation time for deriving variables. However, it does not consider
long-termdependencies between transaction sequences. Jurgovsky et al. (2018) viewed fraud
detection as a sequence classification task and used LSTM to discover hidden sequence
patterns. Forough & Momtazi (2021) proposed an ensemble model based on data sequence
modeling, using deep recurrent neural networks and artificial neural network-based
voting mechanisms to detect fraud behaviors. Benchaji et al. (2021) applied the attention
mechanism to LSTM recurrent networks. Thesemethods view fraud detection as a sequence
classification problem, which improves the performance of the detection model. However,
they mainly rely on recurrent neural networks such as LSTM and GRU, which require a
large amount of memory to store unit states when processing long-term sequence data (Fan
et al., 2021), and suffer from the problem of gradient vanishing and exploding.

TCN is a novel algorithm used to solve time series prediction problems (Lea et al., 2016).
Initially, TCN was mainly used for action segmentation in videos. Bai, Kolter & Koltun
(2018) compared TCN with recurrent neural networks represented by LSTM/GRU and
found that in processing temporal tasks, TCN is not onlymore accurate than classical LSTM
and GRU but also has a simpler and clearer structure. In addition, Yan et al. (2020) applied
TCN to weather forecasting, and the experimental results showed that TCN performed
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better than LSTM in time series data prediction. Chen et al. (2020) proposed a TCN-based
prediction framework to learn correlations between sequences, and the experimental results
showed that this framework outperforms state-of-the-art methods in point prediction and
probability prediction tasks.

In summary, to address the challenges of data imbalance processing and credit card
fraud detection, we propose a credit card fraud detection method based on CTGAN and
TCN.

PRELIMINARY KNOWLEDGE
GAN and CTGAN
Generative adversarial network are generative models based on the theory of zero-sum
games. GAN consist of a generator G and a discriminator D (Goodfellow et al., 2014).
During training, the generator continually improves its ability to create fake data to
deceive the discriminator, while the discriminator judges whether the input data is real
or generated. The two components iteratively optimize each other until they reach a
dynamic equilibrium. The generator finally generates simulated samples and completes
data augmentation. The loss function of GAN is shown in Eq. (1):

min
G

max
D

V (G,D)= Ex∼Pr {log[D(x)]}+Ez∼Pz {log[1−D(G(z))]} (1)

where x represents real sampling, Pr represents the real sampling distribution, z represents
random noise, Pz represents random noise distribution, G(z) represents fake sample data
generated by generator G, and D(·) represents the output value of the discriminator D.

Although GAN can generate synthetic samples that conform to the real data distribution,
they are not suitable for generating tabular data. CTGAN is a generative model based on
GAN that has been optimized for the generation task of tabular data (Xu et al., 2019).
CTGAN takes into account the conditional information in tabular data, and uses special
generator and critic structures as well as other techniques. The architecture of CTGAN is
shown in Fig. 1.

CTGAN consists of two neural networks: a generator G and a Critic C (similar to
the discriminator in classical GAN architecture). To overcome the non-Gaussian and
multimodal distribution of continuous columns in tabular data, CTGAN employs mode-
specific normalization. A conditional generator and training by sample are used to address
the issue of imbalanced categories in discrete columns. Additionally, CTGAN incorporates
some recent advances in GAN training, such as the loss function of WGAN-GP (Gulrajani
et al., 2017) and the critic structure of PacGAN (Lin et al., 2018), to improve training
stability and the quality of generated data. The loss function of CTGAN is shown in Eq. (2):

L= EG(z)∼Pg [D(G(z))]−Ex∼Pr [D(x)]+λEy∼Py [(||∇yD(y)||−1)
2
] (2)

where y represents the sample linearly interpolated to the real data x , λ represents the
gradient penalty factor, Pr and Pg represent the distribution of real and generated data.

The credit card dataset is a type of tabular data that contains both data and classification
information. CTGAN is specifically designed to generate tabular data and can effectively
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Figure 1 Architecture of conditional tabular GAN.
Full-size DOI: 10.7717/peerjcs.1634/fig-1

learn the distribution of credit card data, producing synthetic samples that conform to the
real data distribution. This can be useful for data augmentation while maintaining data
utility.

Temporal convolutional network
Temporal Convolutional Network is a type of convolutional neural network specifically
designed for processing time-series data. Its structure includes causal convolutions, dilated
convolutions, and residual connections (He & Zhao, 2019), as illustrated in Fig. 2.

In time series processing, causal convolution ensures that the model does not use
future information when processing sequential data. Dilated convolution can expand the
receptive field of convolution operations and increase the model’s perception range, while
residual connections can speed up network convergence and improve model accuracy.
These unique design features enable TCN to perform well in time series data processing.

To capture long-term historical information in time series processing, the depth of
causal convolution can be increased or the convolution kernel can be enlarged (Li et al.,
2020). However, increasing the size of the convolution kernel leads to an increase in the
number of network weight parameters, and increasing the convolution depth can result
in problems such as gradient vanishing, increased training complexity, and poor fitting
effect. To overcome these issues, the concept of dilation was introduced into convolutional
networks. Dilated convolution can increase the receptive field according to the dilation
factor, enhancing the network’s learning and memory capabilities over longer periods of
time (Yu & Koltun, 2015). A dilated causal convolution with a dilation factor d = 1,2,4 and
a convolution kernel k = 3 is shown in Fig. 3.

Dilated convolution allows the filter to be applied to a region larger than the length
of the filter itself by skipping part of the input (He & Zhao, 2019). For an input sequence
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Figure 2 Architecture of temporal convolutional network.
Full-size DOI: 10.7717/peerjcs.1634/fig-2

X = (x1,x2,· · ·,xT ) of length T and a filter f : 0,· · ·,k−1, the dilated convolution operation
F on element s in the sequence is shown in Eq. (3).

F(s)= (X∗d f )(s)=
k−1∑
i=0

f (i) ·Xs−d·i (3)

where d is the dilated factor, * indicates the convolution operation, k is the filter size, and
s-d· i is for the direction of the past.

Since the receptive field size of TCN depends on the network depth n, filter size k, and
dilated factor d, it is crucial to ensure stability as TCN becomes deeper and larger. To
address this issue, a generic residual module can be used instead of a regular convolutional
layer, which includes two layers of dilated causal convolutions and non-linear mapping.
Weight normalization and dropout are also added to each layer for network regularization
(Bai, Kolter & Koltun, 2018).

PROPOSED CREDIT CARD FRAUD DETECTION METHOD
Detecting credit card fraud is challenging due to the imbalanced nature of the data and the
need for effective fraud detection algorithms. In this section, we present CTCN, a credit
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Figure 3 A dilated causal convolution with dilated factors d = 1,2,4 and convolution kernel k= 3.
Full-size DOI: 10.7717/peerjcs.1634/fig-3

card fraud detection method that addresses these challenges. The system architecture of
CTCN is shown in Fig. 4.

CTCN consists of three main components: data preprocessing, an improved CTGAN
model, and a TCN detection algorithm. The steps involved in using CTCN to detect credit
card fraud transactions are outlined below.

• Data preprocessing

Data preprocessing is a crucial step in building a robust and reliable fraud detection
system. The data preprocessing component of CTCN includes three steps: data
normalization, feature selection, and data partitioning.
1. Data normalization: When different features have different value ranges, the model

convergence speed is slow, and it may not find the optimal value, thereby affecting
the performance of the model. In order to improve the comparability of the data, the
model uses Z -Score normalization (Jain, Shukla & Wadhvani, 2018) to normalize the
data to the [−1,1] interval.

2. Feature selection: Too many features will increase the complexity of the model, leading
to overfitting, while too few features will result in insufficient fitting of the model. The
model uses gradient boosting decision tree (GBDT) feature importance (Ji et al., 2021)
for feature selection to select appropriate input features.

3. Data set partitioning : The original data set is divided into a training set and a test set.
The training set is used to train the improved CTGAN and TCN detection algorithms,
while the test set is used to test the generalization ability of the model.

• Improvement of CTGANmodel

Data imbalance can affect the performance of detection models, and traditional
oversampling methods cannot effectively learn the sample distribution, resulting in
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Figure 4 CTCN System Architecture.
Full-size DOI: 10.7717/peerjcs.1634/fig-4

generated data that is not realistic. We use the deep generative model CTGAN instead of
traditional oversampling methods to generate fraud transaction samples that conform to
the real data distribution. The oversampling algorithm based on CTGAN can generate
data based on the distribution of the real data set, effectively solving the problem of
data imbalance in the credit card data set. However, in the credit card data set, normal
transaction data contains noisy and redundant samples, and overlaps with minority
class samples, which affects the quality of the generated data by CTGAN. In the fraud
detection field, minority class samples in overlapping areas are more representative. In
order to improve the quality of the generated minority class samples, avoid generating
overlapping and noisy samples, we use the NCL algorithm (Laurikkala, 2001) to improve
the CTGAN model and design an imbalanced data processing algorithm based on the
improved CTGAN. The NCL algorithm removes majority class samples in overlapping
regions through clustering, and then CTGAN is used to construct a balanced data set. The
improved CTGAN adeptly generates top-tier minority class samples that adhere faithfully
to the authentic data distribution. It effectively rectifies the imbalance conundrum within
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the source dataset, thereby orchestrating a heightened focus of the detection algorithm
on the intricacies and patterns exhibited by the minority class instances. By ameliorating
the discernment accuracy of these specific instances, it consequently amplifies the holistic
precision of the detection algorithm.

• TCN detection algorithm

The TCN detection algorithm is used to analyze the transaction sequence to capture the
long-term dependencies between data and discover potential correlations among consumer
spending behaviors to detect fraudulent transactions. Firstly, an unbalanced dataset is used
to train TCN and determine the network hyper-parameters. Then, the model is used to
detect fraudulent transactions.

The steps of the improved CTGAN algorithm are outlined in Algorithm 1.

Algorithm 1 Improved CTGAN Algorithm
Require: Original training set X , Number of nearest neighbors: N
Ensure: New balanced training set X ′

1: Divide the original training set X into normal transaction samples Xn and fraudulent
transaction samples Xf , and initialize R as an empty set

2: for each sample x ∈Xf do
3: y is samples other than x , y =X−x
4: for y ∈X do

5: d(x,y)=

√
n∑

i=1
(xi−yi)2

6: end for
7: Sort the distance values between x and all y in increasing order
8: Find the first N nearest neighbors Nx of x , Nx ={x1,x2,...,xN }
9: for xj ∈Nx do
10: if xj ∈Xn then
11: R=R∪xj
12: end if
13: end for
14: end for
15: Remove the majority class samples that belong to the set R from Xn to obtain the fil-

tered training set X ′n: X
′
n=Xn−R

16: Train the CTGAN model using the fraudulent transaction dataset Xf and iterate the
generator G and critic C

17: Use the trained CTGAN model to generate the specified number of fraudulent trans-
action samples Xnew and add them to Xf : X ′f =Xnew ∪Xf

18: Combine X ′n and X ′f to obtain the new balanced training set X ′: X ′=X ′n∪X
′

f

In the algorithm, the initial step involves dividing the original training set into majority
class dataset (normal transaction dataset) andminority class dataset (fraudulent transaction
dataset), and creating an empty set R (line 1). Subsequently, the NCL is utilized to filter
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Table 1 Credit card data set description.

Dataset Total transactions Features Normal Fraudulent Fraud/Total ratio (%)

Europe 284,807 31 284,315 492 0.172
Taiwan 30,000 25 23,364 6,636 22.12
German 1,000 21 700 300 30.00

the original dataset and eliminate overlapping and noisy samples. For each minority
class sample, x , its Euclidean distance is calculated from other samples y in the training
set (lines 2–6). The first N nearest neighbors Nx of x are then identified based on the
Euclidean distance (lines 7–8). If any of the N samples xj belongs to the majority class
dataset, xj is added to the set R (lines 9–14). The majority class samples in the set R are
then removed from X ′n to generate the filtered dataset (line 15). Next, the minority class
dataset is employed to train the CTGAN model, which can better learn the minority class
distribution (line 16). Using the generative network of CTGAN, the specified number of
fraudulent transaction samples Xnew are generated (line 17). Finally, the filtered majority
class dataset is mixed with the extended minority class dataset to obtain the new balanced
training set (line 18).

Collectively, by means of meticulous data preprocessing, the dataset stands poised
for optimization, culminating in an ameliorated efficacy of the detection algorithm.
This refinement serves a dual purpose: to curtail the peril of overfitting and to tailor
the dataset more aptly to the nuances of the detection algorithm. The enhancement of
CTGAN yields a concomitant augmentation in the algorithm’s capacity to discern disparate
categories, concurrently mitigating the toll of misclassification. This, in turn, engenders an
overarching enhancement in the algorithm’s comprehensive performance. Paired with the
TCN detection algorithm, it unveils latent correlations inherent in consumer expenditure
behavior. This, in turn, conduces to the unearthing of concealed fraudulent patterns,
thereby ushering in a heightened elevation of the algorithm’s collective detection prowess.
Synthesized harmoniously, these merits synergistically underpin substantial strides in the
algorithm’s efficacy, precision, and applicative value.

EXPERIMENTS AND ANALYSIS
We conducted comparative experiments between our improved CTGAN algorithm
and other oversampling, undersampling, and hybrid sampling methods to evaluate its
performance in addressing the imbalance in transaction data. Moreover, we compared
CTCN with traditional machine learning and deep learning methods to test the detection
effectiveness of the proposed method. The experiments were conducted on a computer
system with an Intel Core i5 10400F 2.90 GHz CPU and 8.0GB RAM.

Experimental dataset
We have used three different datasets from the real world to evaluate the proposed
method. These datasets exhibit dissimilar transaction volumes and proportions of deceptive
transactions, with the specificities expounded in Table 1.
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Table 2 Credit card fraud transaction detection confusionmatrix.

Predicted normal Predicted fraudulent

Actual normal True Positive(TP) False Negative(FN )
Actual fraudulent False Positive(FP) True Negative(TN )

The Europe dataset is a real credit card transaction dataset used in Dal Pozzolo et al.
(2015), comprising 284,807 transaction records spanning two days of European credit card
holders. The dataset includes 31 feature vectors, such as time, transaction amount, other
attributes (V1 to V28) processed via PCA, and a ‘‘Class’’ attribute distinguishing fraudulent
and normal transactions. The ‘‘Class’’ attribute takes a value of 0 for normal transactions
and 1 for fraudulent transactions, with 492 fraud transactions present in the dataset.

The Taiwan dataset (Yeh & Lien, 2009) is a credit card user payment dataset obtained
from the UCI machine learning repository. It includes 30,000 transaction records, of which
6,636 are default records. The dataset comprises 25 feature vectors, such as credit card
user’s overdue payment, demographic factors, credit data, payment history, and bills. The
‘‘default.payment.next.month’’ attribute indicates whether the credit card is overdue and
takes a value of 0 or 1.

The German dataset is the South German credit data released on the UCI database,
consisting of 1,000 transaction records, of which 300 belong to customers with poor
credit. The dataset contains 21 features representing customer financial status, such as
financial record status, measures of prepayments, bank accounts or securities, business
terms, installment payment rates of additional cash levels, property, age, and the number
of existing credits.

Evaluation metrics
We used a confusion matrix to evaluate the performance of our model in detecting credit
card fraud. The confusion matrix, shown in Table 2, is used to calculate several evaluation
metrics.

In this matrix, TP indicates the number of actual normal transactions and predicted to
be normal transactions, FP indicates the number of transactions that are actually fraudulent
but are predicted to be normal, FN indicates the number of transactions that are actually
normal but are predicted to be fraudulent, TN indicates actual fraudulent transactions and
predicts the number of fraudulent transactions.

Using the parameters from the confusion matrix, we define the following evaluation
metrics (Li et al., 2021b):

Accuracy is the probability of correctly classified transactions in all transactions and is
defined as:

Accuracy =
TP+TN

TP+TN +FP+FN
(4)

Recall is the probability of being predicted as a normal transaction in the sample of
normal transactions and is defined as:

Recall =
TP

TP+FN
(5)
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Precision is the probability that a normal transaction in the sample of normal transactions
is actually a normal transaction and is defined as:

Precision=
TP

TP+FP
(6)

F-Score is a metric that combines precision and recall and is defined as:

F−Score= (1+β2) ·
Precision ·Recall

β2 ·Precision+Recall
(7)

In Eq. (7), β is the coefficient that describes the relative importance of precision and
recall. When β = 1, the importance of precision and the importance of recall are equivalent,
and we obtain the F1-Score:

F1−Score=
2 ·Precision ·Recall
Precision+Recall

(8)

The AUC-ROC measures the generalization ability of the classification problem model.
The ROC curve consists of two parameters: the TPR and the FPR, which are defined as:

TPR=
TP

TP+FN
(9)

FPR=
FP

TN +FP
(10)

For different classification thresholds, we can obtain a series of TPR and FPR values to
plot the ROC curve. The AUC is a measure of the area under the ROC curve from (0,0) to
(1,1), which is one of the important metrics for performance evaluation of classification
problems (Forough & Momtazi, 2022).

The Matthews Correlation Coefficient (MCC) is an important measure of classification
performance for binary classification problems and is defined as:

MCC =
TP ·TN −FP ·FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

(11)

This metric can also be used to assess the classification performance of a binary
classification problem when the samples are extremely unbalanced (Chicco, Tötsch &
Jurman, 2021). Specificity is the probability that a sample of fraudulent transactions will
be correctly predicted as fraudulent transactions:

Specificity =
TN

(FP+TN )
(12)

The combined normal transaction recall and fraudulent transaction recall metric, G-mean,
is defined as follows:

G−mean=
√
Recall×Specificity =

√
TP

TP+FN
×

TN
TN +FP

(13)

This metric is useful for evaluating the performance of a classification model when the
data is imbalanced (Aurelio et al., 2019).
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Figure 5 Different sampling methods sampling effect comparison graph.
Full-size DOI: 10.7717/peerjcs.1634/fig-5

Experimental results
Performance experiment of improved CTGAN
To evaluate the performance of the improved CTGAN in handling imbalanced data, we
randomly generated a set of artificially imbalanced datasets using the Python 3.6 sklearn
package, which consisted of 500 data points. Among them, the majority class had 399
samples, and the minority class had 101 samples. We then conducted experiments with
undersampling RUS, oversampling SMOTE, hybrid sampling SMOTETomek, CTGAN,
and improved CTGAN. Figure 5 shows the visualization results of these sampling methods
on the dataset.

Figure 5A illustrates the distribution of the original data. We observe class overlap
between minority and majority class samples, which leads to a blurred classification
boundary. Figure 5B shows the data distribution after RUS processing, which randomly
removes majority class samples to make the number of majority and minority class
samples equal. However, this method may result in the loss of some useful information,
and the class overlap still persists in the dataset. Figure 5C shows the data distribution after
SMOTE processing, which generates new samples randomly along the lines connecting
adjacent minority class samples. However, the generated new samples are similar to the
original samples, and some of them fall into the majority class region, further exacerbating
class overlap. Figure 5D shows the data distribution after SMOTETomek processing,
which employs the Tomek link algorithm for data cleaning based on SMOTE, removing
redundant data. We observe that SMOTETomek can eliminate redundant data, but the
class overlap and blurred classification boundary persist. Figures 5E and 5F show the data
distribution after CTGAN and improved CTGAN processing, respectively. Both methods
generate new samples that are distributed similarly to the real samples. However, some
of the new samples generated by CTGAN fall into the majority class region, exacerbating
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Table 3 F1-Score, MCC and G-mean based on different sampling methods.

Methods Europe Taiwan German

F1-Score MCC G-mean F1-Score MCC G-mean F1-Score MCC G-mean

Original 0.8026 0.8040 0.8677 0.4675 0.3886 0.5892 0.4533 0.3298 0.5691
RUS 0.0283 0.1082 0.9107 0.5250 0.3961 0.6738 0.5913 0.3942 0.7131
ROS 0.7034 0.7108 0.9090 0.4785 0.3030 0.6803 0.5784 0.3921 0.6970
NN 0.0037 0.0109 0.3456 0.3846 0.1408 0.5786 0.5690 0.3554 0.6937
NCL 0.8152 0.8153 0.8887 0.4955 0.3335 0.6819 0.5543 0.3239 0.6603
SMOTE 0.6302 0.6475 0.9066 0.5314 0.4030 0.6800 0.5748 0.3610 0.6958
ADASYN 0.5576 0.5881 0.9063 0.4700 0.2899 0.6738 0.5618 0.3420 0.6557
SMOTEENN 0.5520 0.5849 0.9100 0.4783 0.3031 0.6815 0.5530 0.3297 0.6575
SMOTETomek 0.7150 0.7205 0.9057 0.4955 0.3335 0.6819 0.5859 0.3798 0.7053
CTGAN 0.8037 0.8034 0.8922 0.5134 0.3881 0.6588 0.6042 0.4130 0.7243
Improved CTGAN 0.8187 0.8185 0.9108 0.5349 0.4060 0.6841 0.6108 0.4227 0.7300

Notes.
The values in bold indicate the best results.

the overlap between minority and majority class samples. In contrast, improved CTGAN
generates samples that conform to the real data distribution in the distribution area of the
original samples, without generating noisy samples.

To further validate the performance of the improved CTGAN in handling imbalanced
data, we conducted an experiment using TCN as the fraud detection algorithm to detect
the dataset processed by CTGAN. We then compared the results with those of the other
10 credit card datasets. These 10 datasets included the original imbalanced dataset and
nine balanced datasets processed by ROS, RUS, SMOTE, ADASYN, Near Miss(NN), NCL,
SMOTEENN, SMOTETomek, and CTGAN sampling methods. We used F1-Score, MCC,
and G-mean as evaluation metrics. F1-Score measures the accuracy and recall of the model,
MCC measures the classification performance of the model, and G-mean measures the
data imbalance. The experimental results are presented in Table 3.

The experimental results presented in Table 3 demonstrate the superior performance of
the improved CTGAN in handling imbalanced data. In particular, the datasets processed
by the improved CTGAN achieved the best results in all three metrics of F1-Score, MCC,
and G-mean, with significant improvements observed in the German dataset, where the
metrics were improved by 15%, 9%, and 16%, respectively. This can be attributed to the
fact that the improved CTGAN filters the original data by removingmost of the overlapping
majority class samples and generates minority class samples that conform to the true data
distribution to construct a balanced dataset. It is worth noting that while CTGAN also
performed well in terms of F1-Score and G-mean metrics, the newly generated samples
by CTGAN tended to fall into the majority class region, exacerbating the overlap between
majority and minority class samples and making the classification boundary between them
blurred.

RUS, NN, and NCL construct a balanced dataset by removing majority class samples,
and the three datasets processed by these three undersampling algorithms achieved good
experimental results in the G-mean metric. However, undersampling algorithms can lead
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Table 4 Accuracy, Recall and F1-Score based on different detection algorithms.

Methods Europe Taiwan German

Accuracy Recall F1-Score Accuracy Recall F1-Score Accuracy Recall F1-Score

DT 0.9993 0.7839 0.8141 0.8250 0.3480 0.4617 0.7454 0.3229 0.4246
LR 0.9991 0.5925 0.7058 0.8226 0.3185 0.4364 0.7909 0.5626 0.6101
SVM 0.9992 0.6111 0.7415 0.8233 0.3634 0.4701 0.7666 0.4895 0.5497
RF 0.9993 0.7160 0.7972 0.8235 0.3367 0.4514 0.7424 0.2291 0.3410
CNN 0.9993 0.7551 0.8000 0.8223 0.3578 0.4648 0.7363 0.6875 6027
ANN – 0.7416 0.7648 0.8229 0.3854 0.4842 0.7696 0.4895 0.5529
LSTM – 0.7408 0.7866 0.8238 0.3704 0.4756 0.7787 0.4687 0.5521
GRU – 0.7208 0.7792 0.8250 0.3817 0.4848 0.7515 0.4895 0.5340
LSTM-Attention 0.9993 0.7901 0.8101 0.8232 0.3592 0.4671 0.7757 0.4687 0.5487
RNN-LSTM 0.9993 0.7777 0.8000 0.8224 0.3770 0.4780 0.7818 0.5208 0.5813
CNN-GRU 0.9993 0.7716 0.8143 0.8254 0.3629 0.4728 0.7909 0.5625 0.6101
CTCN 0.9993 0.8299 0.8187 0.7981 0.5381 0.5349 0.7181 0.7604 0.6108

Notes.
The values in bold indicate the best results.

to the loss of some useful samples in themajority class, which can affect the detection results
of the detection algorithm. For example, the F1-Score and MCC metrics of the Europe
dataset after being processed by RUS were only 0.0283 and 0.1082, respectively. ROS,
SMOTE, ADASYN, SMOTEENN, and SMOTETomek are five sampling algorithms that
construct a balanced dataset by expanding the minority class samples. The experimental
results of their processed data in F1-Score, MCC, and G-mean metrics were also better
than those of the original dataset. However, these five sampling algorithms only start from
the local neighborhood of the minority class samples and do not consider the overall
distribution of the minority class samples. The generated data cannot effectively fit the true
data distribution and can reduce the performance of the detection algorithm. For example,
the F1-Score and MCC metrics of the Europe dataset after being processed by ADASYN
were 0.5576 and 0.5881, respectively.

CTCN experiment
For the purpose of appraising the potency of our advanced methodology, we undertook a
sequence of comparative experiments juxtaposing CTCN against other prevalent models
employed in fraud detection, including but not limited to DT, LR, SVM, RF, CNN, ANN,
GRU, LSTM, LSTM-Attention, RNN-LSTM, and CNN-GRU as detailed in references
(Forough & Momtazi, 2021; Forough & Momtazi, 2022; Roseline et al., 2022; Karthika &
Senthilselvi, 2023). We performed these experiments on three distinct datasets and used
accuracy, recall, and F1-Score as the evaluationmetrics. The results are presented in Table 4.

Based on the results presented in Table 4, our method achieved the highest accuracy
on the Europe dataset, which is comparable to the performance of DT, RF, CNN, LSTM-
Attention, RNN-LSTM, and CNN-GRU models. However, our method performed worse
than the CNN-GRU model on the Taiwan dataset, and was inferior to the LR and CNN-
GRU models on the German dataset. Given the imbalanced nature of credit card datasets,
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Figure 6 AUC comparison results for the Europe dataset.
Full-size DOI: 10.7717/peerjcs.1634/fig-6

even if all transactions are classified as normal, the detection model may still achieve high
accuracy. Therefore, accuracy alone is not the most informative indicator when evaluating
imbalanced data classification. Instead, recall, which measures the proportion of actual
normal transactions that are correctly identified as such, is a crucial metric for evaluating
credit card fraud detection methods. Our method achieved the highest recall on all three
datasets, indicating its superior coverage of minority classes. Additionally, the F1-Score,
which combines both precision and recall, is a comprehensive evaluation index. Our
method outperformed all comparison models in terms of F1-Score.

The AUC metric serves as an inherently intuitive means to assess the efficacy of the
detection algorithms. We present the AUC comparative results between CTCN and eleven
distinct detection algorithms, visually depicted in Figs. 6, 7 and 8.

As depicted in Figs. 6, 7 and 8, the AUC value of CTCN surpasses that of other machine
learning and deep learning methods. These findings indicate that CTCN can significantly
enhance the overall classification performance of the data.

To further assess the efficacy of CTCN, we have also generated ROC curves for various
algorithms on the Taiwan dataset and German dataset, as shown in Fig. 9. For the Europe
dataset, we employed the same evaluationmetrics as those employed in Forough & Momtazi
(2022) to make direct comparisons of experimental results between CTCN and the three
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Figure 7 AUC comparison results for the Taiwan dataset.
Full-size DOI: 10.7717/peerjcs.1634/fig-7

algorithms, namely, ANN, GRU and LSTM in Forough & Momtazi (2022). Consequently,
we do not provide its ROC curves here.

Figure 9A shows the ROC curves of different algorithms on Taiwan dataset. It can be
seen that SVM has the smallest ROC curve coverage area, while CTCN has the largest
ROC curve coverage area, and the remaining methods have similar ROC curve coverage
areas. Figure 9B shows the ROC curves of different algorithms on the German dataset. It
can be seen that the ROC curve coverage area of CTCN is superior to that of the other
detection algorithms. The ROC curve coverage area of CNN-GRU is marginally inferior
to that of CTCN, while the ROC curve coverage area of DT is the smallest. The larger
the ROC curve coverage area, the better the classification performance of the algorithm.
CTCN achieved the largest ROC curve coverage area for both the Taiwan dataset and
German dataset. Thus, the classification performance of CTCN is superior. In conclusion,
our proposed approach outperforms popular techniques such as DT, LR, SVM, RF, CNN,
ANN, GRU, LSTM, LSTM-Attention, RNN-LSTM, and CNN-GRU in credit card fraud
detection tasks. It should be noted that CTCN runs slightly slower than other fraudulent
transaction detection methods due to its equalization of the dataset by improving CTGAN,
but the overall detection accuracy of CTCN is better than other fraudulent transaction
methods.
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Figure 8 AUC comparison results for the German dataset.
Full-size DOI: 10.7717/peerjcs.1634/fig-8

Figure 9 ROC curves of different algorithms on different dataset. (A) Taiwan. (B) German.
Full-size DOI: 10.7717/peerjcs.1634/fig-9

Ablation study
To delve further into the intricacies of the CTCN model, a comprehensive ablation study
was undertaken, aimed at dissecting the efficacy of each constituent module. Leveraging
the European dataset as the experimental foundation, the specifics of this ablation inquiry
are meticulously documented in Table 5.
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Table 5 Results of the ablation study.

Methods Model Recall F1-Score AUC G-mean

GBDT NCL CTGAN

TCN(O) – – – 0.7407 0.7717 0.8702 0.8605
GBDT(O) X – – 0.7469 0.8013 0.8733 0.8641
CTGAN(O) – – X 0.7839 0.8015 0.8918 0.8852
OS(N) – X X 0.8024 0.8049 0.9010 0.8956
CTCN X X X 0.8299 0.8187 0.9147 0.9108

Notes.
The values in bold indicate the best results.
TCN(O) denotes that the original data is detected using TCN; GBDT(O) denotes that the original data is feature-selected
and then detected using TCN; CTGAN(O) denotes that CTGAN balances the original dataset and then detects it using TCN;
OS(N) denotes that the original dataset is balanced using improved CTGAN and then TCN is used for detection; CTGAN in-
dicates that the full module was used.

In Table 5, TCN(O) denotes the detection results of TCN based on the original dataset.
GBDT(O) denotes the result of using TCN detection after feature selection on the original
data. The detection results of GBDT(O) outperform those of TCN(O) due to the fact that
GBDT removes irrelevant or redundant features and reduces the effect of noise. CTGAN(O)
denotes the detection results on TCN using only the CTGAN oversampling processed data.
The detection results of CTGAN(O) are better than those of TCN(O), CTGAN balances
the original data, which makes TCN pay more attention to the features and patterns of
the minority class samples and improves the recognition accuracy of the minority class
samples. OS(N) denotes the detection result of the data on TCN after processing using
improved CTGAN oversampling. CTGAN exacerbates the overlapping phenomenon in
the original data when generating minority class samples, and from the detection results
of OS(N), improved CTGAN can remove the majority class samples in the overlapping
region and improve the quality of the CTGAN-generated samples in order to improve
the detection performance of TCN. In summary, the modules in CTCN can effectively
improve the classification performance of the classifier.

CONCLUSION
In this study, we presented CTCN, a credit card fraud detection method that combines
CTGAN and TCN to address the issue of imbalanced data. We improved CTGAN by
introducing NCL to solve the problem of class overlap in imbalanced datasets, and
generated minority class samples that conform to the true data distribution. This helped us
to construct a balanced dataset that could be used to train our detection model. We then
used TCN to analyze transaction sequences and identify potential correlations between
transaction data, capturing the long-term dependency relationships between transactions.
Our experiments demonstrated that the improved CTGAN outperformed the other nine
sampling methods in terms of F1-Score, MCC, and G-mean metrics. Furthermore, we
evaluated the proposed method on fraud detection in three different credit card datasets
and compared it with popular detection models such as DT, LR, SVM, RF, CNN, ANN,
GRU, LSTM, LSTM-Attention, RNN-LSTM, and CNN-GRU. The results showed that
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our method achieved superior performance in terms of Recall, F1-Score, and AUC-ROC
metrics.
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